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Abstract
The flow of reactive fluids into porous media, a phenomenon known as reactive infiltration, 
is important in natural and engineered systems. While most of the studies in this area cover 
theoretical and experimental analyses in linear acid flow, the present work concentrates on 
radial flow conditions from a wellbore in the field and on finding exact analytical solutions 
to moving boundary problems of the uniform dissolution front. Closed-form solutions are 
obtained for the transient convection–diffusion which allow the demarcation of the range of 
applicability of the quasi-static limit. The fluid velocity dependency of the diffusion–dis-
persion coefficient is also examined by comparing results from analytical solutions from 
constant and velocity-dependent coefficients. These contributions form the basis for linear 
stability analyses to describe acid fingering encountered in reservoir stimulation.

Keywords Acidizing · Reactive infiltration · Stefan problem · Diffusion–dispersion 
coefficient · Similarity solutions

1 Introduction

Reactive infiltration is the phenomenon where fluids enter the free space of a porous solid, 
while their components react with the solid matrix and result in changes to its porosity and 
permeability. Reactive infiltration arises both naturally and in engineered systems. Main 
applications regarding of the latter are acidizing of wells in hydrocarbon reservoirs (Econo-
mides et al. 2013; Fredd and Fogler 1998), and chemical reactions during  CO2 subsurface 
storage (Liu et al. 2011). Most of the research focuses on analyzing either theoretically or 
experimentally the pattern formation in rocks created by the reactive infiltration instabil-
ity, a self-organizing system where the interplay between convective and diffusive fluxes 
sculpts the shape of the dissolution profile in the rock (e.g., Ortoleva et al. 1987; Papami-
chos et al. 2020).
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The present work focuses on a specific application of reactive infiltration that of 
carbonate acidizing which is a common technique to enhance hydrocarbon production 
in carbonate reservoirs. In this technique, an aqueous solution of hydrochloric acid is 
injected under pressure from the well into the near wellbore area of the formation. The 
calcite is dissolved by the injected acid, its porous network is altered with new path-
ways emerging, and its porosity and permeability are enhanced. Most works in reactive 
infiltration in general and in carbonate acidizing in particular consider linear flow of the 
injected acid (Chadam et  al. 1986; Hinch and Bhatt 1990; Szymczak and Ladd 2011; 
Wangen 2013; Zhao et al. 2013). The present study considers radial flow and thus simu-
lates the geometry in applications where reactive fluids are injected through a cylindri-
cal well and the relevant geometry can be assumed to be axisymmetric. Radial flow 
acidizing has been studied theoretically by Grodzki and Szymczak (2019), and experi-
mentally in Indiana limestone and a dolomite by McDuff et  al. (2010), and in Mons 
chalk by Walle and Papamichos (2015).

This study can be considered as the first but essential step toward a linear stability 
analysis of reactive infiltration in radial flow conditions. Such an analysis requires a 
base solution which corresponds to a uniform, axisymmetric dissolution pattern around 
the well. In linear flow, the base solution corresponds to a planar dissolution front and 
it is simpler to obtain because the front travels at a constant velocity. This is not the 
case for radial flow where the base solution corresponds to the axisymmetric propaga-
tion of the dissolution front that travels with a decreasing velocity due to the diverging 
geometry. Grodzki and Szymczak (2019) obtained such a base solution but their deriva-
tion assumed first that the small acid capacity number leads to a quasi-static solution 
for the acid concentration profile, and second that the diffusion–dispersion coefficient is 
constant. They also neglected the finite radius of the wellbore and assumed point acid 
injection. In this study, we first address the validity of the assumption of quasi-static 
approximation by deriving the transient solution and comparing with the quasi-static 
one to obtain the limits of its applicability. The transient solution requires the assump-
tion of point injection to obtain self-similar formulations that can be solved analytically. 
We then remove the simplifying assumptions of constant diffusion–dispersion coeffi-
cient and point injection and solve the quasi-static problem in a more general framework 
for more realistic predictions. The finite wellbore radius becomes especially important 
in linear stability analyses of reactive infiltration as it provides the necessary scale to 
upscale the problem in the field and lead to wavenumber selection in fingering.

Section  2 introduces the governing equations of reactive infiltration in polar coor-
dinates, describes the associated geometry and introduces the important assumption of 
thin front approximation in carbonate acidizing which allows the formulation of various 
Stefan-type moving boundary problems that can be solved analytically in the direction 
of previous works (Grodzki and Szymczak 2019; Papamichos et  al. 2020). Section  3 
derives the transient solution of radial reactive infiltration assuming constant in space 
and time diffusion–dispersion coefficient and compares the results with those obtained 
at the quasi-static limit of small acid capacity number. The development of this more 
general closed-form solution allows the analytical validation of the approximate steady-
state solution and the demarcation of its range of applicability. Section  4 adopts the 
small acid capacity number assumption and solves analytically for a finite radius well-
bore the quasi-static problem of a velocity-dependent diffusion–dispersion coefficient. It 
also examines the effect of this dependence on the propagation velocity of the reaction 
front and the fluid flux and acid concentration profiles. Finally, Section 5 presents the 
conclusions.
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2  Governing Equations

In a porous medium, the representative volume V consists of the volume of solids Vs and 
the volume of voids Vv. In the presence of a fully saturating fluid, the volume of fluid 
Vf = Vv. The porosity φ of the porous medium is defined as the ratio of the volume of voids 
Vv to the total volume V. In acidizing, an aqueous acidic solution is injected radially from 
a wellbore of radius r0 into the formation at a prescribed fluid flux u0 [m/s], and prescribed 
concentration c0 [mol/m3], as shown in Fig. 1. For carbonates, the acidic solution is usu-
ally an aqueous hydrochloric acid (HCl) solution which reacts with the calcium carbonate 
 (CaCO3) according to the chemical reaction

The porous solid has an initial porosity φ0. After acidizing, it is assumed that its poros-
ity reaches its final, maximum porosity �f ≤ 1 . The solids have molar density ρs defined as 
the ratio of number of moles of solids per volume of solids Vs. In carbonate acidizing, the 
porous solid consists almost entirely of calcite  (CaCO3) with ρs = 270 mol/L. The acid con-
centration c [mol/m3] is defined as

where nacid is the number of moles of acid per fluid volume Vf.
The injected acid solution dissolves the porous solid forming areas where the rock has 

reached its maximum porosity. The medium is divided into two domains, the upstream 
where the rock has reached its final porosity value φf, and the downstream where calcite 
has not been fully dissolved (Fig. 1). The conservation laws of porous media are applied to 
both domains to extract the governing equations. Conservation of fluid mass leads to the 
differential equation for the Darcy fluid flux u [m/s]

In the upstream domain, the rock has reached its final porosity and therefore the poros-
ity is everywhere φf. In the downstream domain, the evolution of porosity is described by 
the differential equation

(1)CaCO3 + 2HCl → CaCl2 + H2O + CO2

(2)c =
nacid

Vf

=
nacid

�V

(3)
��

�t
+ ∇ ⋅ u = 0

Fig. 1  Schematic of radial acid 
injection from a wellbore of 
radius r0
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where ν [−] is the stoichiometric coefficient for the acid in the chemical reaction Eq. (1), 
and Σ(c) is the reaction term that describes the rate of dissolution per unit volume and time 
[mol/(m3s)]. The reaction term is assumed to be linearly dependent on the acid concentra-
tion and on the difference between the maximum and the current porosity (e.g., Zhao et al. 
2013)

where k is the reaction rate constant [m/s] and s the available surface for reaction per unit 
volume of material  [m−1]. In this way, the reaction stops either when the porosity reaches 
its maximum value or when no acid is present in the fluid.

Conservation of acid molar mass yields a convection–diffusion reaction equation 
(Bear 1972)

It contains a convective term, a diffusion–dispersion term, and the reaction term Σ(c). 
The diffusion–dispersion term involves the diffusion–dispersion coefficient D  [m2/s].

The governing equations can be expressed in the polar coordinate system (r, θ, z) 
associated with the wellbore where the z-axis coincides with the axis of the wellbore. It 
is assumed that there is no vertical dependency of the solution because gravity effects 
are negligible compared to the convective and diffusive forces developing during acid 
injection, and because the injection takes place simultaneously and uniformly on the 
whole height of the formation. Additionally, axisymmetric conditions are assumed 
because we are after the uniform dissolution pattern of the base solution. Under these 
considerations, and considering that the porosity upstream is constant and equal to the 
final porosity φf, the governing equations upstream can be written as

and downstream as

where the first equation expresses the conservation of fluid mass, the second the conserva-
tion of acid molar mass, and the third in the downstream domain describes the evolution of 
porosity due to acid reaction and dissolution. The unknowns of the problem are the fluid 
flux u, the acid molar concentration c, and the porosity φ downstream.

(4)��s
��

�t
= Σ(c)

(5)Σ(c) = ksc
(
�f − �

)

(6)
�(�c)

�t
+ ∇ ⋅ (cu) = ∇ ⋅ (�D∇c) − Σ(c)

(7)

�

�r
(ru) = 0

�c

�t
=

�

�r

(
D
�c

�r

)
+

1

r
D
�c

�r
−

u

�f

�c

�r

(8)

��

�t
+

1

r

�

�r
(ru) = 0

�
�c

�t
=

�

�r

(
�D

�c

�r

)
+

�D

r

�c

�r
− u

�c

�r
− ksc

(
�f − �

)

��s
��

�t
= ksc

(
�f − �

)



227Analytical Solutions of Carbonate Acidizing in Radial Flow  

1 3

For analytical solutions, the important assumption of the thin front approximation is 
introduced to transform the problem to a moving boundary problem with a sharp front. 
Following Ladd and Szymczak (2017), the thin front approximation states that if the reac-
tion rate k is fast enough, the penetration distance of the acid into the unreacted domain is 
negligible leading to a sharp dissolution front. In other words, the reaction takes place only 
in a thin front which separates the fully dissolved from the intact rock. This assumption is 
validated by experimental data that show that in carbonates no transition zone with respect 
to the change in rock strength is observed around wormholes in acidizing experiments indi-
cating localized thin dissolution fronts (Papamichos et al. 2020). Mathematically, it means 
that the porosity is not only constant upstream but also downstream where it is equal to the 
initial porosity φ0. The presence of a thin front turns the model into a moving boundary 
problem analogous to the classical Stefan problem that describes phase-change processes 
(Stefan 1889). In acidizing, one phase is the fully dissolved rock at final porosity φf and the 
other phase is the intact rock at initial porosity φ0. Thus, the governing equations upstream 
remain the same (Eq.(7)), while downstream, only the fluid flux needs to be solved

since the porosity and concentration become known and given as

The boundary conditions for the solution of the differential equations Eqs. (7) and (9) 
are the acid concentration c0 and the fluid flux u0 at the wellbore radius r0, i.e.,

At the interface r = R(t) between the fully dissolved rock and the intact rock, i.e., 
between the upstream and downstream domains, fluid volume conservation and continuity 
of acid concentration holds, i.e.,

The derivation of the condition for the fluid flux is given in Appendix A. The second 
term in the right-hand side of this equation is a storage term that expresses the variation of 
fluid flux in the porous medium due to the change in porosity across the interface. A minus 
or plus superscript indicates the upstream or downstream side of the interface, respectively.

The initial conditions are everywhere, the acid concentration is zero, and the interface 
between the two domains is at its initial position

Figure 2 shows a schematic of a cross section of the acidizing problem in a wellbore 
indicating the boundary and continuity conditions at the reaction front under the thin front 
approximation.

The mathematical closure of the Stefan problem requires an additional equation at the 
interface. This equation in the classical Stefan problem (Stefan 1889) is called the Stefan 
condition, and it is extracted through the law of conservation of energy while in this case 
expresses the conservation of molar mass of calcite. For reactive infiltration in polar coor-
dinates and for axisymmetric front movement, it is written as

(9)
�

�r
(ru) = 0

(10)c = 0 , � = �0

(11)at r = r0 ∶ u = u0, c = c0

(12)at r = R(t) ∶ u− = u+ +
(
�f − �0

)dR
dt

, c− = c+ = 0

(13)at t = 0 ∶ c = 0, R = r0
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The Stefan condition provides the solution for the propagation velocity of the dissolution 
front by solving for dR∕dt . Its derivation is given in Appendix B.

Despite the fluid flux upstream being coupled to the acid concentration in the convec-
tion–diffusion equation in Eq. (7), uncoupling of the equations is possible since the fluid 
mass conservation equation contains only the fluid flux as dependent variable. Downstream 
the concentration is zero. Thus, the mass conservation equation can be solved explicitly both 
upstream and downstream as

where upstream the boundary condition Eq. (11) for the fluid flux was used to find the inte-
gration constant, while downstream A remains to be solved from the continuity condition 
Eq. (12) for the fluid flux.

3  Solution for Transient Convection–Diffusion

This section compares the analytical solution for the transient problem to the solution for the 
quasi-static limit approximation. In this way, the small acid capacity approximation of the 
quasi-static problem can be studied and the limits to its applicability can be identified. The 
transient problem can be solved analytically under the assumption of constant diffusion–dis-
persion coefficient D = D0 and point injection, i.e., prescribed acid concentration c0 at r = 0, 
and not at the wellbore radius r = r0. These assumptions were also adopted by Grodzki and 
Szymczak (2019) for their quasi-static solution. The convection–diffusion equation for the 
concentration in Eq. (7) simplifies for constant D to

(14)at r = R(t) ∶ D
�c

�r
= −��s

(
1 − �0

/
�f

)dR
dt

(15)upstream r0 ≤ r ≤ R−(t) ∶
u

u0
=

r0

r

(16)downstream r ≥ R+(t) ∶
u

u0
= A

r0

r

(17)
�c

�t
= D0

�2c

�r2
+ D0

1

r

�c

�r
−

u

�f

�c

�r

Fig. 2  Wellbore cross section 
with the reacted (upstream) and 
intact (downstream) domains, 
the boundary conditions at the 
wellbore radius r = r0 and the 
continuity conditions at the reac-
tion front r = R(t)
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which is solved under the interface conditions Eqs. (12) and (14) and the boundary and 
initial conditions

The Stefan condition Eq. (14) now becomes

where ac is a dimensionless number called acid capacity number that is defined as

The acid capacity number is an important parameter that expresses the potency of the 
aqueous solution to dissolve the mineral. With increasing ac, less volume of acid solution 
is necessary to dissolve the same volume of rock. Substituting u from Eq.(15) into Eq.(17), 
the convection–diffusion equation becomes

Using the Boltzmann’s transformation (Boltzmann 1894)

the partial differential Eq. (22) transforms into an ordinary differential equation with ξ the 
independent variable

Solving the ordinary differential equation and imposing the boundary Eq. (18) and con-
tinuity condition Εq. (12) for the concentration c, we obtain

 where γ is the incomplete lower gamma function. The derivation of the solution Eq. (25) is 
presented in Appendix C. The dimensionless constant m is defined as

where λ [m  s−1/2] is a constant related to the front movement through the expression

The velocity of the fluid front follows an inverse square root of time relationship

(18)at r = 0 ∶ c = c0

(19)at t = 0 ∶ c = 0, R = 0

(20)D0

�c

�r
= −

c0

ac

(
1 − �0

/
�f

)dR
dt

(21)ac =
c0

��s

(22)
�c

�t
= D0

�2c

�r2
+

D0

r

�c

�r
−

u0

�f

r0

r

�c

�r

(23)� =
r
√
t
,

(24)D0

d2c

d�2
+

(
�

2
+

D0 − u0r0
/
�f

�

)
dc

d�
= 0

(25)
c(r, t)

c0
= 1 −

�
(
Pe , r2

/
4D0t

)

�(Pe , m)

(26)m =
R(t)2

4D0t
=

�2

4D0

(27)R(t) = �
√
t
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Equation (25) also contains the dimensionless number Pe defined as

It is a Peclet-type control parameter which expresses the interplay between the convec-
tive and diffusive forces in reactive infiltration. Large Pe implies convection dominated 
flow as compared to the diffusive–dispersive. For Pe = 0, the convection–diffusion equation 
turns into the classical diffusion equation for a cylinder (Carlsaw and Jaeger 1959), since 
the only force present to change the concentration field is molecular diffusion.

The constant λ can be calculated by applying the solution Eq. (25) to the Stefan condi-
tion Eq. (14) at the interface Eq. (27). The result, as detailed in Appendix C, is a nonlinear 
algebraic equation

 which is solved numerically to obtain a positive value of m. Then, λ is calculated from Eq. 
(26), and the concentration profile can be extracted from Eq. (25).

Downstream the integration constant A in Eq. (16) is solved from the continuity condi-
tion Eq. (12) for the fluid flux. By using Eq. (15) for the fluid flux upstream and Eqs. (27) 
and (28), the continuity Eq. (12) can be written as

By equating Eq. (16) and Eq. (31) at r = R, the constant A can be solved yielding the 
solution for the fluid flux downstream

The solution can be illustrated by considering a typical carbonate acidizing scenario 
as the base case. Table 1 lists the boundary values of the problem as well as the geometri-
cal and material parameters obtained from laboratory experiments in chalk (Papamichos 
et al. 2020). The value of acid concentration c0 corresponds to 15% v/v HCl acid solution. 
The table also lists parameters like the acid capacity number ac and the Peclet number 
Pe that are calculated from the input values according to their definitions Eqs. (21) and 
(29), respectively. The value for the constant diffusion–dispersion coefficient D0 was esti-
mated in previous analyses on Mons chalk acidizing (Papamichos et al. 2020). The values 
for reaction rate constant k and the available reactive surface area s were taken from the 
literature (Dreybrodt, 1996; Noiriel et  al., 2009). For this base case, the nonlinear alge-
braic Eq. (30) solved with the standard Newton–Raphson method gives m = 0.07483 and 
λ = 5.471 ×  10–4 ms−1∕2.

Figure  3 compares the radial position of the dissolution front and the front velocity 
over time for the transient and the quasi-static case. For the typical values of acidizing in 
Table 1, the difference in the results between the transient quasi-static solutions are less 

(28)
dR

dt
=

�

2
√
t
=

R

2t

(29)Pe =
u0r0

2�f D0

(30)f (m) =
mPe−1

em�(Pe,m)
−

1 − �0

/
�f

ac
= 0

(31)

u
�
R+

�
= u(R−) −

�
�f − �0

�dR
dt

= u0
r0

R
−
�
�f − �0

�dR
dt

=
�
u0

r0

�
−
�
�f − �0

��
2

�
1
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t

(32)
u

u0
=

r0

r

[

1 −
(
�f − �0

) �2

2u0r0

]
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than 0.7% with the transient front being slower than the quasi-static. The front position is 
parabolic with time, while the front velocity decreases with the inverse square root of time 
as one expects due to the ever-increasing area to be dissolved as the distance from the well-
bore center increases. In the quasi-static limit, the front position is calculated explicitly as

and thus, the corresponding quasi-static coefficient λqs for the small acid capacity limit is

Substituting in Eq.(34) the values of parameters from Table  1, we calculate 
λqs = 5.505 ×  10–4 ms−1∕2 which compares well with the transient solution.

Figure 4 plots radial profiles of the acid concentration c
/
c0 and the fluid flux u

/
u0 at 

t = 24 h for the transient and the quasi-static cases. The quasi-static solution can be found in 
Grodzki and Szymczak (2019). The location of the reaction front is also indicated. At the 
front, there is a step in the fluid flux due to the storage term in the continuity equation for 
the fluid flux. This step is here relatively small to be visible in the plot. There is as a change 
in the slope of the flux before and after the front.

(33)R(t) =

√
2acu0r0t

�f − �0

(34)�qs =

√
2acu0r0

�f − �0

Table 1  Model parameters used 
in wellbore acidization

Parameter Value

Wellbore radius, r0 (m) 0.1
Initial acid concentration, c0 (mol/m3) 4.5 ×  103

Fluid flux, u0 (m/s) 1 ×  10–4

Stoichiometric coefficient, ν (−) 2
Chalk molar density, ρs (mol/m3) 2.7 ×  105

Initial porosity, φ0 (−) 0.43
Maximum porosity, φf (−) 0.98 (≈ 1)
Diffusion–dispersion coefficient, D0  (m2/s) 1 ×  10–6

Reaction rate constant, k (m/s) 2 ×  10–7

Reaction surface per unit volume, s  (m−1) 5 ×  103

Acid capacity number, ac (−) 8.333 ×  10–3

Peclet number, Pe (−) 5.102

Fig. 3  Radial position of dissolu-
tion front and front velocity over 
time for c0 = 4500 mol/m3 and 
u0 = 0.1 mm/s
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The range of validity of the quasi-static approximation is investigated by varying the 
fluid flux u0. Figure 5 compares the transient and quasi-static profiles of results acid con-
centration c

/
c0 at times t = 12, 24 and 48 h for fluid flux u0 =  10–4 and  10–3 m/s. The posi-

tion of zero concentration on the horizontal axis indicates the location of the dissolution 
front at the given time. The difference in the results increases only slightly with increasing 
fluid influx.

To further investigate the range of validity of the quasi-static approximation, the acid 
concentration is increased to c0 = 36,180  mol/m3 which corresponds to the theoretical 
maximum limit of 100% HCl acid. Figure 6 plots radial profiles of c

/
c0 at t = 12, 24, and 

48 h for u0 =  10–5 and  10–4 m/s. For the higher acid concentration and the higher fluid flux 
(Fig. 6b), the transient solution front is noticeably lagging the quasi-static.

Another way to look at this is to compare the difference in the values of the param-
eter λ which controls the position and velocity of the reaction front. In fact, both are 

Fig. 4  Radial profiles of 
fluid flux and acid concen-
tration at time t = 24 h for 
transient and quasi-static 
analysis for c0 = 4500 mol/m3 and 
u0 = 0.1 mm/s. The red vertical 
line indicates the position of the 
reaction front

Fig. 5  Radial profiles of acid 
concentration at t = 12, 24 and 
48 h for transient analysis and 
quasi-static approximation 
for c0 = 4500 mol/m3 and a 
u0 = 0.1 mm/s, and b u0 = 1 mm/s
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proportional to the parameter λ. Figure 7 plots the difference λqs – λ between the quasi-
static λqs and the transient λ as a function of fluid flux u0 for three values of c0 = 4500, 
9000, and 36,180  mol/m3 which correspond to acid capacity number ac = 0.00833, 
0.0167, and 0.067, or HCl solutions 15, 27.5, and 100%. By normalizing the results 
with acλ, they collapse into a single curve which now defines the range of applicabil-
ity of the quasi-static approximation. The difference in the results tends to zero with 
decreasing fluid flux and for fluid flux u0 ≤  10–6 or  10–5 m/s the difference is not signifi-
cant. The difference also tends to an asymptote less than one with increasing fluid flux 
which means that the percentage error from the quasi-static limit is bounded by approxi-
mate 100 × ac%. This corresponds to a maximum error of ca. 0.8% and 7% for the bases 
case ac = 0.00833 or the maximum ac = 0.067, respectively. Figure 7 shows also that the 

Fig. 6  Radial profiles of acid 
concentration at t = 12, 24 and 
48 h for transient analysis and 
quasi-static approximation 
for c0 = 36,180 mol/m3 and a 
u0 = 0.1 mm/s, and b u0 = 1 mm/s

Fig. 7  Difference in λ parameter 
between the transient and the 
quasi-static approximation as a 
function of fluid flux u0 for vari-
ous acid capacity numbers ac
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difference λqs – λ is always positive, and therefore the transient front travels slower than 
the quasi-static as already mentioned.

Finally, one important question that needs to be answered to complete the analytical 
solution of the transient Stefan problem is whether there exists the solution λ to the non-
linear algebraic equation f(m) = 0 in Eq. (30) is unique. The asymptotic examination of 
f(m) shows that it is continuous function in the open interval (0,+∞) and tends to

Thus, there is always a positive root m0 that satisfies equation f(m0) = 0. Differentiat-
ing f(m) gives the derivative

For Peclet number Pe ≤ 1 , the sum of the three terms in the brackets is negative. Con-
sidering that the exponentials, the incomplete lower gamma function, and the remaining 
terms are always positive, the derivative of the function is always negative. This mono-
tonicity guarantees the uniqueness of the root of f(m) = 0. The assumption that Pe ≤ 1 
is quite safe and reasonable at least for applications of carbonate acidizing as demon-
strated for the typical acidizing problem in Table 1 where Pe = 0.22. The existence and 
uniqueness of the solution for a root m is shown graphically in Fig. 8 where the function 
f(m) is plotted as a function of m for the input values in Table 1.

4  Solution for Velocity‑Dependent Diffusion–Dispersion Coefficient

The diffusion–dispersion coefficient D in the convection–diffusion reaction Eq. (6) is a 
physical parameter that describes both the effects of molecular diffusion and mechanical 
dispersion in the flow of a species in a porous medium. As already mentioned, Grodzki 
and Szymczak (2019) assumed for simplicity that this coefficient is constant. However, 
as comprehensively explained by Bear (1972), this coefficient depends on the interstitial 
fluid velocity υ which relates to the fluid flux as

(35)
m → ∞ ∶ f (m) → −

1 − �0

/
�f

ac

m → 0 ∶ f (m) → +∞

(36)df (m)∕dm = −
[
(1 + m − Pe)em�(Pe,m) + mPe

] mPe−2

e2m�2(Pe,m)

Fig. 8  Plot of function f(m) 
versus m for the parameters in 
Table 1 demonstrating the exist-
ence of a unique, positive root for 
equation f(m) = 0
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According to Phillip (1994), D is related to the fluid velocity υ through a power law

where D0 is the diffusion–dispersion coefficient at υ = υ0, and p is an exponent between 
1 ≤ p ≤ 2 . Craig and Heidlauf (2009) stated that D is the product of dispersivity and 
fluid velocity, essentially assuming a linear relationship between D and υ or u, i.e., p = 1, 
which we also adopt. In linear acid flow, the velocity dependency of D does not play a 
role because the fluid velocity remains constant in space and time. However, in radial 
flow, the fluid velocity decreases as we move away from the wellbore due to the diverging 
flow geometry. The effect may be negligible at low fluid flow velocities where diffusive 
fluxes dominate over the dispersive. However, in general, the assumption of constant diffu-
sion–dispersion coefficient is not valid.

The solution for a velocity-dependent diffusion–dispersion coefficient can help illumi-
nate the effect of this important assumption made by previous researchers who in addition 
assumed point acid injection. The analytical solution for velocity-dependent diffusion–dis-
persion coefficient can be obtained in the quasi-static limit where the assumption of small 
acid capacity number removes the transient nature of the acidizing problem and solves the 
concentration field in a quasi-static manner. To reach the quasi-static problem and to reveal 
important dimensionless control parameters, we nondimensionalize the model by introduc-
ing the characteristic dimensions of the system under consideration. We assume a charac-
teristic fluid flux that relates to the characteristic diffusion–dispersion coefficient D0 (Eq.
(38)). This flux is taken as the flux u0 at wellbore radius r0. At this location and for t > 0, 
the porosity φ = φf, and thus from Eqs. (37) and (38), the diffusion–dispersion coefficient D 
can be written as

We use the following scaling parameters to scale the time t and the radial coordinate r, 
respectively

With the scaling parameters in Eq. (40) and c0 and u0, we obtain the non-dimensional 
variables

In terms of these non-dimensional variables, and by using Eq. (39) for D, the convec-
tion–diffusion equation for the concentration in Eq. (7) upstream where φ = φf becomes

The dimensionless parameter H in the second of Eq. (42) is defined as

(37)� =
u

�

(38)D = D0

�p

�
p

0

(39)D = D0

�p

�
p

0

= D0

�
p

f

u
p

0

up

�p

(40)t∗ =
1

acks
, r∗ =

�f D0

u0

(41)t̃ =
t

t∗
, r̃ =

r

r∗
, c̃ =

c

c0
, ũ =

u

u0

(42)acH
𝜕c̃

𝜕t̃
=

𝜕

𝜕r̃

(
ũp

𝜕c̃

𝜕r̃

)
+

ũp

r̃

𝜕c̃

𝜕r̃
− ũ

𝜕c̃

𝜕r̃
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In the limit of small acid capacity values ac, the left-hand side term of Eq. (42) 
vanishes and the concentration field follows a quasi-static evolution. The limits of 
applicability of the quasi-static assumption are explored in Sect.  3. Within these lim-
its, the transient left-hand side term in Eq. (42) upstream is eliminated by assuming 
that acH << 1 . Using Eq. (41), the boundary condition for the concentration Eq. (11) 
becomes in non-dimensional form

At the reaction front the continuity conditions Eq.(12) and the Stefan condition 
Eq.(14) become in non-dimensional form

and the initial condition for the moving interface position Eq. (13)

By inserting the fluid flux upstream Eq. (15) into the quasi-static approximation of 
the convection–diffusion Eq. (42) and rearranging yields

Equations (48) are ordinary differential equations that can be readily solved under the 
boundary Eq. (44) and continuity Eq. (45) conditions for the concentration yielding the 
concentration upstream

where

The position R̃(t̃) of the front is solved from the Stefan condition Eq. (46) by substi-
tuting the solution for the concentration Eq. (49) and using the boundary condition Eq. 
(45) for the concentration c̃ . This results in ordinary differential equations with respect 
to R̃(t̃)

(43)H =
�2
f
ksD0

u2
0

(44)at r̃ = r̃0 =
u0r0

𝜑f D0

∶ c̃ = 1

(45)at r̃ = R̃(t̃) ∶ ũ− = ũ+ +
(
1 − 𝜑0

/
𝜑f

)
acH

dR̃

dt̃
, c̃ = 0

(46)at r̃ = R̃(t̃) ∶ ũp
𝜕c̃

𝜕r̃
= −

(
1 − 𝜑0

/
𝜑f

)
H
dR̃

dt̃

(47)at t̃ = 0 ∶ R̃ = r̃0

(48)
for p = 1 ∶

𝜕2c̃

𝜕r̃2
−

𝜕c̃

𝜕r̃
= 0

for p = 0 ∶
𝜕2c̃

𝜕r̃2
−

1 − r̃0

r̃

𝜕c̃

𝜕r̃
= 0

(49)for r0 ≤ r ≤ R(t) ∶
c

c0
=

1 − g
(
r̃, R̃

)

1 − g
(
r̃0, R̃

)

(50)g
(
r̃, R̃(t̃)

)
=

{
er̃−R̃ for p = 1

r̃r̃0
/
R̃r̃0 for p = 0
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to be solved with initial condition Eq. (47). The solution R(t) is obtained by solving 
equations

For point injection at r = 0 and constant diffusion–dispersion coefficient, the solution 
for the front position Eq. (33) is obtained by setting the term in brackets in Eq. (52) equal 
to one. The solution in that case is independent of the diffusion–dispersion coefficient D0, 
while for injection at r = r0, the solutions depend on D0.

Downstream the concentration c = 0. The fluid flux is given by Eq. (16) where the inte-
gration constant Α is solved from the continuity condition Eq. (45) for the fluid flux using 
the front velocity Eq. (51), and the fluid flux upstream Eq. (15) and downstream Eq. (16) at 
r̃ = R̃ . With that the solution for the fluid flux downstream becomes

In summary, Eqs. (15) and (49) give the solutions for the fluid flux and acid concentra-
tion upstream, Eq. (52) gives the position of the reaction front, and Eq. (53) the solution for 
the fluid flux downstream where the concentration is zero. The discontinuity in fluid flux 
across the interface can be calculated from Eqs. (15) and (53) as

Equation (54) shows that the drop of the fluid flux across the interface is a decreasing 
function of front position or time. The limit value for large time (or front position) is zero.

A difference with the case of point injection and constant diffusivity is that the front 
position R(t) cannot be solved explicitly (cf. Equation  (33)) but the nonlinear algebraic 
equations (52) must be solved at each point in time. However, Eq. (52) are explicit in time 
for a given front position. Also, the drop in the flux across the reaction front is not constant 
but depends on the position of the front. But the most important differences are in the front 
position and the concentration profiles.

Figure 9 plots the front position R
/
r0 as a function of time for constant and velocity-

dependent D for the parameters in Table 1, and for injection fluid fluxes, u0 = 0.001, 0.005, 
0.02, and 0.1 mm/s, which correspond to Peclet numbers Pe = 0.051, 0.255, 1.02, and 5.10, 
respectively. The results show that the difference in the two cases increases as the fluid flux, 
and thus the convection component of acid transport decreases. The fluid flux decreases 
with distance from the well and thus in the case of velocity-dependent D, the front position 
moves slower than for constant D. With increasing fluid flux, convective transport domi-
nates, and the importance of diffusivity diminishes. This is reflected, e.g., to Fig.  9 for 
u0 = 0.1 mm/s where there is practically no difference in the results for the front position. 
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The difference in front position is controlled by the Peclet number Pe, such that for Pe > 3, 
there is practically little effect of diffusivity on the results.

Figure 10 compares the front position for the cases where the acid concentration c0 is 
applied at the wellbore radius r = r0 versus at the wellbore center r = 0, as in the solution 
by Grodzki and Szymczak (2019). The results show a considerable delay in the front posi-
tion when injection takes place at the center. Notice that in both cases, the fluid flux u0 is 
prescribed at r = r0.

Figure 11 plots the radial profiles of the concentration c
/
c0 and the fluid flux u

/
u0 for 

constant and velocity-dependent D, u0 = 0.001 mm/s at time t = 48 h. The plot shows the 
position of the front in the two cases where the concentration c becomes zero and also 
shows the discontinuity of the fluid flux across the front which is expressed by Eq. (54). 

Fig. 9  Front position as a func-
tion of time for constant (p = 0, 
dashed lines) and velocity-
dependent (p = 1, solids lines) 
diffusivity D for injection fluid 
fluxes u0 = 0.001—0.1 mm/s 
(Pe = 0.051—5.10)

Fig. 10  Comparison of front 
position as a function of time for 
injection at the initial wellbore 
radius r = r0 or at the wellbore 
center at r = 0 for constant (p = 0, 
dashed lines) and velocity-
dependent (p = 1, solids lines) 
diffusivity D for u0 = 0.02 mm/s

Fig. 11  Radial profiles of fluid 
flux u and acid concentration c 
at t = 48 h for constant (p = 0, 
dashed lines) and velocity-
dependent (p = 1, solid lines) 
diffusivity D and injection fluid 
flux u0 = 0.001 mm/s
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The fluid flux profile is independent of D upstream but downstream depends on D due to 
the difference in the discontinuity in the two cases across the front. This difference is not 
necessarily large and decreases as the front moves away from the wellbore.

Figure 12 shows the propagation of the concentration u
/
u0 profile in time, i.e., for t = 48, 

240, 480 h for constant and velocity-dependent D and injection fluxes u0 = 0.001, 0.02, and 
0.1 mm/s. The results show that besides the position of the front, there are differences in 
the concentration profiles as well, namely the velocity-dependent D gives sharper concen-
tration fronts. This is because the concentration tends to propagate faster at smaller r

/
r0 

where the flux and diffusivity D is larger. Even for u0 = 0.1 mm/s where the front positions 
practically coincide, the concentration profile is markedly different (Fig.  12c). It can be 

Fig. 12  Radial profiles of acid 
concentration at t = 48, 240, and 
480 h for constant (p = 0, dashed 
lines) and velocity-dependent 
(p = 1, solid lines) diffusivity D, 
for injection fluid flux u0 = (a) 
0.001 mm/s (Pe = 0.051), b 
0.02 mm/s (Pe = 1.02), and c 
0.1 mm/s (Pe = 5.1)
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shown that the profiles are always convex for velocity-dependent D, while for constant D, 
the profiles are concave for Pe < 0.5 and convex otherwise.

Figure  13 shows the propagation of the concentration u
/
u0 profile in time, i.e., for 

t = 48, 240, 480 h for constant and velocity-dependent D and injection fluxes u0 = 0.001, 
and 0.02 mm/s. For low fluid flux, the discontinuity drop of flux across the front is substan-
tial and results in different fluid flux profiles. With increasing fluid flux, the drop decreases, 
and for Pe > 1, the effect appears to be minimal.

5  Conclusions

Analytical solutions to reactive infiltration problems under radial flow conditions were 
studied. A novel closed-form analytical solution was extracted for the initial transient con-
vection–diffusion equation. Such an analytical solution is possible under the assumption of 
point acid injection at the wellbore center. This is because of the similarity condition nec-
essary for obtaining an analytical solution. This similarity condition breaks down when an 
internal radius is introduced for the boundary condition for the concentration. On the other 
hand, for the fluid flow, there is no such limitation and the boundary condition for the fluid 
flux can be applied at the wellbore radius. The transient solution requires the solution of an 
explicit algebraic equation that needs to be solved numerically. This solution, however, is 
solved only once for a given problem and provides a material and geometry-based param-
eter that controls the location and velocity of the moving front. In fact, the location and 
velocity are proportional to this parameter.

Fig. 13  Radial profiles of acid 
concentration at t = 48, 240, and 
480 h for constant (p = 0, dashed 
lines) and velocity-dependent 
(p = 1, solid lines) diffusivity 
D, for injection fluid flux u0 = a 
0.001 mm/s (Pe = 0.051), and b 
0.02 mm/s (Pe = 1.02)
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The comparison of the transient with the quasi-static solution in the literature shows 
that the transient front is always lagging the quasi-static front. For slow flow, i.e., u0 ≤  10–6 
or  10–5 m/s, the quasi-static limit approximation is valid, and the problem can be solved 
without the transient term. The percent difference between the two solutions increases with 
increasing fluid flux but it is bounded by approximate 100 × ac%. This corresponds to a 
maximum error of ca. 0.8% and 7% for the base case of a 15% HCl solution and the theo-
retical maximum of 100% HCl, respectively. Despite the assumption that the acid concen-
tration is prescribed at the wellbore center, this comparison shows the range of applicabil-
ity of the quasi-static limit approximation for any reactive infiltration system.

Within the quasi-static limit approximation, the dependence of the diffusion–dispersion 
coefficient D on the fluid velocity was investigated by deriving the analytical solutions for 
both constant and velocity-dependent D with acid and fluid flux prescribed at the wellbore 
radius. Previous solutions had assumed a constant diffusion–dispersion coefficient D and 
point injection. The constant D assumption can be justified in the case of linear systems 
where the fluid flux is constant except for a small step in the flux at the reaction front. 
However, for radial flow, the divergent nature of the flow due to the geometry gives rise 
to a parabolic decrease in fluid flux in space. The closed-form solution that was devel-
oped assumes a linear relation between the diffusivity D and the fluid flux. Such a relation 
is commonly considered although relations up to the second power of the flux are also 
reported. The closed-form solution for the dissolution front movement results in a nonlin-
ear algebraic equation for the front position that needs to be solved at each point in time. 
This equation however is explicit in time at a given front position.

The results show that point injection at the wellbore center gives a significant delay 
in the position of the reaction front and it is not necessary for a obtaining an analytical 
solution in the quasi-static limit. In terms of front position, the velocity dependency of D 
becomes important at low fluid fluxes, i.e., Peclet number Pe < 3. The results showed a sig-
nificant decrease in front propagation velocity that needs to be considered for realistic pre-
dictions. This is a reasonable result since the diffusive and dispersive fluxes that enhance 
rock dissolution decrease as the front propagates away from the wellbore center. This is 
because for a velocity-dependent D, the velocity and thus D decrease as the front propa-
gates. At higher Pe, convective transport dominates, and the effect of diffusivity becomes 
less important for the propagation of the front. However, even then, the concentration pro-
file is markedly different and sharper for the velocity-dependent D. The results for the dif-
fusion–dispersion coefficient are expected to have significant ramifications with respect to 
the linear stability of the reactive infiltration problem since it gives a wavenumber selection 
that scales with this coefficient.

Appendix 1: Fluid flux continuity condition across the reaction front

This appendix derives the fluid flux continuity condition across the reaction front under the 
assumption of the thin front approximation. Figure 14 shows that during an infinitesimal 
time interval dt, the front moves from position R to position R + dR.

The conservation of mass or volume for an incompressible fluid across the interface 
during this time interval is expressed through the fluid flow rates Q− entering and Q+ exit-
ing the interface as

(55)Q− = Q+ + Qstorage
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where the storage term Qstorage expresses the rate of the fluid volume  [m3/s] stored in the 
porous rock due to the increase in porosity during the front’s movement from R to R + dR. 
The flow rates Q− and Q+ for a unit height of wellbore are given as

while the storage term Qstorage is equal to the flow rate stored in the newly created voids of 
the dissolved rock in the green-shaded area in Fig. 14. The dissolved unit height volume 
can be calculated as

where the second-order term of dR has been neglected. The rate of dissolved volume is 
equal to the rate of stored fluid and thus from Eq. (57), we obtain

Substituting Eqs. (56) and (58) in Eq. (55), dividing both sides by 2πR and taking 
dR∕R ≪ 1 yields

which is the interface condition for the fluid flux.

Appendix 2: Stefan condition—Molar mass conservation of acid 
across the reaction front

This appendix derives the molar mass conservation condition across the reaction front inter-
face, the so-called Stefan condition, under the assumption of the thin front approximation. Fig-
ure 14 shows that during an infinitesimal time interval dt, the front moves from position R to 
position R + dR. The conservation of moles of acid during that time interval can be written as

(56)
Q− = u−2�R

Q+ = u+2�(R + dR)

(57)Vdissolved
rock

=
(
�f − �0

)[
�(R + dR)2 − �R2

]
= 2�

(
�f − �0

)
RdR

(58)Qstorage = Vdissolved
rock

/
dt = 2�

(
�f − �0

)
RdR∕dt.

(59)u− = u+
(
1 +

dR

R

)
+
(
�f − �0

)dR
dt

≈ u+ +
(
�f − �0

)dR
dt

(60)N−
acid

= N+
acid

+ Nconsumed
acid

Fig. 14  Fluid mass balance and molar mass balance across the reaction front per unit wellbore height
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where N−
acid

 and N+
acid

 are the fluxes of moles of acid [mol/(m2s)] entering and exiting the 
interface, respectively, and Nconsumed

acid
 is the flux of moles of acid consumed from the chemi-

cal reaction. The thin front approximation assumes all moles of acid entering the interface 
are consumed to dissolve the rock to its final porosity and thus no moles of acid exit the 
interface to the unreacted domain, i.e., N+

acid
 = 0. The molar flux N−

acid
 entering the inter-

face is calculated from Fick’s law for a nonstationary fluid (Bear 1972) which states that 
the molar flux of a species in advective–dispersive transport is equal to −�D∇c + cu . 
Using the continuity condition Eq. (12) for the concentrations across the interface and the 
axisymmetry of the problem, the rate of moles ṅ−

acid
 [mol/s] entering the interface R(t) can 

be calculated as

On the other hand, the rate of moles consumed to dissolve the rock from an initial porosity 
φ0 to its final porosity φf is according to the stoichiometry of the chemical reaction ν times the 
rate of moles of dissolved rock. Using the molar density ρs of the rock and the dissolved vol-
ume from Eq. (57), the rate of rock moles dissolved and the rate of acid moles consumed per 
unit wellbore height are written as

Equating the rate of acid moles entering the interface Eq. (61) to the rate of moles being 
consumed at the interface Eq. (62) and dividing both sides by 2πRφf yields

which is the Stefan condition at the interface.

Appendix C: Solution of ordinary differential equation in transformed 
domain

This appendix solves in the transformed domain the ordinary differential Eq. (24) for the con-
centration upstream. Integration of Eq. (24) yields

where A, B are integration constants to be solved from the boundary Eq. (11) and the conti-
nuity Eq. (12) conditions for the concentration

Rearranging gives
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(63)−D
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where the definition Eqs. (26) is used for m. The left-hand side of Eq. (66) is a constant. 
Thus, the right-hand side must also be a constant. The Pe number is constant, so m must 
also be a constant and concurrently the ratio R(t)

�√
t = λ is also a constant. Solving Eq. 

(66) for the integration constant B and substituting it in Eq. (64) together with A from Eq. 
(65), the solution becomes

The constant m in Eq. (67) is obtained from the Stefan condition Eq. (14). The partial 
derivative of c(r,t) with respect to r is given through the derivative of the lower gamma 
function (Abramowitz and Stegun 1965). Evaluating this derivative at r = R(t) gives

Substituting into the Stefan condition, the front velocity dR∕dt from Eq. (28) and the 
derivative from Eq. (68) yields a nonlinear algebraic equation for the constant m
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