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Abstract: There is a largely increasing demand for the usage of Unmanned Underwater
Vehicles (UUVs) including Remotely Operated Vehicles (ROVs) for underwater aquaculture
operations thereby minimizing the risks for diving accidents associated with such operations.
ROVs are commonly used for short-distance inspection and intervention operations. Typically,
these vehicles are human-operated and improving the sensing capabilities for visual scene
interpretation will contribute significantly to achieve the desired higher degree of autonomy
within ROV operations in such a challenging environment. In this paper we propose and
investigate an approach enabling the underwater robot to measure its distance to the fishnet and
to estimate its orientation with respect to the net. The computer vision based system exploits
the 2D Fast Fourier Transform (FFT) for distance estimation from a camera to a regular net-
structure in an aquaculture installation. The approach is evaluated in a simulation as well as
demonstrated in real-world recordings.
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1. INTRODUCTION

In order to face future challenges that come with an in-
creasing food demand of an increasing world population,
fish-farming (Føre et al., 2018) and the development of
algorithms that help to increase the autonomous capa-
bilities of underwater robots is crucial ((Balchen, 1991)).
Adapting advanced technological solutions such as in-
telligent sensors and using underwater robotic systems
(Bogue, 2015; Kelasidi et al., 2016) will contribute to
address the challenges of the aquaculture industry. These
include the optimization of costs but also other aspects
like minimizing escapees, reducing sea lice, reducing the
environmental impact among others (Føre et al., 2018).
Currently, mostly ROVs are used in salmon fish farms
and basic tasks towards more autonomous behaviour like
hovering or traversing at a certain distance from the cage
are requested features. Cameras provide, compared with
other sensors a cost effective solution for vehicle naviga-
tion, pose estimation, orientation, station keeping and drift
correction. In addition, underwater positioning system’s
like Ultra-short Baseline (USBL) or Dopper Velocity Log
(DVL) are not able to provide the relative position of the
vehicle from the observed structure (Rundtop and Frank,
2016) or are disturbed by fish, respectively. Within this
paper, we suggest a cost effective computer vision based
method that only requires a monocular camera to estimate
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distance and pose of the robot to the net in a net cage.
The obtained results can therefore be used as inputs to
the control strategies for the autonomous navigation of
UUVs (Gafurov and Klochkov, 2015) during inspection
and intervention operations in fish farms.

1.1 Motivation

The automation of aquaculture operations is highly de-
sired by the industry (Føre et al., 2018), but many ad-
ditional challenges – compared to land based automation
efforts – arise from the fact that farming operations today
are mostly performed in the sea. Furthermore, farming of
Atlantic salmon in exposed areas (Bjelland et al., 2015)
poses unique challenges to operations. Many of the oper-
ational challenges seen at present sheltered sites are likely
to be amplified when moving production to more exposed
locations. There is, however, a strong Norwegian industrial
interest in utilizing such areas. This includes for example
that net cages are flexible structures that change with
the ocean current, tide and different weather conditions
(Lader et al., 2008) meaning that the environment where,
for example, a UUV/ROV (Antonelli, 2014) is supposed
to operate is constantly changing. In addition, ordinary
Global Positioning Systems (GPS) fail to provide location
and time information under water as radio signals from
the satellites do not penetrate in water very far as they are
heavily damped (Paull et al., 2014; Taraldsen et al., 2011),
and acoustic systems in noisy and reflective environments
tend to have a lower accuracy. Alternative solutions based
on vision sensor systems are commonly more cost effective,
accurate, and deliver environmental scene information in
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locations. There is, however, a strong Norwegian industrial
interest in utilizing such areas. This includes for example
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for example, a UUV/ROV (Antonelli, 2014) is supposed
to operate is constantly changing. In addition, ordinary
Global Positioning Systems (GPS) fail to provide location
and time information under water as radio signals from
the satellites do not penetrate in water very far as they are
heavily damped (Paull et al., 2014; Taraldsen et al., 2011),
and acoustic systems in noisy and reflective environments
tend to have a lower accuracy. Alternative solutions based
on vision sensor systems are commonly more cost effective,
accurate, and deliver environmental scene information in

high resolution (Massot-Campos M, 2015). In addition,
the application of simultaneous localization and mapping
(SLAM) technology to the underwater realm (Leonardi
and Stahl, 2018) have yielded new possibilities in the
field of navigation and localization (Paull et al., 2014).
A fundamental task for navigation, to allow a higher level
of autonomy within aquaculture operations that can sup-
port advanced control algorithms (Fossen, 2011) to steer
ROVs/UUVs, is to estimate the distance and the relative
orientation of the camera to an object with high pre-
cision/accuracy. State-of-the-art vision technology relies
mostly on stereo vision or RGB-D systems, in order to
provide comprehensive 3D information (Leonardi et al.,
2017). Monocular systems, which are even lower in cost
and which provide a solution for low payload and small size
form factor systems rely on concepts like structure from
motion (SFM) (Saputra et al., 2018) to calculate distances
(Davison et al., 2007). Three-dimensional measurements
from the surrounding scene are retrieved by moving the
camera from one viewpoint to the next. The camera pose
and 3D structure of the scene can be estimated through
a set of feature correspondences, detected from multiple
images. Absolute scale of objects rely thereby on the as-
sumption that the baseline of the motion or the geometry
of the observed object is known. SFM implementations
are rather complex and computationally expensive (Fraun-
dorfer and Scaramuzza, 2012). An alternative vision-based
approach, not relying on the SFM concept is presented by
(Duda et al., 2015). The main limitation of their proposed
method is that the success of the approach is restricted
to situations where the fishnet knots are clearly visible
which is for example not the case if the fishnet is partly
covered by seaweed or occluded by fish. In addition in
shallow waters, most SFM methods have difficulties to
select/track feature points, because of the caustics, visible
as fast moving illuminated patterns created by the sun and
the surface’s wavelets. In order to overcome this issue and
to provide a non-complex and computational inexpensive
solution, we propose to exploit the Fourier Transform to
detect the presence of a net (i.e. a regular grid structure)
in images/videos of aquaculture net cages recorded by a
monocular camera. In addition, the knowledge of the grid-
structure is exploited to estimate the relative distance and
orientation (pose) of the camera to the net.

1.2 Main idea

In the following, we explain in detail our approach to
automatically detect the presence of net-structure and
to determine its distance and orientation based on a
monocular camera mounted on an underwater ROV in a
salmon net cage. A squared region of interest (ROI) of
the camera video stream is analysed in order to detect
regular peaks in the Fourier Transform (FT) indicating the
presents of a fishnet in the considered ROI. Once a fishnet
is detected a single mesh is reconstructed from the regular
peaks in the FT. Knowing the camera parameters and the
real mesh-size one can compute which distance and which
orientation the net has with respect to the camera. The
main steps of this approach are illustrated in Figure 1.

1.3 Contributions

A major issue in realizing autonomous underwater vehicles
for fish net inspections or intervention tasks is to estimate
in real-time and with high precision the relative distance

Fig. 1. Illustration of the main steps of the proposed net-
pose estimation approach. The Fourier Transform of
an image is analysed and searched for a regular grid
pattern of detected local maximum peaks. Found base
grid vectors correspond to a single spatial mesh for
which the pose can be determined.

of the vehicle from the fishnet implying also the detection
of the net. This is needed in order to maintain distance to
the net during automated operations. Especially, regions
of fishnets with little or no marine growth are extremely
difficult to detect and further to track with visual sensors.
The reason for this is on one side the fine structure of
the fishnet and on the other side the repetitive pattern
resulting in a high similarity between different net re-
gions. Thus, feature based matching methods are prone
to generate large consistent sets of outliers resulting in
wrong distance and pose estimations (Duda et al., 2015).
This paper presents a novel computationally non-complex
and inexpensive computer vision based approach for reg-
ular pattern detection as well as orientation, and distance
estimation based on an analysis of the images/videos in
the spectral domain. This avoids the tracking of image
features and therefore does not suffer in situations with
repeated scene structures. The method is proven to be
robust against occlusions. In addition, the scale is directly
estimated from the fishnet using the FFT eliminating the
main disadvantage of monocular camera systems which
can generally reconstruct scenes only up to scale. The
outcome is a low cost vision based detection system to
support autonomous operations of underwater vehicles.

2. THEORETICAL BACKGROUND

In this section, we present the theoretical building blocks
that we exploit to efficiently determine the distance and
the orientation to a regular grid like a fish-net seen in an
image with respect to the camera.

2.1 Fourier transformation of periodic patterns

We denote the Fourier Transform of an image I as F{I}.
The Discrete Fourier Transform (DFT)
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high resolution (Massot-Campos M, 2015). In addition,
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(SLAM) technology to the underwater realm (Leonardi
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field of navigation and localization (Paull et al., 2014).
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from the surrounding scene are retrieved by moving the
camera from one viewpoint to the next. The camera pose
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a set of feature correspondences, detected from multiple
images. Absolute scale of objects rely thereby on the as-
sumption that the baseline of the motion or the geometry
of the observed object is known. SFM implementations
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dorfer and Scaramuzza, 2012). An alternative vision-based
approach, not relying on the SFM concept is presented by
(Duda et al., 2015). The main limitation of their proposed
method is that the success of the approach is restricted
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monocular camera mounted on an underwater ROV in a
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regular peaks in the Fourier Transform (FT) indicating the
presents of a fishnet in the considered ROI. Once a fishnet
is detected a single mesh is reconstructed from the regular
peaks in the FT. Knowing the camera parameters and the
real mesh-size one can compute which distance and which
orientation the net has with respect to the camera. The
main steps of this approach are illustrated in Figure 1.

1.3 Contributions

A major issue in realizing autonomous underwater vehicles
for fish net inspections or intervention tasks is to estimate
in real-time and with high precision the relative distance

Fig. 1. Illustration of the main steps of the proposed net-
pose estimation approach. The Fourier Transform of
an image is analysed and searched for a regular grid
pattern of detected local maximum peaks. Found base
grid vectors correspond to a single spatial mesh for
which the pose can be determined.
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of the net. This is needed in order to maintain distance to
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to generate large consistent sets of outliers resulting in
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and inexpensive computer vision based approach for reg-
ular pattern detection as well as orientation, and distance
estimation based on an analysis of the images/videos in
the spectral domain. This avoids the tracking of image
features and therefore does not suffer in situations with
repeated scene structures. The method is proven to be
robust against occlusions. In addition, the scale is directly
estimated from the fishnet using the FFT eliminating the
main disadvantage of monocular camera systems which
can generally reconstruct scenes only up to scale. The
outcome is a low cost vision based detection system to
support autonomous operations of underwater vehicles.

2. THEORETICAL BACKGROUND

In this section, we present the theoretical building blocks
that we exploit to efficiently determine the distance and
the orientation to a regular grid like a fish-net seen in an
image with respect to the camera.
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Fig. 2. Left: Magnitude image of the Fourier Transform
of the right image. The inner local maximums are
used to determine the grid structure and are marked
by green rectangles. The found base grid vectors are
shown in red and yellow.Right: A 512x512 pixel large
area showing the net structure. The approximated
mesh size of the net is reconstructed based on the
found base grid vectors in the magnitude image.

of an N ×N image (u, v ∈ [0, ..., N − 1]) can be computed
efficiently using the Fast Fourier Transform (Cooley and
Tukey, 1965) assuming periodic border conditions and
N = 2m with m being an integer (e.g. N= ..., 128, 256,
512, ...). Note, that due to its “separability”, the FFT of a
2D-image has complexity O(N2logN). As F is in general
complex valued, we visualize just the magnitude |F{I}|
of the output image (with size N × N) to illustrate the
results of the FT (see e.g. (Gonzalez et al., 2004)).

A periodic structure leads to peaks in the FT at spatial
frequencies of the repeated texture. We are particularly
interested to extract these repeating patterns from the
Fourier transformed image of the scene. We do that by
searching for local maximums in the magnitude image
|F{I}|. In a following step candidate basis-vectors of the
grid structure are determined and subsequently checked
for consistency and regularity of the local maximums. If
a large fraction (for example 0.5) of the observed local
maximums lie on the grid we assume that regular structure
(e.g. a net) is present in the ROI. This results in two grid
basis vectors k1 and k2. Let dki

= |ki| be the magnitude
of one basis vector ki = (u, v) measured in pixels from the
origin (in the center) to an observed frequency intensity
maximum within the Fourier transformed image. It can
be interpreted as wave number indicating the number of
waves or cycles per unit distance, which is here the length
of the image side N . Then the reciprocal space length dsi
of the associated periodic structure can be computed as

dsi = N/dki . (2)

The orientation of the vector ki is perpendicular to the
direction of the associated spacial grid/lattice. An example
of a determined grid in a FFT pair of images is shown
in Fig. 2. The image on the left side is the magnitude
image of the FFT of the image on the right side showing
a net cage. The local maximum peaks, in an inner circular
area (diameter is N/3) are marked by green rectangles.
Two wave number vectors, providing the base grid vectors
of the grid structure, are shown in red and yellow. In
the right image a single mesh reconstructed from the
base grid vectors is overlaid. The length (in pixels) of
the edges of the mesh is computed by (2) and their

orientation is perpendicular to the corresponding wave
number vector. This reconstructed idealized single mesh
– in form of a parallelogram/quadrilateral – approximates
the mesh seen in the image and is used in the following
step to estimate the distance of the net to the camera.
As the geometry and the size of the mesh (in our case
a flat square with a side length of 1.5cm) is known, the
internal camera parameters can be used to determine the
distance and orientation of the camera to the idealized
mesh. We note that the parallelogram/quadrilateral only
approximates the perspective projection of a single mesh
as a scaled orthographic projection. In addition, whenever
a grid structure can be verified to be present in the FFT
one knows that a regular structure (in the considered
application a fish net) is visible in the image. So, we can
also exploit this as fish-net detection algorithm. Fig. 3
illustrates that the regular grid pattern is still present
in the FFT image even if the net is partly occluded, as
the FFT constitutes a global operation. This property
contributes to the robustness of the approach against
occlusion.

Fig. 3. Left: Magnitude image of the Fourier Transform of
the right image.Right: An image showing the regular
net structure occluded in the center by a cleaner fish.
Still the mesh can be reconstructed based on the
found base grid vectors in the magnitude image.

2.2 Camera calibration

The internal or intrinsic camera calibration refers to the
determination of camera specific parameters that define
the configuration of the pin hole camera model (perspec-
tive projection) along with distortion parameters (compare
(Hartley and Zisserman, 2000)). The perspective projec-
tion can be described by the intrinsic camera calibration
matrix

K =

[
f s ox
0 fa oy
0 0 1

]
, (3)

where f denotes the focal length and the point (ox, oy)
refers to the optical center (i.e., the intersection of the opti-
cal axis with the image plane) of the camera. Note that for
today’s cameras we most often can assume that the skew
parameter is zero (s = 0) and that the pixels represent a
square grid with an aspect ratio of one (a = ly/lx = 1).
Here lx and ly are indicating the horizontal and vertical
size of the pixels (i.e. measured in pixels per unit length
[meter, cm, mm, etc.]). The intrinsic camera parameters
can be obtained by using a flat chessboard pattern with
known geometry for calibration. In Fig. 4, an underwater
image containing the used 7 × 4 calibration checkerboard
is shown. We used the OpenCV library (Itseez, 2020)

Fig. 4. An example image from a video used for determin-
ing the intrinsic camera parameters with a checker-
board calibration board (7× 4 inner crossings).

for a C++ standard implementation of Zhang’s (Zhang,
2000) calibration method. It first finds the coordinates of
all the checkerboard corners in the camera image for all
the captured checkerboard orientations. Then the intrinsic
camera parameters and distortion parameters are com-
puted determining the linear mappings (homographies)
from the checkerboard model points to the observed 2D
image points using a closed-form (linear) solution. The
coefficients for two distortion models are estimated by a
linear least-square minimization which is followed by a
final nonlinear optimization that refines the results. The
distortion coefficients k1, k2 and k3 are used to describe
the model for a radial lens distortion (Visible as ”barrel”
or ”pin cushion” distortion):

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (4)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (5)

Here x and y refer to the coordinates of the undistorted
pixel and rn with n = 2, 4, 6 is computed as rn = xn +
yn. The tangential distortion model is described by the
parameters p1 and p2.

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (6)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (7)

Correcting the video-streams for the measured distortion
allows to employ the perspective camera model (pinhole
camera model) to estimate the pose (distance and orien-
tation) of the approximated single mesh.

2.3 Pose Estimation

The above obtained quadrilateral is the projection of a
small flat square onto the camera image which approx-
imates a single mesh of the net that has a known size,
in our case, sm × sm = 1.5cm × 1.5cm (Note, that this
size needs to be measured at the actual net used in the
net cage). As the intrinsic camera parameters are known,
one can compute the pose (i.e distance and orientation)
of this mesh relative to the camera by first describing the
mesh as square in the real world by its four coplanar and
non collinear corner points (i.e. X1 = [−b,−b, 0]T , X2 =
[−b, b, 0]T , X3 = [b, b, 0]T , X4 = [b,−b, 0]T ). The parame-
ter b = sm/2.0 is half of the mesh-size sm, putting its origin
in the center. Then as the projection matrix P = K[R|t]
encodes the transformation from real world coordinates
to pixel-coordinates in the image (Hartley and Zisserman,
2000) and by knowing the correspondences of the corners
in the real world and its projected corners on the image
one is able to reconstruct the pose of the mesh in terms
of the translation vector t ∈ R3 and the rotation matrix
R ∈ SO(3). The full problem can be written as

[
hxi

hyi
h

]
=

[
f 0 ox
0 f oy
0 0 1

]
[R|t]



Xi

Yi

0
1


 , (8)

or shorter as
xi = PXi = K[R|t]Xi, (9)

where xi is an image point represented by a homogeneous
3-vector and Xi is the corresponding world point repre-
sented by a homogeneous 4-vector. In order to decompose
or solve (9) for the unknown pose of the object (R and
t of the mesh relative to the camera) Perspective-n-Point
(PnP) algorithms like suggested in (Lepetit et al., 2009;
Oberkampf et al., 1996; Schweighofer and Pinz, 2006;
Xiao-Shan Gao et al., 2003) can be employed to determine
the distance and orientation of the net mesh.

We exploited the OpenCV PnP implementation, which is
based on (Lepetit et al., 2009; Oberkampf et al., 1996), in
our system for solving (9).

Fig. 5. An artificial net is projected into the video scene
with varying distance and angle (here 80cm and 40◦

respectively) and overlaid to a video sequence. The
snapshot shows a reconstructed distance of 82.6cm
and an orientation angle error of 1.5◦.

2.4 Experiments

In order to evaluate the described method we projected
– using the camera parameters from the real world
experiment– an artificial net into an underwater video
scene. An example for this is shown in Fig. 5. We defined a
flat 3D grid with mesh size of 1.5cm and placed it virtually
at different distances between 40cm and 200cm and with
different tilt angles in front of the camera and investigated
the performance of the approach proposed in this paper
over 200 video images for each distance-angle pair. Table
1 shows the mean measured distance and mean deviation
of the estimated orientation vector of the net using the
proposed approach in this paper for a typical working
range of distances and orientations. Based on the results in
Table 1, one sees that the precision of the distance is well-
suited for autonomous inspection of a net cage by under-
water vehicles since accurate measurements from 40cm are
possible compared to the conventional positioning systems
such as DVL where the minimum measurement distance is
1.5m (see e.g. (Rundtop and Frank, 2016)). In the artificial
experiments we designed, the determined distances are
in good agreement with the ground truth and have an
observed mean maximum deviation of 4% for larger tilt
angles of the net. The orientation estimation shows that
the estimated normal vector and the ground truth normal
vector of the net deviates usually between 4◦−6◦ but that
it reached 16◦ indicating that the orientation ambiguity
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Fig. 4. An example image from a video used for determin-
ing the intrinsic camera parameters with a checker-
board calibration board (7× 4 inner crossings).

for a C++ standard implementation of Zhang’s (Zhang,
2000) calibration method. It first finds the coordinates of
all the checkerboard corners in the camera image for all
the captured checkerboard orientations. Then the intrinsic
camera parameters and distortion parameters are com-
puted determining the linear mappings (homographies)
from the checkerboard model points to the observed 2D
image points using a closed-form (linear) solution. The
coefficients for two distortion models are estimated by a
linear least-square minimization which is followed by a
final nonlinear optimization that refines the results. The
distortion coefficients k1, k2 and k3 are used to describe
the model for a radial lens distortion (Visible as ”barrel”
or ”pin cushion” distortion):

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (4)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (5)

Here x and y refer to the coordinates of the undistorted
pixel and rn with n = 2, 4, 6 is computed as rn = xn +
yn. The tangential distortion model is described by the
parameters p1 and p2.

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (6)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (7)

Correcting the video-streams for the measured distortion
allows to employ the perspective camera model (pinhole
camera model) to estimate the pose (distance and orien-
tation) of the approximated single mesh.

2.3 Pose Estimation

The above obtained quadrilateral is the projection of a
small flat square onto the camera image which approx-
imates a single mesh of the net that has a known size,
in our case, sm × sm = 1.5cm × 1.5cm (Note, that this
size needs to be measured at the actual net used in the
net cage). As the intrinsic camera parameters are known,
one can compute the pose (i.e distance and orientation)
of this mesh relative to the camera by first describing the
mesh as square in the real world by its four coplanar and
non collinear corner points (i.e. X1 = [−b,−b, 0]T , X2 =
[−b, b, 0]T , X3 = [b, b, 0]T , X4 = [b,−b, 0]T ). The parame-
ter b = sm/2.0 is half of the mesh-size sm, putting its origin
in the center. Then as the projection matrix P = K[R|t]
encodes the transformation from real world coordinates
to pixel-coordinates in the image (Hartley and Zisserman,
2000) and by knowing the correspondences of the corners
in the real world and its projected corners on the image
one is able to reconstruct the pose of the mesh in terms
of the translation vector t ∈ R3 and the rotation matrix
R ∈ SO(3). The full problem can be written as
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or shorter as
xi = PXi = K[R|t]Xi, (9)

where xi is an image point represented by a homogeneous
3-vector and Xi is the corresponding world point repre-
sented by a homogeneous 4-vector. In order to decompose
or solve (9) for the unknown pose of the object (R and
t of the mesh relative to the camera) Perspective-n-Point
(PnP) algorithms like suggested in (Lepetit et al., 2009;
Oberkampf et al., 1996; Schweighofer and Pinz, 2006;
Xiao-Shan Gao et al., 2003) can be employed to determine
the distance and orientation of the net mesh.

We exploited the OpenCV PnP implementation, which is
based on (Lepetit et al., 2009; Oberkampf et al., 1996), in
our system for solving (9).

Fig. 5. An artificial net is projected into the video scene
with varying distance and angle (here 80cm and 40◦

respectively) and overlaid to a video sequence. The
snapshot shows a reconstructed distance of 82.6cm
and an orientation angle error of 1.5◦.

2.4 Experiments

In order to evaluate the described method we projected
– using the camera parameters from the real world
experiment– an artificial net into an underwater video
scene. An example for this is shown in Fig. 5. We defined a
flat 3D grid with mesh size of 1.5cm and placed it virtually
at different distances between 40cm and 200cm and with
different tilt angles in front of the camera and investigated
the performance of the approach proposed in this paper
over 200 video images for each distance-angle pair. Table
1 shows the mean measured distance and mean deviation
of the estimated orientation vector of the net using the
proposed approach in this paper for a typical working
range of distances and orientations. Based on the results in
Table 1, one sees that the precision of the distance is well-
suited for autonomous inspection of a net cage by under-
water vehicles since accurate measurements from 40cm are
possible compared to the conventional positioning systems
such as DVL where the minimum measurement distance is
1.5m (see e.g. (Rundtop and Frank, 2016)). In the artificial
experiments we designed, the determined distances are
in good agreement with the ground truth and have an
observed mean maximum deviation of 4% for larger tilt
angles of the net. The orientation estimation shows that
the estimated normal vector and the ground truth normal
vector of the net deviates usually between 4◦−6◦ but that
it reached 16◦ indicating that the orientation ambiguity
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(Zhou et al., 2018) led to a larger number of non-desired
pose estimations in our initial implementation. A possible
strategy to select the correct pose solution is to estimate
the pose at more than one ROI-location and testing for
consistency assuming that the visible net-patch is rela-
tively flat. Note also that due to the reciprocal relationship
of the FFT space and the real space one can obtain a
higher error for net-structures that are closer to the camera
and appear spatial larger as the related structure appears
smaller in the FT. The simplicity to employ our developed
method along with the observed accuracy that is high
enough to enable a closed online control loop during au-
tonomous navigation makes our approach a highly suitable
candidate for autonomous net inspection tasks that require
a systematic traversing of the net-structure even when fish
or seaweed partly disturb the view.

Table 1. An artificial net is projected into an
underwater video scene with varying known
distances and angles (ground truth). 200 im-
ages of this video sequence were used to deter-
mine the mean measured distance and mean
deviation of the estimated orientation vector.

Z Net Tilt Angle

[cm] Tilt: 0◦ 20◦ 40◦

40 39.97± 0.25 (9.0◦) 39.73± 1.2 (15◦) -

80 78.56± 0.18 (4.9◦) 80.06± 0.50 (16◦) 79.13± 9.81 (5.3◦)

120 118.22± 0.61 (4.7◦) 119.21± 1.15 (11.6◦) 119.05± 0.85 (2.8◦)

160 156.15± 1.94 (6.6◦) 158.75± 12.10 (1.6◦) 153.38± 13.72 (5.9◦)

200 198.50± 0.88 (5.2◦) 200.76± 0.61 (4.2◦) 197.51± 0.88 (6.2◦)

2.5 Real World Experiments

The described algorithm was developed for a ROV per-
forming inspection tasks within a commercial net cage
and the test recordings were obtained by the ROV camera
and also by an underwater consumer camera mounted to
the ROV. A calibration board (7 4 inner crossings) with
square size of 3.11cm× 3.11cm (compare Fig. 4) was used
for the calibration of the cameras. In Fig. 6 a snapshot
of a video taken by a ROV in a commercial aquaculture
net cage is shown. The proposed approach is capable of
detecting when the net is present and is also determining
the distance and orientation in real world scenarios. In Fig
7 an example is shown where we can detect the net even
though it is largely occluded by salmon.

In particular, the Argus Mini ROV (Argus, 2021) has been
used to obtain the videos in this paper to demonstrate
experimentally the usability of the proposed method. The
vehicle has been manually controlled by an experienced
ROV operator to approach the net structure and also
moving along the net cage to capture videos. The videos
were processed after recording and based on the processing
rate of 2.5 FPS (frames per second) on a desktop PC with
non-optimised code, real-time control algorithms will be
developed and implemented in a simulation environment
(i.e FhSim (2021) ) and then tested and evaluated in real
world net cage experiments.

2.6 Conclusion and Discussion

In this paper, we presented an approach which is capable
to detect and estimate the pose of a cage net recorded by
a monocular camera. It is based on the spectral analysis
of the image in Fourier space from which we obtain the
geometry of a single mesh if the regular net structure is

Fig. 6. Video image showing the distance and orientation
estimation (visualised by the back-projected coordi-
nate systen) to a net within a commercial aquaculture
cage recorded by a monocular ROV camera. The
observed pose estimation agrees with the dynamics
seen in the video. Here the distance to the net is
approximately 96cm and the single mesh used for the
pose estimation is shown as well.

Fig. 7. The net of the cage is detected even though a large
fraction of the net is occluded by salmon.

visible and detected in the image. This in turn allows –
in combination with the known camera parameters – to
estimate the pose of the mesh in real world coordinates
providing a distance and orientation to the net. In our
implementation, the search for a regular net-structure is
organized hierarchically meaning that we search at differ-
ent scales for a regular pattern in the Fourier space. The al-
gorithm works best if motion blur can be avoided by main-
taining a short enough shutter speed that results in sharp
views of the net. The accurate and efficient monocular
camera based pose estimation of the ROV relative to the
net (or vice versa) allows the integration of our approach
into control approaches for maintaining automatically a
certain distance to the net cage thereby avoiding a collision
between ROV and the cage. It is also easy to integrate the
suggested positioning measurement approach into existing
ROV solutions as no additional hardware at the ROV is
required. The proposed method is computationally less
complex than the commonly used SFM/SLAM implemen-
tations in the localization context. This low cost solution
compared with multiple sensor settings for navigation and
localization for example DVL/USBL systems, is capable
to produce more accurate results and is more robust with
respect to occlusion compared to existing commercial so-
lutions such as DVL. Based on the suggested method our
next steps will include the development and implemen-
tation of an online control mechanism for autonomous
net-inspection tasks and we will evaluate its capability to
traverse and scan a net cage at a predefined distance in
different weather conditions.
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