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A B S T R A C T

This paper introduces the fish feed production routing problem (FFPRP) faced by Norwegian salmon feed pro-
ducers. The FFPRP is comprised of a production scheduling problem and a rich vehicle routing problem (VRP)
and thus denotes a variant of the integrated production scheduling and vehicle routing problem. We present
a discrete time mixed integer programming (MIP) model of the FFPRP. Specifically, the model incorporates a
multi-product, multi-trip, and multi-depot setting, where orders are produced at production lines at factories,
and delivered within their respective time windows to customers by a heterogeneous fleet of vessels. The
main objective is to minimize total costs, including production costs, routing costs, and costs of not delivering
orders. We propose a heuristic, combining decomposition and the adaptive large neighborhood search (ALNS)
heuristic, to solve the FFPRP. The decomposition-based ALNS heuristic is tested on a number of test instances
which are generated based on vessel, factory, and order data from two of Norway’s largest fish feed producers.
For small problem instances, for which the commercial MIP solver often is able to prove optimality, the average
optimality gaps of the proposed heuristic are relatively small, while for the larger problem instances, the
heuristic significantly outperforms the commercial MIP solver both in terms of solution quality and run time.
1. Introduction

From 1990 to 2018, the world’s total fish consumption increased
by 122% (Food and Agriculture Organization of the United Nations,
2020). As global fisheries to a large extent are fully exploited, the
supply of wild fish has limited potential to meet the growing demand
(Mowi, 2020). The aquaculture industry, on the other hand, has seen
vast growth over the last decades. In 2012, the worldwide annual
seafood production resulting from the use of fish farms exceeded the
production of wild-caught fish (Our World in Data, 2019), and in 2018,
the world aquaculture production reached 114.5 million tonnes (Food
and Agriculture Organization of the United Nations, 2020). For Atlantic
salmon, worldwide production has increased by more than 1000% since
1990 (Mowi, 2020). Norwegian producers contribute with about half of
this production (Statistics Norway, 2020).

For Norway’s producers and distributors of fish feed, the situation
is different. These actors are subject to a range of challenges. First,
the actors are facing fierce competition, which puts great pressure on
margins. Second, the producers’ portfolios typically consist of a range
of different products, which makes it difficult to find cost-efficient
production and inventory plans and corresponding distribution plans.
Lastly, the strong bargaining power of the customers results in limited
flexibility and additional costs for the producers. Altogether, these
challenges serve as motivation for the development of a tool that can
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support fish feed producers in the planning of their production and
distribution.

1.1. Problem description

We consider the fish feed production routing problem (FFPRP),
which denotes the problem of finding cost-efficient plans for the pro-
duction and distribution of fish feed products based on given sets
of factories, production lines, products, orders, and vessels. Fish feed
factories consist of one or several production lines, each associated
with production capacities for a set of fish feed products. Products are
produced in batches, where each product is associated with a minimum
production quantity for each batch. Starting up the production of a
new batch involves additional work and thus extra costs. Each product
belongs to a certain product group, consisting of products whose pro-
duction setups are alike. The production machinery at a factory may
from time to time be subject to routine maintenance, which involves a
full production stop at the factory.

Fish farms – or customers – located at sea along the coast demand
fish feed products, and consequently, they place orders. Each order
is associated with the customer’s location and quantities of one or
several products, and must be delivered within its corresponding time
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Fig. 1. Illustration of vessel routing.
window. The orders of fish feed products are distributed via sea by a
given heterogeneous fleet of vessels. Two main types of vessels exist:
those transporting orders/products in bags and those transporting in
silos. The number of different products on board a vessel of the latter
type is limited to the number of silos, as different products cannot
be contained within one silo. Regardless of the vessel’s type, the load
cannot exceed the vessel’s weight load capacity. A vessel may be able to
handle only some of the orders. As an example, silo ships are not able
to deliver orders that are required to be delivered in bags. Also, some
fish farms may lack the required equipment or space for a certain vessel
to dock or unload, or be located in a shallow fjord where the largest
vessels are unable to sail. The orders/products are loaded onto the
vessels at the factories. The total number of loading spots at a factory is
dynamic, as loading spots sometimes are reserved for vessels delivering
raw materials. Raw material delivery times are considered fixed and
known prior to the planning. Fish feed products produced, but not yet
distributed, are held as inventory. Each factory has a given maximum
inventory capacity and is subject to an inventory holding cost.

Each vessel is assigned a route. Some vessels are available from the
beginning of the planning horizon, while others become available for
routing later, as they need to finish their current routes. A vessel always
starts and ends its route at a factory (depot). The route’s destination
factory thus becomes the start position of the corresponding vessel in
the subsequent planning period. Since a balanced distribution of vessel
start positions is preferable, a maximum number of vessels ending up in
the same factory in the end of the planning horizon is imposed. A ves-
sel’s route may consist of several voyages, meaning that the route may
contain intermediate factory visits. Route activities include loading of
products at factories, unloading of orders at fish farms, sailing between
different locations, and waiting to dock. Each vessel is associated with
a given sailing speed and must complete its route, that is, arrive at a
destination factory, within the planning horizon, which is typically up
to two weeks.

Fig. 1 gives an example of the routing of two vessels. The black
vessel is currently undertaking the blue route, which consists of two
voyages. The gray vessel denotes a currently unavailable vessel. When
the vessel becomes available, it may start on its assigned red route,
which consists of one voyage. Note that the last visited factory does
not have to be the same as the first visited factory, exemplified by the
red route.

A visit to a fish farm subject to a disease outbreak may disable cer-
tain immediate subsequent visits. Explicitly, a vessel visiting a fish farm
with unhealthy fish, a red fish farm, cannot visit farms with healthy
fish, green fish farms, before a recovery time has passed. Similarly, a
vessel visiting a fish farm with healthy fish located in a red zone – that
is, in close proximity to unhealthy fish – must let the recovery time pass
before it can deliver feeds in areas free of disease. Farms with healthy
fish located in red zones are referred to as yellow fish farms. All fish
farms can again be visited after the required recovery time has passed.

Fig. 2 illustrates the above categorization, using a route including
six fish farm visits as an example. The vessel undertaking the route can
initially visit all fish farms. The vessel starts by visiting the leftmost
fish farms in the order green, yellow, red. Three options exist for the
next delivery at a green fish farm, indicated by the dotted arrows. If the
sailing time is greater than the recovery time, the vessel can sail directly
2

Fig. 2. Illustration of red, yellow, and green fish farms. The dashed arrows indicate
the vessel’s options when sailing from a red fish farm to a green fish farm.

to the fish farm, indicated by the dark blue arrow. If the sailing time is
less than the recovery time, the sailing must be followed by waiting, in
order for the vessel to recover before the green fish farm can be visited,
indicated by the two purple arrows. As a third option, indicated by the
light blue arrows, the vessel can visit the factory, as we assume that
this will always give enough time to recover.

In conclusion, a solution to the FFPRP consists of a set of production
schedules, each assigned to a production line, and a set of routes, each
assigned to a vessel. The production schedules and the routes must
correspond, meaning that the required product quantities must be
available at the factory before they can be loaded onto vessels. The
FFPRP thus describes the operational problem of short-term produc-
tion scheduling and vessel routing faced by fish feed producers and
distributors. The aim of the FFPRP is to minimize the costs of inventory,
transportation, and production setups while serving as many orders as
possible.

1.2. Literature review

Although the FFPRP has not previously been studied, its con-
stituents – the production scheduling problem and the vehicle routing
problem (VRP) – are well-known within the field of operations research.
According to Braekers et al. (2015), VRP models have, however,
changed immensely over the last decades, as they increasingly aim to
incorporate real-life characteristics and complexities. This has resulted
in a range of extended VRPs, such as heterogeneous fleet VRP (HFVRP),
VRP with time windows (VRPTW) and multi-depot VRP (MDVRP).
In the later years, extended VRPs have also to a larger degree been
combined to rich or multi-attribute VRPs (MAVRPs), where several
real-life aspects are included simultaneously (Braekers et al., 2015).
Although enabling a more accurate representation of reality, rich VRPs
may be especially difficult to solve because of the compound, and
possibly antagonist, decisions they involve (Vidal et al., 2013).

The routing sub-problem of the FFPRP is concerned with a range
of complicating real-life characteristics, such as heterogeneous vessels,
delivery time windows, multiple depots, and several depot visits on the
same route (multiple trips). In addition, our problem includes resource
synchronization constraints (Drexl, 2012), as both factory loading spots
and the maximum number of vessels having the same factory as final
route destination represent resources shared across vessels. For these
reasons, we place the problem within the category of rich VRPs.
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Most of the VRP attributes contained in the FFPRP are well-
described in the operations research literature. Cattaruzza et al. (2018)
provide an extensive overview of multi-trip VRPs (MTVRPs), reviewing
academic extensions, routing problems combined with production and
inventory decisions, and problems within maritime transportation.
Several of the reviewed articles are concerned with problems somewhat
similar to the FFPRP, including Azi et al. (2014), Adulyasak et al.
(2014b), Ullrich (2013), Halvorsen-Weare et al. (2012) and Shyshou
et al. (2012). Furthermore, Montoya-Torres et al. (2015) review the
literature concerned with multi-depot VRPs. Two of the reviewed
articles, Crevier et al. (2007) and Zhen and Zhang (2009), investigate
VRPs similar to the routing sub-problem of the FFPRP, incorporating
multiple trips, multiple depots, and inter-depot routes, where the latter
feature allows vehicles to travel between different depots. However,
although the VRP attributes of the FFPRP routing sub-problem seem to
be thoroughly researched, they are rarely combined.

Within maritime transportation, several studies consider variants
of the VRP that are somewhat similar to the FFPRP. Christiansen
et al. (2017) propose a mathematical formulation of a multi-trip VRP
used to route fuel supply vessels. The problem considers heteroge-
neous vessels performing multiple voyages to service customers within
their respective time windows. Halvorsen-Weare et al. (2012) also
formulate a maritime VRP, referred to as a supply vessel planning
problem (SVPP), for the Norwegian oil company Equinor. Specifically,
the SVPP considers a set of heterogeneous vessels transporting supplies
from an onshore depot to offshore installations. The problem is further
studied by Shyshou et al. (2012). Problems formulated specifically for
the aquaculture industry are researched by both Agra et al. (2017)
and Lianes et al. (2021). The former formulate a maritime inven-
tory routing problem (MIRP) for Norway’s largest vertically integrated
salmon farmer. The latter study the aquaculture service vessel rout-
ing problem (ASVRP), concerned with a set of fish farms requiring
services from a heterogeneous fleet of service vessels. Complicating
constraints include simultaneous operation of more than one vessel,
time windows of service delivery, and precedence requirements for the
different services. By this, the ASVRP shares several characteristics with
the FFPRP.

Furthermore, we find similar problems designed for the LNG in-
dustry. MIRPs for LNG distribution were studied by Grønhaug and
Christiansen (2009) and Grønhaug et al. (2010), while the annual
delivery program (ADP) problem was first considered by Rakke et al.
(2011) and Stålhane et al. (2012). Halvorsen-Weare and Fagerholt
(2013) present a simpler version of the ADP problem, which, op-
posite to the typical MIRP, assumes a predetermined set of orders,
and disregards inventory decisions for the customers. Along with the
inventory-constrained central depot structure, these characteristics in-
stead represent similarities to the FFPRP. However, the ADP problem
denotes a tactical problem, with a typical planning horizon of 12 to
18 months (Mutlu et al., 2016). In contrast, the FFPRP focuses on
operational decisions with a planning horizon of up to two weeks.

Both the production scheduling and vehicle routing problem (PS-
VRP) and the standard production routing problem (PRP) share charac-
teristics with the FFPRP. The former, described in the review of Moons
et al. (2017), considers scheduling problems on an operational level
in combination with variants of the VRP. Furthermore, the PS-VRP
includes production and inventory decisions similar to those of the
FFPRP, where the latter are taken for factories, but not for customers.
Thus, the FFPRP may, in fact, be defined as a variant of the PS-VRP
incorporating a rich VRP. Both Belo-Filho et al. (2015) and Farahani
et al. (2012) look into PS-VRPs.

The standard PRP, as defined by Adulyasak et al. (2014b), inte-
grates two classic optimization problems, the lot-sizing problem and
the VRP. However, as opposed to the FFPRP and the PS-VRP, the PRP
also takes into account the inventory levels at the customer locations.
Several studies on this standard version of the PRP and its benchmark
3

instances have been conducted (Absi et al., 2015; Solyalı and Süral, w
2017; Qiu et al., 2018; Li et al., 2019; Manousakis et al., 2022) and the
current best results are reported by Vadseth et al. (2022). However, the
standard PRP distinguish itself from the FFPRP by using single-trips and
having a single depot which all vehicles must return to at the end of
each time period. Yet, there exists richer extensions to the standard PRP
that share more similarities with the FFPRP. This includes, but is not
limited to, the multi-plant perishable food production routing problem
with packaging consideration (Li et al., 2020), the multi-trip heteroge-
neous vehicle routing problem coordinated with production scheduling
(Yağmur and Kesen, 2021), and the large multi-product production
routing problem with delivery time windows (Neves-Moreira et al.,
2018). The latter problem is concerned with a meat processing center
with several production lines and a heterogeneous fleet of capacitated
vehicles used to deliver the products to stores spread across the country.
The problem involves a range of complicating characteristics, many of
which are also relevant to the FFPRP such as time windows as well as
different production setups for products belonging to different groups.
In addition, the rich production routing problem studied by Miranda
et al. (2018) also incorporates several relevant characteristics such as
time windows, multiple products, a heterogeneous fleet and routes
extending over one or more periods.

Both the PS-VRP and the PRP are highly challenging to solve.
Furthermore, Moons et al. (2017) argue that, whereas both problems
on their own are well-studied separately in the literature, the com-
bination of production scheduling and vehicle routing problems is a
rather unexplored research direction. Nevertheless, integration often
represents a significant cost advantage, as it enables improvements in
the overall resource utilization (Adulyasak et al., 2014b; Chandra and
Fisher, 1994).

The authors of the examined literature apply different methods to
solve their respective proposed problems. The common factor, how-
ever, is the use of heuristics. Braekers et al. (2015) conclude that
heuristics and metaheuristics are often more suitable for practical ap-
plications of the VRP because real-life problems are considerably large.
The same conclusion is drawn by Neves-Moreira et al. (2018), who
argue that the dimensions of the PRP make it impossible to be solved
exactly by current solution methods. As for the PS-VRP, Moons et al.
(2017) conclude that solution methods based on metaheuristics are
often applied to find high-quality solutions in reasonable computation
time.

To solve their multi-product PRP with time windows, Neves-Moreira
et al. (2018) develop a three-phase matheuristic based on a fix-and-
ptimize procedure. The authors argue that their proposed matheuristic
s efficient for both the inventory routing problem and the PRP, as it
rovides new best solutions for several instances within a relatively
hort run time. Shyshou et al. (2012) apply a large neighborhood
earch (LNS) heuristic, initially proposed by Shaw (1998), to solve the
VPP. The LNS heuristic is also proposed by Farahani et al. (2012) to
olve a variant of the PS-VRP. To solve the ASVRP, Lianes et al. (2021)
evelop an adaptive large neighborhood search (ALNS) heuristic. The
euristic explores the solution space iteratively by applying different
ub-heuristics, chosen based on their historic performance. The authors
onclude that the ALNS heuristic yields promising results. An ALNS
euristic is also implemented both by Azi et al. (2014) and Liu et al.
2018). For the latter, experimental results indicate that the ALNS
euristic outperforms existing solution methods, finding new best so-
utions within less computation time. The ALNS heuristic has also been
pplied to both the PRP (e.g., Adulyasak et al. (2014a)) and the PS-
RPs (e.g., Belo-Filho et al. (2015)). Lastly, Ullrich (2013) implements
genetic algorithm to solve the integrated machine scheduling and

ehicle routing problem.

.3. Contributions and paper outline

The FFPRP is a real rich integrated routing problem that is new

ithin the field of operations research. Even though the FFPRP shares
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characteristics with a range of well-studied problems, such as the
extended VRP, the PS-VRP, the PRP, as well as maritime routing prob-
lems, the combination of heterogeneous resource-synchronized vessels,
time windows, multi-trips, and multi-depots has not previously been
investigated. Furthermore, according to Moons et al. (2017), some of
the characteristics of the FFPRP are also somewhat unexplored in the
context of PS-VRPs. Based on this, our contribution is three-fold. First,
we provide a novel mathematical formulation of the FFPRP. Second,
we propose an innovative decomposition-based ALNS heuristic to solve
the FFPRP. Third, we test the decomposition-based ALNS heuristic
on a set of realistic instances based on real data and show that the
proposed method provides good solutions and thus has the potential
for becoming a valuable decision support tool for the fish feed industry.
We also show how it can be used to assess the impact of tactical and
strategic decisions.

The remainder of the report is comprised of four sections. Sec-
tion 2 presents the mathematical model of the FFPRP, before Section 3
describes the decomposition-based ALNS heuristic. The computational
study is presented in Section 4, while Section 5 provides the concluding
remarks.

2. Mathematical model

This section presents our proposed model formulation of the FFPRP,
based on the problem description in Section 1.1. We start in Section 2.1
by discussing our modeling assumptions. Next, Section 2.2 presents the
notation, before we define the mathematical model in Section 2.3.

2.1. Modeling assumptions

A vessel route is equivalent to a sequence of node visits. An order
node visit represents the unloading of an order, which may include
quantities of several different products. A factory node visit represents
the loading of an order if the visit marks the start of a voyage, or
otherwise a route destination. If the same fish farm places multiple
orders during the planning horizon, each order is represented by an
order node. Consequently, order nodes are only visited once. Factory
nodes, on the other hand, may be visited multiple times by multiple
vessels. In addition to order nodes and factory nodes, we introduce a
dummy origin node and a dummy destination node. A vessel sails from
the dummy origin node in the first time period it becomes available
for routing. Oppositely, a vessel sails to the dummy destination node
when it has completed its route.

We develop a discrete time model, where the planning horizon is
divided into time periods of equal length. An activity, i.e., loading,
unloading, or sailing, is started in one time period and lasts for a given
number of time periods. Each vessel becomes available for routing
in a given time period, and is then available for the remainder of
the planning horizon. We assume that the first and the last activities
undertaken by each vessel must be completed within the planning
horizon. This implies that two dummy time periods must be added, one
before and one after the considered planning horizon, as sailing to or
from the dummy node has a duration of one time period.

We consider production cost a sunk cost. The cost of not delivering
an order within its delivery time window represents the cost of postpon-
ing the order to a later planning horizon, which implies that the total
ordered quantity will be produced and delivered eventually, regardless
of whether the order is delivered on time or postponed.

We only restrict the total quantity and the total number of different
products loaded onto a silo vessel. In reality, however, the quantity
loaded onto a vessel is also restricted by the capacity of each silo.
This assumption is made in order to avoid further increases in problem
complexity. Furthermore, we assume that the time for loading a given
vessel is fixed and not dependent on the loading quantity. This is
reasonable since the vessels are for most practical cases close to being
fully loaded when leaving the factories.

We also assume, based on current practice, that the vessels deliver
all of their load during a voyage, and therefore always return empty to
4

a factory.
2.2. Notation

Sets
 – Set of vessels
 – Set of nodes representing factories or orders
𝑣 – Set of nodes that may be visited by vessel 𝑣 ∈  , 𝑣 ⊆ 
 𝐹 – Set of factory nodes,  𝐹 ⊂ 
 𝐹

𝑣 – Set of factory nodes that may be visited by vessel 𝑣 ∈  ,
 𝐹

𝑣 ⊆  𝐹

𝑂 – Set of order nodes, 𝑂 ⊂ 
𝑂

𝑣 – Set of order nodes that may be served by vessel 𝑣 ∈  ,
𝑂

𝑣 ⊆ 𝑂

𝐴 – Set of all nodes, including the dummy origin node and the
dummy destination node, 𝐴 =  ∪ {𝑜(𝑣), 𝑑(𝑣)}

𝑣 – Set of arcs which vessel 𝑣 may traverse, 𝑣 ⊂ 𝐴 ×𝐴

𝑊 – Set of arcs going from red or yellow to green order nodes,
as well as arcs going from red to yellow order nodes,
𝑊 ⊂ 𝑂 ×𝑂

𝑆 – Set of silo vessels, 𝑆 ⊆ 
𝑖 – Set of vessels that may visit node 𝑖 ∈  ,𝑖 ⊆ 
 – Set of production lines at all factories
𝑖 – Set of production lines at factory 𝑖 ∈  𝐹 , 𝑖 ⊆ 
 – Set of products
𝐺
𝑝 – Set of all products within the product group of product

𝑝 ∈  , including 𝑝 itself, 𝐺
𝑝 ⊆ 

 – Set of time periods
 𝑇𝑊
𝑖 – Set of time periods within the time window of the order

represented by order node 𝑖 ∈ 𝑂,  𝑇𝑊
𝑖 ⊆ 

arameters
𝑄𝑃

𝑙𝑝 – Production capacity of product 𝑝 at production line 𝑙,
𝑙 ∈ , 𝑝 ∈ 

𝑇 𝑃
𝑙𝑝 – Minimum number of consecutive time periods that

production line 𝑙 must produce product 𝑝 if it starts
production of product 𝑝, 𝑙 ∈ , 𝑝 ∈ 

𝐹𝑖𝑡 – 1 if factory 𝑖 can produce in time period 𝑡, 0 otherwise,
𝑖 ∈  𝐹 , 𝑡 ∈ 

𝑇𝐴 – Setup time required when production shifts between
products belonging to different product groups

𝐶𝑆
𝑖𝑝 – Setup cost for product 𝑝 at factory 𝑖, 𝑖 ∈  𝐹 , 𝑝 ∈ 

𝑄𝐼
𝑖 – Inventory capacity at factory 𝑖, 𝑖 ∈  𝐹

𝐼0𝑖𝑝 – Initial inventory of product 𝑝 at factory 𝑖, 𝑖 ∈  𝐹 , 𝑝 ∈ 
𝐶𝐼
𝑖𝑝 – Inventory cost for product 𝑝 at factory 𝑖 per time period,

𝑖 ∈  𝐹 , 𝑝 ∈ 

𝑄𝑉
𝑣 – Vessel 𝑣’s fish feed weight capacity, 𝑣 ∈ 

𝑀𝑃
𝑣 – Maximum number of different products allowed in silo

vessel 𝑣, 𝑣 ∈ 𝑆

𝐷𝑖𝑝 – Quantity of product 𝑝 demanded by order node 𝑖,
𝑖 ∈ 𝑂 , 𝑝 ∈ 

𝑇 𝑆
𝑣𝑖𝑗 – Time of sailing from node 𝑖 to node 𝑗 for vessel 𝑣,

𝑣 ∈  , 𝑖 ∈ 𝑣 ∪ 𝑜(𝑣), 𝑗 ∈ 𝑣 ∪ 𝑑(𝑣)
𝐶𝑇
𝑣𝑖𝑗 – Cost of sailing from node 𝑖 to node 𝑗 for vessel 𝑣,

𝑣 ∈  , (𝑖, 𝑗) ∈ 𝑣
𝑀𝑉

𝑖𝑡 – Maximum number of vessels allowed to load at factory 𝑖
in time period 𝑡, 𝑖 ∈   , 𝑡 ∈ 

𝑀𝐷
𝑖 – Maximum number of vessels which may have factory 𝑖 as

final route destination, 𝑖 ∈  

𝑇𝑊
𝑣𝑖𝑗 – Required number of waiting time periods before vessel 𝑣

can visit node 𝑗 after having sailed from node 𝑖,
𝑣 ∈  , (𝑖, 𝑗) ∈ 𝑊

𝑇 𝐿
𝑣𝑖 – Number of loading or unloading time periods for vessel 𝑣

at factory or order node 𝑖, 𝑣 ∈  , 𝑖 ∈ 𝑣
𝐶𝐸
𝑖 – Cost of not delivering the order represented by order

𝑂
node 𝑖 within the planning horizon, 𝑖 ∈ 
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𝑇

𝑦

𝑇

𝑧

𝑙

𝑙

𝑙

𝑔

𝑎

𝑑

𝑠

𝑥

𝑤

𝑦

Decision variables
𝑔𝑙𝑝𝑡 – 1 if production line 𝑙 produces product 𝑝 in time period 𝑡,

0 otherwise, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈ 
𝑎𝑙𝑡 – 1 if production line 𝑙 is not used (is available) in time

period 𝑡, 0 otherwise, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑡 ∈ 
𝑑𝑙𝑝𝑡 – 1 if production of product 𝑝 at production line 𝑙 starts in

time period 𝑡, meaning the product was not produced in
the previous time period, 0 otherwise,
𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈ 

𝑠𝑖𝑝𝑡 – Inventory level of product 𝑝 at factory 𝑖 in the end of time
period 𝑡, 𝑖 ∈  𝐹 , 𝑝 ∈  , 𝑡 ∈ 

𝑥𝑣𝑖𝑗𝑡 – 1 if vessel 𝑣 starts sailing from node 𝑖 to node 𝑗 in time
period 𝑡, 0 otherwise, 𝑣 ∈  , 𝑖, 𝑗 ∈ 𝐴, 𝑡 ∈ 

𝑤𝑣𝑖𝑡 – 1 if vessel 𝑣 waits to visit node 𝑖 in time period 𝑡, 0
otherwise, 𝑣 ∈  , 𝑖 ∈ 𝑣, 𝑡 ∈ 

𝑦𝑣𝑖𝑡 – 1 if vessel 𝑣 visits node 𝑖 in time period 𝑡, 0 otherwise.
𝑣 ∈  , 𝑖 ∈ 𝑣, 𝑡 ∈ 

𝑧𝑣𝑖𝑗𝑡 – 1 if vessel 𝑣 loads the order for order node 𝑗 at factory
node 𝑖 in time period 𝑡, 0 otherwise,
𝑣 ∈  , 𝑖 ∈  𝐹

𝑣 , 𝑗 ∈ 𝑂
𝑣 , 𝑡 ∈ 

𝑙𝑣𝑝𝑡 – Vessel 𝑣’s load of product 𝑝 in the end of time period 𝑡,
𝑣 ∈  , 𝑝 ∈  , 𝑡 ∈ 

ℎ𝑣𝑝𝑡 – 1 if silo vessel 𝑣 carries product 𝑝 in time period 𝑡, 0
otherwise, 𝑣 ∈ 𝑆 , 𝑝 ∈  , 𝑡 ∈ 

𝑒𝑖 – 1 if order node 𝑖 is not delivered within the planning
horizon, 0 otherwise, 𝑖 ∈ 𝑂

2.3. Mathematical model

Using the notation presented in Section 2.2, we formulate the
mathematical model of the FFPRP as follows.

min 𝑧 =
∑

𝑖∈𝐹

∑

𝑙∈𝑖

∑

𝑝∈

∑

𝑡∈
𝐶𝑆
𝑖𝑝𝑑𝑙𝑝𝑡 +

∑

𝑖∈𝐹

∑

𝑝∈

∑

𝑡∈
𝐶𝐼
𝑖𝑝𝑠𝑖𝑝𝑡

+
∑

𝑣∈

∑

(𝑖,𝑗)∈𝑣

∑

𝑡∈
𝐶𝑇
𝑣𝑖𝑗𝑥𝑣𝑖𝑗𝑡 +

∑

𝑖∈𝑂

𝐶𝐸
𝑖 𝑒𝑖 (1)

subject to

𝑔𝑙𝑝𝑡 ≤ 𝐹𝑖𝑡, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈  (2)

𝑔𝑙𝑝𝑡 − 𝑔𝑙𝑝(𝑡−1) ≤ 𝑑𝑙𝑝𝑡, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈  ∖{0} (3)

𝑑𝑙𝑝0 = 𝑔𝑙𝑝0, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  (4)

𝑃
𝑙𝑝 𝑑𝑙𝑝𝑡 ≤

𝑡+𝑇 𝑃
𝑙𝑝−1
∑

𝜏=𝑡
𝑔𝑙𝑝𝑡, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈  (5)

𝑎𝑙𝑡 +
∑

𝑝∈
𝑔𝑙𝑝𝑡 = 1, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑡 ∈  (6)

𝑔𝑙𝑝(𝑡−1) ≤
1
𝑇𝐴

𝑡+𝑇𝐴−1
∑

𝜏=𝑡
𝑎𝑙𝜏+

∑

𝑞∈𝐺
𝑝

𝑔𝑙𝑞𝑡, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈  ∖{0} (7)

𝑠𝑖𝑝0 = 𝐼0𝑖𝑝 −
∑

𝑣∈𝑖

∑

𝑗∈𝑂
𝑣

𝐷𝑗𝑝𝑧𝑣𝑖𝑗0, 𝑖 ∈  𝐹 , 𝑝 ∈  (8)

𝑠𝑖𝑝𝑡 = 𝑠𝑖𝑝(𝑡−1) −
∑

𝑣∈𝑖

∑

𝑗∈𝑂
𝑣

𝐷𝑗𝑝𝑧𝑣𝑖𝑗𝑡 +
∑

𝑙∈𝑖

𝑄𝑃
𝑙𝑝𝑔𝑙𝑝(𝑡−1),

𝑖 ∈  𝐹 , 𝑝 ∈  , 𝑡 ∈  ∖{0} (9)

∑

𝑝∈
𝑠𝑖𝑝𝑡 ≤ 𝑄𝐼

𝑖 , 𝑖 ∈  𝐹 , 𝑡 ∈  (10)
5

𝑥𝑣𝑜(𝑣)𝑓 (𝑣)(𝑡0(𝑣)−1) = 1, 𝑣 ∈  (11) 𝑧
∑

𝑗∈

∑

𝑡∈
𝑥𝑣𝑜(𝑣)𝑗𝑡 = 1, 𝑣 ∈  (12)

∑

(𝑖,𝑗)∈𝑣

𝑡
∑

𝜏=𝑡−𝑇𝑆
𝑣𝑖𝑗+1

𝑥𝑣𝑖𝑗𝜏 +
∑

𝑖∈𝑣

𝑡
∑

𝜏=𝑡−𝑇𝐿
𝑣𝑖+1

𝑦𝑣𝑖𝜏 +
∑

𝑖∈𝑣

𝑤𝑣𝑖𝑡 = 1, 𝑣 ∈  , 𝑡 ∈ 

(13)

∑

𝑣∈𝑖

∑

𝑡∈ 𝑇𝑊
𝑖

𝑦𝑣𝑖𝑡 + 𝑒𝑖 = 1, 𝑖 ∈ 𝑂 (14)

𝑣𝑖(𝑡−𝑇𝐿
𝑣𝑖 )

=
∑

𝑗∈𝑣

𝑥𝑣𝑖𝑗𝑡, 𝑣 ∈  , 𝑖 ∈ 𝑣, 𝑡 ∈  (15)

∑

𝑗∈𝑣∪{𝑜(𝑣)}
𝑥𝑣𝑗𝑖(𝑡−𝑇𝑆

𝑣𝑗𝑖)
+𝑤𝑣𝑖(𝑡−1) = 𝑦𝑣𝑖𝑡+𝑤𝑣𝑖𝑡+𝑥𝑣𝑖𝑑(𝑣)𝑡, 𝑣 ∈  , 𝑖 ∈ 𝑣, 𝑡 ∈ 

(16)

𝑊
𝑣𝑖𝑗 𝑥𝑣𝑖𝑗(𝑡−𝑇𝑆

𝑣𝑖𝑗 )
≤

𝑡+𝑇𝑊
𝑣𝑖𝑗−1
∑

𝜏=𝑡
𝑤𝑣𝑗𝜏 , 𝑣 ∈  , (𝑖, 𝑗) ∈ 𝑊 , 𝑡 ∈  |

|

|

𝑇𝑊
𝑣𝑖𝑗 > 0 (17)

𝑣𝑖𝑗𝑡 ≤ 𝑦𝑣𝑖𝑡, 𝑣 ∈  , 𝑖 ∈  𝐹
𝑣 , 𝑗 ∈ 𝑂

𝑣 , 𝑡 ∈  (18)

∑

𝑣∈𝑖

𝑡
∑

𝜏=𝑡−𝑇𝐿
𝑣𝑖+1

𝑦𝑣𝑖𝜏 ≤ 𝑀𝑉
𝑖𝑡 , 𝑖 ∈  𝐹 , 𝑡 ∈  (19)

𝑣𝑝𝑡0(𝑣) =
∑

𝑖∈𝐹
𝑣

∑

𝑗∈𝑂
𝑣

𝐷𝑗𝑝𝑧𝑣𝑖𝑗𝑡0(𝑣), 𝑣 ∈  , 𝑝 ∈  (20)

𝑣𝑝𝑡 = 𝑙𝑣𝑝(𝑡−1) +
∑

𝑗∈𝑂
𝑣

(

∑

𝑖∈𝐹
𝑣

𝐷𝑗𝑝𝑧𝑣𝑖𝑗𝑡 −𝐷𝑗𝑝𝑦𝑣𝑗𝑡

)

,

𝑣 ∈  , 𝑝 ∈  , 𝑡 ∈  |

|

|

𝑡 > 𝑡0(𝑣) (21)

∑

𝑝∈
𝑙𝑣𝑝(𝑡−1) ≤ 𝑄𝑉

𝑣

(

1 −
∑

𝑖∈𝐹
𝑣

𝑦𝑣𝑖𝑡

)

, 𝑣 ∈  , 𝑡 ∈  ∖{0}||
|

𝑡 > 𝑡0(𝑣) (22)

𝑣𝑝𝑡 ≤ 𝑄𝑉
𝑣 ℎ𝑣𝑝𝑡, 𝑣 ∈ 𝑆 , 𝑝 ∈  , 𝑡 ∈  (23)

∑

𝑝∈
ℎ𝑣𝑝𝑡 ≤ 𝑀𝑃

𝑣 , 𝑣 ∈  , 𝑡 ∈  (24)

∑

𝑖∈𝐹
𝑣

∑

𝑡∈
𝑥𝑣𝑖𝑑(𝑣)𝑡 = 1, 𝑣 ∈  (25)

∑

𝑣∈

∑

𝑡∈
𝑥𝑣𝑖𝑑(𝑣)𝑡 ≤ 𝑀𝐷

𝑖 , 𝑖 ∈  𝐹 (26)

𝑙𝑝𝑡 ∈ {0, 1}, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈  (27)

𝑙𝑡 ∈ {0, 1}, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑡 ∈  (28)

𝑙𝑝𝑡 ∈ {0, 1}, 𝑖 ∈  𝐹 , 𝑙 ∈ 𝑖, 𝑝 ∈  , 𝑡 ∈  (29)

𝑖𝑝𝑡 ≥ 0, 𝑖 ∈  𝐹 , 𝑝 ∈  , 𝑡 ∈  (30)

𝑣𝑖𝑗𝑡 ∈ {0, 1}, 𝑣 ∈  , 𝑖, 𝑗 ∈ 𝐴, 𝑡 ∈  (31)

𝑣𝑖𝑡 ∈ {0, 1}, 𝑣 ∈  , 𝑖 ∈ 𝑣, 𝑡 ∈  (32)

𝑣𝑖𝑡 ∈ {0, 1}, 𝑣 ∈  , 𝑖 ∈ 𝑣, 𝑡 ∈  (33)

𝐹 𝑂

𝑣𝑖𝑗𝑡 ∈ {0, 1}, 𝑣 ∈  , 𝑖 ∈ 𝑣 , 𝑗 ∈ 𝑣 , 𝑡 ∈  (34)
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𝑙𝑣𝑝𝑡 ≥ 0, 𝑣 ∈  , 𝑝 ∈  , 𝑡 ∈  (35)

ℎ𝑣𝑝𝑡 ∈ {0, 1}, 𝑣 ∈ 𝑆 , 𝑝 ∈  , 𝑡 ∈  (36)

𝑒𝑖 ∈ {0, 1}, 𝑖 ∈ 𝑂 (37)

The objective function (1) minimizes the total cost, which is com-
rised of four parts: production setup costs, inventory costs, trans-
ortation costs, and costs of orders not delivered within the planning
orizon.

Constraints (2)–(10) define the production sub-problem of the FF-
RP. Constraints (2) ensure that production only takes place when
he factory does not have production stops. Constraints (3) activate
he binary production setup variable used in the objective function.
onstraints (4) denote a special variant of this constraint, imposed only
n the first time period. Constraints (5) ensure sufficient batch sizes by
equiring production to maintain for a given number of consecutive
ime periods. A production line must either produce exactly one prod-
ct in the same time period or not be used, as defined by constraints (6).
onstraints (7) impose production stop requirements, when production

s shifted between products belonging to different product groups.
onstraints (8), (9), and (10) constitute the inventory constraints. The

irst and second group of constraints define the inventory level after
he first time period and the remaining time periods, respectively. The
hird ensure that the inventory capacity is not exceeded.

Constraints (11)–(26) define the routing sub-problem of the FFPRP.
onstraints (11) ensure that a vessel starts its route by sailing from the
ummy origin node to its origin factory, which, by constraints (12),
ccurs only once. In each time period, a vessel either sails, unloads,
oads, or waits, as defined by constraints (13). By constraints (14),
ach order must either be delivered within its time window, or be
onsidered not delivered. After the vessel has finished unloading or
oading, it must sail to its next node, as expressed by constraints (15).
imilarly, after having sailed from one order or factory node to another,
he vessel can either start loading or unloading, wait or sail to the
ummy destination node. If the vessel was waiting in the previous time
eriod, it can either continue waiting, start loading or unloading or sail
o the dummy destination node. This is enforced by constraints (16).
onstraints (17) ensure that the order node visits meet the recovery
ime requirements imposed when fish farms are subject to disease out-
reaks. Constraints (18) ensure that each order is picked up at a visited
actory, whereas the resource synchronization constraints (19) limit
he number of simultaneous vessel visits at a factory. Constraints (20)
nd (21) define a vessel’s load in the time period it becomes available
nd in succeeding time periods, respectively. Constraints (22) limit
otal vessel load, and ensure that vessels are empty when returning
o a factory. Constraints (23) and (24) together restrict the number of
ifferent products loaded onto a silo vessel to not exceed the number
f silos. By constraints (25), a vessel ends its route by sailing from a
actory node to the dummy destination node. Constraints (26) limit the
umber of vessels ending up at the same factory.

Constraints (27)–(37) impose binary and non-negativity restrictions
n the decision variables.

Lastly, note that in order to improve the model’s readability, some
onstraints include variables of non-defined time periods. This is the
ase for the sums in constraints (5), (7), (13), (16), (17), and (19).
ere, the constraints are meant to only sum over variables that are
efined. Similarly, in constraints (15), (16), and (17), we only include
ariables whose 𝑡 index is defined. Furthermore, the set 𝑊 may
nclude arcs (𝑖, 𝑗) which cannot be traversed by vessel 𝑣 ∈  . In
his case, the corresponding variable 𝑤𝑣𝑗𝜏 and parameter 𝑇 𝑆

𝑣𝑖𝑗 used in
onstraints (17) may not be defined. Therefore, we only impose the
onstraints where all variables and parameters are defined.
6

Fig. 3. FFPRP decomposition.

3. A decomposition-based adaptive large neighborhood search
heuristic

In order to solve the fish feed production routing problem (FF-
PRP), we develop and apply a heuristic inspired by the adaptive large
neighborhood search (ALNS) heuristic, originally proposed by Røpke
and Pisinger (2006). Our proposed method shares several similarities
with the ALNS heuristics by Liu et al. (2018) and Lianes et al. (2021),
and a similar solution representation is used for the routing part of
the problem. However, unlike the aforementioned papers the FFPRP
also includes production decisions. Hence, we decompose the problem
into a production and routing subproblem, in similar fashion to the
ALNS heuristic proposed by Adulyasak et al. (2014a). This section
aims to describe the resulting decomposition-based ALNS heuristic,
often referred to as simply an ALNS heuristic. We start in Section 3.1
by discussing the decomposition of the FFPRP into a production sub-
problem and a routing sub-problem. Section 3.2 proceeds to describe
the solution representation, whereas Section 3.3 describes the process
of constructing an initial solution. Lastly, Section 3.4 presents the ALNS
heuristic in more detail and Section 3.5 the derivation of the final
solution.

3.1. Problem decomposition

The FFPRP can be decomposed into two problems: the production
sub-problem and the routing sub-problem. The former is concerned with
the production scheduling of the factories’ production lines as well as
inventory management. This sub-problem amounts to constraints (2)–
(10) in the model formulation presented in Section 2.3. The routing
sub-problem, on the other hand, is concerned with vessel routes and
loads, and is defined by constraints (11)–(26).

The two sub-problems are closely connected. From the perspective
of the vessels, orders cannot be loaded before the loading quantity
is available at the factory. Oppositely, as seen from the factories, the
loading quantity must be ready at the time loading starts. For the real-
life problem, sailing is the main cost driver, rather than inventory or
production setup costs (note that production unit costs are considered
sunk). Hence, discovering good routing solutions is critical in order to
find cost-minimizing solutions to the FFPRP. However, a good routing
solution is not necessarily production feasible.

The proposed heuristic therefore focuses on optimizing the sailing
routes. Fig. 3 illustrates the interaction between the two sub-problems,
where the heuristic searches for promising routing solutions, while
the production sub-problem is solved only for these promising rout-
ing solutions, in order to estimate the production cost and ensure
feasibility.

Algorithm 1 further explains the ALNS heuristic. We use 𝑥 and 𝑦
to denote solutions to the routing sub-problem and production sub-

problem, respectively. Furthermore, we let 𝑓 (𝑥) and 𝑔(𝑦) denote the
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costs of solutions 𝑥 and 𝑦, and ℎ(𝑥, 𝑦) the cost of the full FFPRP master
problem solution, that is, ℎ(𝑥, 𝑦) = 𝑓 (𝑥) + 𝑔(𝑦). The best solution to
the FFPRP master problem is denoted

(

𝑥∗ 𝑦∗
)

. We start by finding
a solution to the routing problem that is also production feasible. We
then find a new candidate solution 𝑥′ to the routing sub-problem, using
the ALNS framework. Next, we perform a quick, simplified production
feasibility check, and, if needed, make slight adjustments to the routes.
The routing cost of the new solution 𝑥′, 𝑓 (𝑥′), is then compared to
the routing cost of the previous best solution, 𝑓 (𝑥∗). Initially, we
only evaluate the routing solution’s objective value, in order to save
computation time. If the new routing solution 𝑥′ is promising, meaning
the deviation from the routing solution in the currently best solution
to the full master problem is less than the production solve parame-
ter 𝜖, we solve the production sub-problem using a greedy insertion
heuristic in order to check for feasibility and obtain an estimate of
the production cost 𝑔(𝑦′). If the production sub-problem is feasible and
the new solution to the FFPRP constitutes an improvement, that is,
ℎ(𝑥′, 𝑦′) < ℎ(𝑥∗, 𝑦∗), we update both 𝑥∗ and 𝑦∗. The algorithm runs until
some stopping criterion is met.

Algorithm 1: Outline of ALNS Heuristic for the FFPRP Master
Problem

Result: solution to the FFPRP
1
(

𝑥∗ 𝑦∗
)

= best solution to the FFPRP master problem, initially set
to solution found by the construction heuristic

2 𝑥 = current routing solution, initially 𝑥 = 𝑥∗

3 while stopping criterion is not met do
4 with the current routing solution 𝑥 as a starting point, generate a

new routing solution 𝑥′ using the ALNS framework
5 while solution 𝑥′ is infeasible by the simplified production feasibility

check do
6 remove orders from solution 𝑥′

7 end
8 if routing solution 𝑥′ is a promising routing solution,

𝑓 (𝑥′) < 𝑓 (𝑥∗) ⋅ (1 + 𝜖), then
9 𝑦′ = heuristic production solution corresponding to routing

solution 𝑥′

10 if 𝑦′ exists and ℎ(𝑥′, 𝑦′) < ℎ(𝑥∗, 𝑦∗) then
11 𝑥∗ = 𝑥′

12 𝑦∗ = 𝑦′

13 end
14 end
15 if routing solution 𝑥′ is accepted by some criterion then
16 𝑥 = 𝑥′

17 end
18 end
19 improve 𝑦∗ with an exact solver
20 return the best found solution to the FFPRP master problem,

(

𝑥∗ 𝑦∗
)

To summarize, we decompose the FFPRP into two sub-problems
nd solve the problems iteratively using the ALNS framework. Since
he routing represents the major cost driver, we primarily evaluate
he solutions in terms of routing cost, whereas production costs are
valuated only for promising routing solutions. The integration of the
ub-problems is therefore concentrated on the feasibility of the master
roblem’s solution. Note that Algorithm 1 is presented at a high level
ocusing on the integration of the two sub-problems. Therefore, the
ollowing sections aim to present the full heuristic in more detail.

.2. Solution representation

Each routing solution 𝑥 consists of a sequence of node visits for each
essel, referred to as routes, and a sequence of vessel visits for each
actory. We let 𝑖(𝑠) denote the 𝑠th node visit of a vessel, and 𝑣(𝑢) the

vessel corresponding to the 𝑢th vessel visit at a factory. Furthermore,
e keep track of the earliest and latest possible starting times for each
7

node visit, denoted 𝑒𝑠 and 𝑙𝑠, respectively. The solution representation
or node visits is exemplified in Fig. 4.

Several vessels may be scheduled to visit the same factory, and the
isits’ respective start time intervals may be overlapping. However, a
actory can only serve a limited number of vessels simultaneously. In
he case of overlapping start time intervals for visits to the same factory,
he order of the vessel visits is not trivial. We therefore also include the
essel visit order at each factory in the solution representation.

Each production solution 𝑦 contains the production activities per-
ormed on each production line for each time step. We let 𝐴𝑙 denote
he sequence of activities at production line 𝑙, and 𝑎𝑙(𝑡) the production
ctivity – that is, the product produced – in time period 𝑡. Eventually,
𝑙(𝑡) is set to null if production does not take place at production line 𝑙
n time period 𝑡. Fig. 5 gives an example of production activities at a
actory consisting of two production lines.

.3. Construction of an initial solution

We construct an initial solution by first adding the vessels’ initial
actories to the routes. Next, we insert order nodes into the routes,
ased on the utilities of the insertions. The process of constructing an
nitial solution is described in detail in the following sections.

.3.1. Overview of the construction heuristic
We build an initial solution by iteratively inserting order nodes in

he vessels’ routes. The prioritization of the insertions are based on
-regret values, denoted 𝑅2, given by the formula
2 = 𝑈1

𝑖 − 𝑈2
𝑖 , (38)

as preliminary tests showed that this procedure yielded satisfactory
nitial solutions. Here, 𝑈ℎ

𝑖 is the insertion utility of inserting node 𝑖 in its
th best position. For each iteration, we do the insertion corresponding
o the greatest 𝑅2 value, whose resulting routes are proven to be
easible. We calculate the utility of each insertion before we evaluate
easibility, as the feasibility check is relatively computationally expen-
ive. The process is continued until all orders are served, or until no
outing-feasible insertion exists.

Next, we ensure that the routing solution results in a feasible pro-
uction schedule, using a greedy insertion heuristic. If the constructed
olution is not proven to be production feasible, a small proportion of
he most cost-contributing order nodes are removed from voyages start-
ng in factories whose production schedules were regarded infeasible.
he production sub-problem is then re-solved in order to determine if
he new routing solution has a feasible production counterpart. The
rocess of solving the production sub-problem and removing orders
ontinues until a feasible initial solution to the FFPRP is found. Lastly,
e set the best found solution to be the solution generated by the

onstruction heuristic.

.3.2. Route insertion utility
An insertion is defined by an order node 𝑗, a vessel 𝑣 and an

nsert position 𝑠, and compared to other insertions in terms of cost
ontributions. Specifically, we evaluate the net change in transport cost
nd penalty for not delivering the order, referred to as the insertion’s
tility. The higher the utility, the more promising is the insertion. As
n Section 3.2, we let 𝑖(𝑠) denote the node 𝑗 at position 𝑠 in a given
essel route. Furthermore, 𝐶𝑇

𝑣𝑖𝑘 denotes vessel 𝑣’s cost of transportation
rom node 𝑖 to node 𝑘. The resulting net change in transport cost when
nserting order node 𝑗 in position 𝑠 of the route of vessel 𝑣, 𝛥𝐶𝑇

𝑣𝑠𝑗 , is
iven by the equation

𝐶𝑇
𝑣𝑠𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐶𝑇
𝑣𝑖(𝑠−1)𝑗 + 𝐶𝑇

𝑣𝑗𝑖(𝑠+1) − 0,

if 𝑗 is inserted at the end of the route
𝐶𝑇
𝑣𝑖(𝑠−1)𝑗 + 𝐶𝑇

𝑣𝑗𝑖(𝑠+1) − 𝐶𝑇
𝑣𝑖(𝑠−1)𝑖(𝑠+1), otherwise.

(39)

Note that we in Eq. (39) add two terms also when an order is
nserted at the end of a route. The reason why is the requirement that
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Fig. 4. Example of node visits for vessel 1. White nodes denote order visits and gray nodes factory visits.
Fig. 5. Example of production activities at a factory. Nodes denote production activities. White nodes represent time periods without production. The remaining colors represent
ifferent product groups.
Fig. 6. Change in transport cost when inserting an order node at the end of a route 6(a) and in the middle of a route 6(b). White nodes denote order visits and gray nodes
factory visits. Dotted lines represent route changes whose costs must be taken into account.
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all routes must end in a factory. That is, inserting an order node at the
end of a route implies that a factory node must also be inserted. Fig. 6
illustrates the calculation of transport cost change 𝛥𝐶𝑇

𝑣𝑠𝑗 when order
ode 𝑗 = 4 is inserted at position 𝑠 = 3 in the route of a vessel 𝑣.

We define the insertion utility as the penalty for not serving the
rder minus the net change in transport cost when inserting the order
ode in a given position in a vessel’s route. The utility of inserting
rder node 𝑗 in position 𝑠 of vessel 𝑣’s route, 𝑈𝑣𝑠𝑗 , is thus given by
he equation

𝑣𝑠𝑗 = 𝐶𝐸
𝑗 − 𝛥𝐶𝑇

𝑣𝑠𝑗 , (40)

where 𝐶𝐸
𝑗 is the cost of not serving order 𝑗 and 𝛥𝐶𝑇

𝑣𝑠𝑗 is the resulting
hange in transport cost defined by Eq. (39).

.3.3. Route insertion feasibility
When order nodes are removed from a feasible routing solution,

he resulting routing solution will always be feasible. Oppositely, when
nserting an order node, as illustrated in Fig. 6, several constraints may
ause the routing solution to become infeasible. We, therefore, assert
8

oute feasibility before every order node insertion, ensuring that only
easible insertions are performed.

As mentioned in Section 1.1, routes are required to start and end in
factory node. A route may also consist of multiple voyages, meaning

ntermediate factory visits. As the ALNS heuristic only considers inser-
ions of order nodes, factory nodes are automatically inserted when
equired. We argue that this design allows for a smooth traversal of
he search space of multiple voyages and different destination factories.
ig. 6(a) shows an example of an order node being inserted at the end of
route, and thereby forming a new voyage. The order insertion is only

llowed if also a new factory node may be placed after the insertion.
n other words, the insertion must be time feasible, and must not make
ore than 𝑀𝐷

𝑖 vessels end their routes in factory node 𝑖. If several
actory nodes meet these criteria, the insertion yielding the highest
tility 𝑈 ′

𝑣𝑠𝑗 according to the definition 𝑈 ′
𝑣𝑠𝑗 = −𝐶𝑇

𝑣𝑖(𝑠−1)𝑗 is chosen. The
otation is similar to the notation in Eq. (40), except that 𝑗 denotes a

factory node.
Before we insert an order node, we must ensure that the resulting
route is time feasible. Specifically, using the notation presented in
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p

Fig. 7. Intra-route propagation of time feasibility check. The example illustrates the calculations required to check the time feasibility for the insertion of node 4 into the route.
Factories are represented by gray nodes.
Fig. 8. Inter- and intra-route propagation of time feasibility check. The black dashed arrows denote intra-route propagation, whereas the blue dashed arrows denote inter-route
ropagation. The labels a, b and c correspond to the respective labels in Fig. 9.
Fig. 9. Vessel visits at two factories, corresponding to the routes in Fig. 8.

Section 3.2, we ensure that there is enough time between the node
visit at position 𝑠 − 1 and the node visit pushed to position 𝑠 + 1 as a
result of the insertion into position 𝑠. As before, we refer to the order 𝑖
inserted into a route in position 𝑠 as 𝑖(𝑠). The earliest time for 𝑖(𝑠), 𝑒𝑠, is
dependent on the earliest time for the previous visit, 𝑒𝑠−1, the loading or
unloading time for the previous node, 𝑇 𝐿

𝑣𝑖(𝑠−1), and the sailing time from
𝑖(𝑠−1) to 𝑖(𝑠), 𝑇 𝑆

𝑣𝑖(𝑠−1)𝑖(𝑠). The calculation is given by Eq. (41). Similarly,
the latest time for 𝑖(𝑠), given by Eq. (42), depends on the latest time for
the next visit, 𝑙𝑠+1, the loading or unloading time for 𝑖(𝑠), 𝑇 𝐿

𝑣𝑖(𝑠), and the
sailing time from 𝑖(𝑠) to 𝑖(𝑠 + 1), 𝑇 𝑆

𝑣𝑖(𝑠)𝑖(𝑠+1). Further, if 𝑖(𝑠) is an order
node, 𝑒𝑠 and 𝑙𝑠 may also be constrained by the earliest and latest time
periods of the order’s time window. These are denoted 𝐸𝑖(𝑠) and 𝐿𝑖(𝑠),
respectively.

𝑒𝑠 = max
{

𝐸𝑖(𝑠), 𝑒𝑠−1 + 𝑇 𝐿
𝑣𝑖(𝑠−1) + 𝑇 𝑆

𝑣𝑖(𝑠−1)𝑖(𝑠)

}

(41)

𝑙𝑠 = min
{

𝐿𝑖(𝑠), 𝑙𝑠+1 − 𝑇 𝑆
𝑣𝑖(𝑠)𝑖(𝑠+1) − 𝑇 𝐿

𝑣𝑖(𝑠)

}

(42)

If 𝑒𝑠 > 𝑙𝑠, the insertion is infeasible. However, the insertion may still
not be feasible even if 𝑒𝑠 ≤ 𝑙𝑠, as preceding or succeeding visits 𝑠′ may
have been pushed to have 𝑒𝑠′ > 𝑙𝑠′ . Also, the insertion may result in
changes to the earliest or latest time for a factory visit. These changes
may again affect other routes visiting the same factory, possibly causing
time infeasibility. These feasibility checks will be elaborated on next.

The intra-route propagation of the time feasibility check is illus-
trated in Fig. 7. The latest times are recalculated and checked for nodes
preceding the insertion, while the earliest times are recalculated and
checked for nodes succeeding the insertion. If the recalculated 𝑒 or 𝑙
is equal to its previous value, the propagation is stopped, as no new
values will be obtained from further propagation.

The interdependencies between routes visiting the same factories
are demonstrated in Fig. 8, where gray nodes denote factories. Fig. 9
9

shows the corresponding order of the factories’ vessel visits. As vessel 1
visits factory 2 before vessel 2, the earliest time for vessel 2 to visit this
factory may be affected by the insertion, illustrated by arrow b. If the
earliest time for vessel 2 at factory 2 is changed, this would require
further recalculations and checks for succeeding visits on vessel 2’s
route, as well as for vessel 1’s last visit at factory 2 (arrow c). As vessel 2
visits factory 1 before vessel 1, vessel 2’s latest time for this visit may
be affected by the updated latest time for vessel 1’s visit at factory 1
(arrow a). Note that such interdependencies may result in a visit getting
several updates for 𝑒𝑠 or 𝑙𝑠. In Fig. 8, this is the case for vessel 1’s last
visit at factory 2. In such cases, the most constraining dependency is
kept. Formally, this means 𝑒𝑠 = max{𝑒𝑛𝑒𝑤𝑠 , 𝑒𝑜𝑙𝑑𝑠 } and 𝑙𝑠 = min{𝑙𝑛𝑒𝑤𝑠 , 𝑙𝑜𝑙𝑑𝑠 }.

As the total number of loading spots – that is, the maximum number
of vessels loading simultaneously at a factory – is dynamic and may
be higher than one, additional computations are required in order to
determine the earliest and latest times for factory node visits. These
computations assume a fixed vessel visit order, and iterate forward in
time until there is an available loading spot for the vessel. The relevant
time periods to check are time periods after the departures and time
periods in which the total number of loading spots increases. For the
latest time period, a similar procedure is implemented.

Furthermore, for each insertion, we ensure that the inserted order
node is compatible with the relevant vessel, and that the total weight
and the number of different products loaded onto the vessel respect the
vessel’s capacity. We assume that the vessels are empty at the start of
each voyage. Checking for feasibility therefore simply implies summing
the weights and counting the number of different products delivered on
the voyage in which the order is inserted, and ensuring that the vessel’s
capacity is respected.

3.3.4. Production heuristic
We perform a production feasibility check and estimate production

cost whenever a promising routing solution is found. That is, the best
routing solution 𝑥∗ is only updated if we find a corresponding feasible
production schedule. By greedily inserting production activities into the
production lines’ respective schedules, the heuristic aims to construct a
feasible solution to the production sub-problem.

In order to assert production feasibility at a given factory, we
introduce the parameter 𝐼𝑝𝑡′ , denoting the inventory level of a product
𝑝 at the start of time period 𝑡′ ∈  ′. Here,  ′ contains the time
periods in which one or several vessels load at the given factory. From
the perspective of the factory, these time periods represent production
deadlines, as they denote the time periods in which the demanded
orders must be ready for loading.
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Algorithm 2 describes the process of greedily constructing pro-
duction schedules. Here, an insertion is defined by a product 𝑝, a
roduction line 𝑙, and a production time period 𝑡. An insertion into
he production schedule of production line 𝑙 results in a change in the
orresponding production activity sequence 𝐴𝑙. Initially, the inventory
evel 𝐼𝑝𝑡′ is equal to the initial inventory given as input to the problem,
djusted for the quantity of product 𝑝 loaded in time periods prior to

𝑡′. The resulting values may be negative, as they represent inventory
levels when no production occurs. Note that we construct production
schedules separately for each factory, as the production sub-problems
for the different factories are disjoint. That is, by assuming fixed loading
times and quantities, the factories are independent. For this reason,
Algorithm 2 omits factory indices.

Each insertion is associated with an insertion cost, denoted 𝐶𝑙𝑝𝑡. We
efine insertion cost according to the equation

𝑙𝑝𝑡 =

{

(𝑡′ − 𝑡) ⋅ 𝐶𝐼
𝑝 ⋅𝑄𝑃

𝑙𝑝 + 𝐶𝑆
𝑝 , if 𝑎𝑙(𝑡 − 1) ≠ 𝑝 and 𝑎𝑙(𝑡 + 1) ≠ 𝑝

(𝑡′ − 𝑡) ⋅ 𝐶𝐼
𝑝 ⋅𝑄𝑃

𝑙𝑝, otherwise,
(43)

where 𝑡′ is the production deadline of the produced quantity, 𝐶𝐼
𝑝 is

the inventory holding cost for product 𝑝 per time period, 𝑄𝑃
𝑙𝑝 is the

production capacity for product 𝑝 at production line 𝑙 and 𝐶𝑆
𝑝 is the

cost of starting up production of product 𝑝.

Algorithm 2: Greedy Production Schedule Construction Heuris-
tic

Result: solution to the production sub-problem, 𝑦′
1 𝑦′ = solution to the production sub-problem, initially empty
2 for each factory do
3  ′ = set of production deadline time periods
4 𝐼𝑝𝑡′ = inventory of product 𝑝 at production deadline time period 𝑡′

5 𝐴𝑙 = sequence of production activities 𝑎𝑙(𝑡) for production line 𝑙,
initially 𝑎𝑙(𝑡) = null for all time periods 𝑡

6 for production deadline time period 𝑡′ in  ′ in ascending order do
7 while inventory, 𝐼𝑝𝑡′ , is less than quantity to be loaded of

product 𝑝 in time period 𝑡′ do
8  = set of production activity insertion candidates whose

corresponding production deadline is time period 𝑡′

9 if  is empty then
10 return 𝑛𝑢𝑙𝑙 # no feasible solution found
11 end
12 from  , pick and perform the insertion, defined by (𝑙, 𝑝,

𝑡), with the lowest insertion cost
13 add production line 𝑙’s capacity for product 𝑝 to 𝐼𝑝𝑡′
14 in 𝐴𝑙, set 𝑎𝑙(𝑡) = 𝑝
15 end
16 end
17 add the production schedule 𝐴𝑙 for each production line 𝑙 to 𝑦′

18 end
19 return solution 𝑦′ to the production sub-problem

The set of activity insertion candidates, denoted  in Algorithm
2 line 8, consists of feasible insertions into the production schedules
of the given factory’s production lines. We perform five checks to
assert feasibility for an insertion. First, the production line must not
already be producing in the given time period. Second, the production
schedule resulting from the insertion must satisfy the minimum batch
size requirement, meaning that additional activity insertions for the
same product may have to be performed. Third, the new solution
must comply with the requirements regarding factory production stops,
and fourth, production stops between production activities of products
belonging to different groups. Lastly, the new solution must not violate
the maximum inventory constraint.

The greedy production heuristic solves the production sub-problem
significantly faster than exact methods. However, it may fail to find
feasible solutions in cases where feasible solutions do exist. Further-
more, as proposed by Neves-Moreira et al. (2018) and Farahani et al.
10
(2012), we fix the vessels’ loading times found in the routing so-
lution when solving the production sub-problem. This simplification
contributes largely to increase computation efficiency of the produc-
tion sub-problem, but comes with two disadvantages. First, the cost
of the estimated production problem may be somewhat higher than
necessary, as some products may be held as inventory slightly longer.
Second, some production schedules may be regarded as inventory
infeasible, although simply advancing the loading would give the oppo-
site result. This would be problematic for inventory-intensive problem
instances. However, we argue that our investigated instances never will
be inventory-intensive, as inventory capacity is commonly increased
when needed, by renting external depots. For this reason, we argue
that our choice of using the factory visits’ latest loading times to assert
production feasibility is justified.

3.4. Decomposition-based adaptive large neighborhood search heuristic

In Section 3.1, we discussed the decomposition of the FFPRP into a
routing sub-problem and a production sub-problem and provided an
outline of the master problem heuristic. The focus was sub-problem
integration, and thus technical aspects of the ALNS framework were
disregarded. In this section, however, we focus on the ALNS and how
the framework is used to generate solutions.

The ALNS heuristic aims to derive new best solutions by iteratively
removing and reinserting order nodes in a solution. The removals
and insertions are carried out by destroy and repair operators. The
adaptiveness of the heuristic lies in the choice of operators. At regular
intervals, an operator’s weight is updated according to the quality of
the solutions the operator has contributed to generate, referred to as
the operator’s score. These weights are used when selecting operators to
apply in order to generate a new solution, and as a result, the successful
operators are chosen more frequently. The new solution is accepted
according to some acceptance criteria. The algorithm terminates when
a stopping criterion is met.

This section describes the ALNS heuristic and is organized as fol-
lows. We start in Section 3.4.1 by providing an overview of the heuris-
tic. Next, in Section 3.4.2, we describe the inclusion of noise in the
utility function. Sections 3.4.3–3.4.5 are concerned with destroy oper-
ators, the permutation of vessel visits at factories, and repair operators,
respectively. We provide a description of the operator selection pro-
cedure in Section 3.4.6, and introduce a simplified production check
complementing the production schedule heuristic in Section 3.4.7.
Lastly, in Section 3.4.8, we define the acceptance and stopping criteria.

3.4.1. Overview of the decomposition-based adaptive large neighborhood
search heuristic

Algorithm 3 provides an overview of the ALNS heuristic applied
to the FFPRP. We start by constructing an initial solution for which
we assert production feasibility, as described in Section 3.3. We then
perform 𝐼𝐴𝐿𝑁𝑆 iterations of the ALNS procedure. The iterations are
divided into segments consisting of 𝐼𝑆𝐸𝐺 iterations. We start each
teration by choosing destroy and repair operators, 𝑑1 and 𝑑2, based on

the weights 𝑤𝑑𝑚 for each operator 𝑑 in the current segment 𝑚. The oper-
ators are subsequently applied to the current routing solution 𝑥, which
results in a new candidate solution 𝑥′. If 𝑥′ is a promising solution, we
obtain a solution 𝑦′ to the corresponding production sub-problem by ap-
plying the greedy production heuristic described in Section 3.3.4. If the
production sub-problem is feasible, we accept the routing solution 𝑥′.
Further, we examine whether

(

𝑥′ 𝑦′
)

constitutes a new best solution
to the FFPRP. On the other hand, if 𝑥′ is not considered promising,
the routing solution is accepted according to a simulated annealing
criterion. We then update the scores 𝜋𝑑 of the applied operators. For
each 𝐼𝑆𝐸𝐺 iteration, the weights for the next segment 𝑤𝑑(𝑚+1) are also
updated, based on the operators’ scores 𝜋𝑑 from the previous segment.
The scores 𝜋𝑑 are reset after each segment. After 𝐼𝐴𝐿𝑁𝑆 iterations we

∗
improve the production sub-problem’s solution 𝑦 , corresponding to
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routing solution 𝑥∗, by using an exact solver. Lastly, we return the best
found routing solution, 𝑥∗, along with the solution to the corresponding
production sub-problem, 𝑦∗, which together form a feasible solution to
the FFPRP.

Algorithm 3: ALNS Heuristic for the FFPRP
Result: solution to the FFPRP

1 𝐼𝐴𝐿𝑁𝑆 = total number of ALNS iterations
2 𝐼𝑆𝐸𝐺 = number of iterations in each segment
3 construct a current routing solution 𝑥, such that a corresponding

feasible production solution 𝑦 exists
4 set the best solution,

(

𝑥∗ 𝑦∗
)

=
(

𝑥 𝑦
)

5 for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1 to 𝐼𝐴𝐿𝑁𝑆 do
6 choose destroy and repair operators 𝑑1, 𝑑2 based on weights 𝑤𝑑𝑚

for operator 𝑑 and segment 𝑚
7 create candidate routing solution 𝑥′ by applying the operators 𝑑1

and 𝑑2 on the current routing solution 𝑥
8 while solution 𝑥′ is infeasible by the simplified production feasibility

check do
9 remove orders from routing solution 𝑥′

10 end
11 if 𝑓 (𝑥′) < 𝑓 (𝑥∗) ⋅ (1 + 𝜖) then
12 obtain a production sub-problem solution 𝑦′, corresponding to

routing solution 𝑥′, using the greedy production heuristic
13 if production sub-problem is feasible then
14 update the current routing solution to be the candidate

routing solution, 𝑥 = 𝑥′

15 if ℎ(𝑥′, 𝑦′) < ℎ(𝑥∗, 𝑦∗) then
16

(

𝑥∗ 𝑦∗
)

=
(

𝑥′ 𝑦′
)

17 end
18 end
19 else if 𝑓 (𝑥′) < 𝑓 (𝑥) or solution 𝑥′ is accepted according to the

simulated annealing-based criterion then
20 update the current routing solution to be the candidate

routing solution, 𝑥 = 𝑥′

21 end
22 update scores 𝜋𝑑1 , 𝜋𝑑2 for the chosen destroy and repair

operators 𝑑1, 𝑑2
23 if 𝐼𝑆𝐸𝐺 iterations has passed since the previous weight update then
24 update weight 𝑤𝑑(𝑚+1) for the next segment 𝑚 + 1 based on

the score 𝜋𝑑 for each operator 𝑑 in segment 𝑚
25 end
26 end
27 improve 𝑦∗ using an exact solver
28 return best found solution

(

𝑥∗ 𝑦∗
)

3.4.2. Noise in the utility function
The function used to calculate the utility of an insertion is similar to

the function in Eq. (40). However, as the insertion methods are myopic,
a noise term similar to that of Røpke and Pisinger (2006) is added. In
this way, the search is diversified by introducing randomization in the
insertion process. The utility 𝑈𝑣𝑠𝑗 of an insertion defined by a vessel 𝑣,

visit number 𝑠, and an order node 𝑗 is thus given by the equation

𝑈𝑣𝑠𝑗 = 𝐶𝐸
𝑗 − 𝛥𝐶𝑇

𝑣𝑠𝑗 + noise, (44)

where 𝐶𝐸
𝑗 is the penalty for not delivering order 𝑗 and 𝛥𝐶𝑇

𝑣𝑠𝑗 is the
net change in transport cost given by Eq. (39). The noise parameter
takes a random value in the range [−𝑁𝑚𝑎𝑥

𝑣 , 𝑁𝑚𝑎𝑥
𝑣 ], where 𝑁𝑚𝑎𝑥

𝑣 = 𝜂 ⋅

max𝑖,𝑗∈
{

𝐶𝑇
𝑣𝑖𝑗

}

. Here, the parameter 𝜂 controls the noise level, 𝐶𝑇
𝑣𝑖𝑗

is the transport cost from node 𝑖 to node 𝑗 for the vessel 𝑣 and  is
the set of all factory and order nodes. As a result, the noise term will
be somewhat proportional to the objective function. As mentioned in
Section 3.3.3, the choice of new destination factory is also based on
utility. Here, noise is calculated and applied in a similar manner as for
order nodes, but with a different noise control parameter, 𝜂′, as a higher
level of noise may be needed to avoid myopic insertions. The choice of
11

whether or not to apply noise in the insertion is done in each iteration
by an adaptive roulette wheel mechanism, which is described in detail
in Section 3.4.6.

3.4.3. Destroy operators
The destroy operators eliminate parts of the current solution by

removing node visits from routes. Specifically, all destroy operators
remove at least 𝑞𝐴𝐿𝑁𝑆 order nodes from the solution, or all order nodes
f the number is less than 𝑞𝐴𝐿𝑁𝑆 . These are inserted into the set of un-
outed orders,  . We consider five different types of removal operators:
orst removal, related removal, voyage removal, route removal and

andom removal. The worst removal operator iteratively removes order
odes associated with a high cost, until 𝑞𝐴𝐿𝑁𝑆 order nodes are removed
r until all order nodes are removed. Related removal removes similar
rder nodes from the routing solution, motivated by the assumption
hat similar orders are easier to reshuffle while maintaining feasibility.
he relatedness 𝑅𝑖𝑗 between order nodes 𝑖 and 𝑗 is defined by Eq. (45).
he more related two order nodes are, the lower the value of 𝑅𝑖𝑗 . We
onsider three dimensions of relatedness: spatial relatedness, temporal
elatedness, and disease class relatedness. The first, spatial relatedness,
s defined by the sailing distance 𝑑𝑖𝑗 between the order nodes. The sec-
nd, temporal relatedness, is defined as the absolute difference between
he orders’ time windows. The third, disease class relatedness, denoted
disease
𝑖𝑗 , is manually defined. The values are provided in Appendix A.
o our knowledge, the highly domain-specific operator concerned with
elatedness in terms of disease outbreaks, has not previously been
pplied.

𝑖𝑗 = 𝑎0𝑑𝑖𝑗 + 𝑎1
(

|𝑇𝑖 − 𝑇𝑗 | + |𝑇𝑖 − 𝑇𝑗 |
)

+ 𝑎2𝑅
disease
𝑖𝑗 (45)

In our implementation, we apply two different related removal
operators: one is based on spatial and temporal relatedness, whereas
the other is based on spatial and disease class relatedness. This amounts
to 𝑎0, 𝑎1 > 0 and 𝑎0, 𝑎2 > 0, respectively.

The voyage removal operator iteratively removes voyages until at
least 𝑞𝐴𝐿𝑁𝑆 order nodes have been removed, or until one voyage
has been removed from each route. We apply two different voyage
removal operators: the first randomly selects which voyage to remove,
and the second selects the voyage of highest cost. The route removal
operator iteratively removes routes until at least 𝑞𝐴𝐿𝑁𝑆 order nodes are
removed. As for voyage removal, we apply two different route removal
operators, using random selection and highest cost selection.

Lastly, the random removal operator removes 𝑞𝐴𝐿𝑁𝑆 randomly cho-
sen order nodes from the routes. Similar to Røpke and Pisinger (2006),
we apply a deterministic parameter in order to obtain partial random-
ness in the removal selection. This is applied in the worst removal,
related removal, worst voyage removal, and worst route removal op-
erators.

3.4.4. Vessel visit permutation
Generally, the order of vessel visits at factories is permuted by

the destroy and repair operators. However, this is not the case for
the order of the vessels’ initial factory visits, which is determined by
the vessels’ respective start times. Therefore, in order to traverse a
larger part of the solution space, we apply a permutation procedure
with probability 𝜚 after the solution is destroyed in each iteration. The
permutation procedure finds all pairs of consecutive initial vessel visits
at factories whose order may be swapped without violating the routing
time constraints. After finding all such pairs, a random pair of vessel
visits is chosen and permuted.

3.4.5. Repair operators
After the removal of order nodes – and possibly the permutation of

vessel visits – we apply a repair operator to reinsert unserved orders
into the solution. We consider three repair operators: greedy insertion,
2-regret insertion and 3-regret insertion.

The greedy repair operator always makes the insertion with the
greatest utility. Order nodes are inserted until no feasible insertions
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Table 1
Success types with corresponding score reward criteria.

Success type Reward criterion

𝜎1 The candidate routing solution 𝑥′ is part of a new best solution to
the master problem

𝜎2 The candidate solution 𝑥′ is not part of a new best solution to the
master problem, but is better than the current routing solution 𝑥;
the candidate solution 𝑥′ has not been accepted before

𝜎3 The candidate solution 𝑥′ is worse than the current solution 𝑥,
but was accepted by the simulated annealing criterion; the
candidate solution 𝑥′ has not been accepted before

exist. A candidate solution, meaning the resulting solution after a
destroy operator has been applied, is given as input. The utility is
calculated according to Eq. (44), and is used to sort the insertions.
The insertion yielding the greatest objective improvement is chosen
greedily, meaning we evaluate the feasibility of the insertions in de-
scending order according to insertion utility. As the feasibility check is
computationally expensive compared to the utility calculation, we save
computational effort by only checking feasibility for the best insertions
until a feasible insertion is found. The algorithm terminates either
when all orders have been inserted or when all insertions have been
evaluated.

The 𝑘-regret insertion operator is similar to the construction heuristic
presented in Section 3.3.1, as it inserts the order node whose regret value
is the highest. However, we now include both 2-regret and 3-regret. We
define the 𝑘-regret value, 𝑅𝑘, according to the formula

𝑅𝑘 =
𝑘
∑

ℎ=2
(𝑈1

𝑖 − 𝑈ℎ
𝑖 ), (46)

where 𝑈ℎ
𝑖 is the insertion utility, as defined by Eq. (44), of inserting

node 𝑖 in its ℎth best position. For each iteration we insert the order
corresponding to the greatest 𝑅𝑘 value. Again, we calculate the utility
f each insertion before we evaluate feasibility.

.4.6. Choosing a destroy and repair heuristic
The choice of operators to apply to a candidate solution, as well as

he choice whether to apply noise in the insertion methods, are based
n a roulette wheel mechanism. In each segment 𝑚, each operator 𝑑

is assigned a weight 𝑤𝑑𝑚, representing the operator’s success in pre-
vious segments. The weights are updated in the end of each segment
according to the formula

𝑤𝑑𝑚 =

⎧

⎪

⎨

⎪

⎩

max
{

𝜅, (1 − 𝑟) ⋅𝑤𝑑(𝑚−1) + 𝑟 ⋅ 𝜋𝑑
𝜃𝑑

}

, if 𝜃𝑑 > 0

𝑤𝑑(𝑚−1), otherwise,
(47)

where 0 ≤ 𝑟 ≤ 1 is the reaction factor and 𝜋𝑑 and 𝜃𝑑 are the score and the
umber of usages, respectively, of operator 𝑑 in the passed segment. In
rder to ensure that all operators may be used, we define a minimum
eight 𝜅. If an operator has not been applied in a segment, meaning
𝑑 = 0, its weight value is left unchanged.

An operator is chosen with a probability 𝑃 (𝑑), calculated according
to the equation

𝑃 (𝑑) =
𝑤𝑑𝑚

∑

𝑑∈�̂� 𝑤𝑑𝑚
, (48)

where �̂� denotes the set of destroy operators if 𝑑 is a destroy operator,
and otherwise the set of repair operators. Note that the destroy and
repair operators are chosen independently.

The score 𝜋𝑑 of operator 𝑑 is incremented after each iteration, where
the value of the increment depends on the success of the operator. We
apply a similar score update scheme as that of Røpke and Pisinger
(2006), using three levels of success, presented in Table 1. That is,
the increment is dependent on success, where higher success causes
12
the operator to be rewarded with a greater score increment. Note that
operators used to generate a promising routing solution for which no
feasible production solution is found are not rewarded, as the solution
is not accepted.

The process of choosing whether to include noise in the insertion
methods follows the exact same procedure, and uses the same score
values and minimum weight value. Note that the decision whether or
not to include noise is independent from the selected operators.

3.4.7. Simplified production feasibility check
In order to save computation time, we apply a simplified production

feasibility check as a first evaluation of a routing solution’s production
feasibility. This feasibility check does not guarantee that the solution
is production and inventory feasible, but will in many cases be able
to prove infeasibility. More specifically, if the quantity of products to
be picked up at a factory is greater than the factory’s total production
capacity over the relevant time periods plus its initial inventory, the
routing solution cannot have an accompanying feasible production
solution.

3.4.8. Acceptance and stopping criteria
The acceptance of a routing solution 𝑥′ can follow two different

paths. First, if the candidate routing solution’s objective value 𝑓 (𝑥′)
is less than the currently best solution’s routing objective 𝑓 (𝑥∗) times
(1 + 𝜖), we evaluate production feasibility. If the production sub-
problem is feasible, routing solution 𝑥′ is accepted. If, on the other
and, no feasible production solution is found, routing solution 𝑥′ is
ejected. Second, if solution 𝑥′ is not considered promising, we use
simulated annealing criterion to evaluate acceptance. The heuristic

erminates after 𝐼𝐴𝐿𝑁𝑆 iterations, as seen in Algorithm 3.

.5. Determining the final solution

After 𝐼𝐴𝐿𝑁𝑆 iterations, we have obtained a best found solution
𝑥∗ 𝑦∗

)

to the FFPRP. However, in order to further improve the
olution 𝑦∗, we apply an exact solver to the production sub-problem
or 𝑇𝐸 seconds. The best found production solution 𝑦∗ and the routing
olution 𝑥∗ constitute the final solution to the FFPRP.

. Computational study

The computational tests are run using a 2x 2.3 GHz Intel E5 proces-
or with 64 GB memory. Python 3.8.6 is used to implement both the
ptimization model, solved with Gurobi 9.1, and the ALNS heuristic.

We start in Section 4.1 by describing our test instances. Next,
n Section 4.2, we present the ALNS heuristic parameter tuning and
he evaluation of the heuristic setup. In Section 4.3, we compare the
esults of our heuristic to those of a commercial MIP solver. Lastly,
n Section 4.4, we demonstrate how the ALNS heuristic can be used
o provide managerial insight by examining the impact of the delivery
ime window length.

.1. Test instances

Test instances were created by implementing and using a test in-
tance generator. The implementation is based on the structure, opera-
ions, and characteristics of two of Norway’s largest fish feed producers,
ioMar and Mowi, in order to mimic a realistic setting. We consider
ight real vessels, presented in Table 2, each used by either of the
wo companies to distribute fish feed. Capacity and speed data were
rovided by our industry collaborators, which also provided the sailing
istances.

The values for transport cost are estimates calculated using the
ethod reported by Ivarsøy and Solhaug (2014), which uses data on

imilar vessels provided by Egil Ulvan Rederi. To calculate loading
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Table 2
Vessel name, capacity, speed, and transport cost for the vessels used in our
computational tests.

Vessel name Capacity Average speed Transport cost

[ton] [no. products] [knots] [NOK/h]

Borgenfjord 1600 – 11 939
Høydal 2160 28 12 1215
Nyksund 2600 – 10 1215
Ripnes 1000 – 10 739
Vågsund 1000 21 11 939
Pirholm 1200 – 9 569
With harvest 3000 6 13 1580
With marine 3000 6 13 1580

Table 3
Factory data used in our computational tests.

Factory location Company Production Inventory capacity Vessel loading
lines [ton] spots

Karmøy BioMar 3 5000 1
Myre BioMar 2 5000 1
Valsneset Mowi 3 5000 2

and unloading times, we assume a loading rate of 300 ton/h and an
unloading rate of 200 ton/h for all vessels (Egil Ulvan Rederi AS, n.d.).

For a given test instance, each vessel in the fleet becomes available
at a given start factory, drawn randomly from the set of factories, at
a given time period. The time period each vessel becomes available is
randomly drawn from a triangular probability distribution, where the
probability is highest for the first time period and decreases linearly
to zero for the time period in the middle of the planning horizon. As
mentioned in Section 1.1, a vessel may not be able to deliver all orders
or visit all fish farms for two reasons. First, silo vessels cannot deliver
bag orders, which is required by around 25% of the fish farms. Second,
around 5% of the fish farms are located in shallow fjords, where the
largest vessels cannot sail, or lack the equipment for certain vessels to
dock.

Orders are sampled from a set of real orders provided by our
industry collaborator Anteo. The original data set consists of 4465
entries, each representing an order for BioMar or Mowi of a certain
quantity of some fish feed product to a fish farm, as well as the voyage
start factory and date. Information about the actual product types
and product groups, order delivery time windows, and the locations’
disease classes were not provided, and therefore had to be generated.
To account for the fact that diseases easily spread to nearby fish farms,
the generation of order zones is based on spatial proximity. Algorithm
4, provided in Appendix B, presents the process of generating the set
of order nodes assigned to the red, yellow, and green disease classes.
The recovery time was set to 12 h.

We include the three factories belonging to BioMar and Mowi in
the test instances. The values of the unique attributes for each factory
are stated in Table 3. When generating the test instances, we take
into account that some vessel loading spots at the factories can be
occupied by incoming ships transporting raw materials for the fish feed
production. Not delivering an order is an absolute last resort, which
indicates that the corresponding penalty should be relatively high. To
make sure that delivering an order always is preferable, we set the
penalty for not delivering an order to the sum of the remaining cost
components’ maximum values.

Based on current practice, we assume that planning is conducted
in a rolling horizon-fashion. Hence, it follows that the orders in the
beginning of the current planning horizon have been planned for and
produced in the previous planning horizon. The initial inventory at
each factory is therefore set based on the product quantities demanded
at the beginning of the planning horizon. As initial inventory is believed
to have a significant effect upon problem complexity, we will vary the
13

v

Table 4
Production data used in our computational test.

Production capacity per production line 25 [ton/h]
Production setup cost 1500 [NOK]
Inventory cost 0.1 [NOK/ton/h]
Minimum batch size 50 [ton]

share of the total demanded quantity held as initial inventory across
the test instances.

In each test instance, each factory is subject to at most one pro-
duction stop lasting 12 h. The start time of the production stop is
chosen randomly from the set of all time periods. The time needed
to shift between different product groups is set to one hour. Table 4
presents the other production-related parameters, which are assumed
to be equal for all factories.

Five factors are assumed to be particularly linked to problem com-
plexity: the number of vessels ||, the number of factories | |, the
number of order nodes |𝑂

| and the number of time periods | |, as
ell as the initial inventory level 𝐼0 at the factories. Tables C.1 and
.2 in Appendix C provide overviews of the 12 test instances used

or tuning of the ALNS heuristic and the 60 test instances used for
erformance testing, respectively. The test instances’ IDs are on the
orm || − | | − |𝑂

| − 𝐼0, where the initial inventory level measured
elative the maximum capacity, 𝐼0, is either 0.2, low (𝑙), or 0.5, high
ℎ). The corresponding number of time periods is based on preliminary
nalyses estimating the minimum time needed for the vessel fleet to
eliver all orders. Based on the real sailing distances and times used
or loading and unloading, the time period length is set to one hour,
xcept for the smallest instances with less than 20 orders, where it
s set to two hours. This gives us 366 time periods if the planning
orizon consists of 14 days, which is significantly higher than what is
ommon in the PRP literature. However, a time period in the standard
RP incorporates a lot more than what it does in the FFPRP, so the
wo numbers cannot easily be compared. The ID of each test instance
as the prefix ‘‘t’’ or ‘‘p’’, depending on whether the instance is used
or tuning or performance testing, respectively. Furthermore, the test
nstance set used for performance testing contains several instances for
ach setting. To distinguish between these, the instance IDs are also
iven a suffix (0–2). Lastly, we use a time window length of four days
nd sample products from a set of ten products and product groups
rom a set of four product groups for all test instances unless otherwise
tated.

We also generate an additional set of test instances to analyze the
mpact of the length of the time windows, shown in Section 4.4. These
est instances are presented in Table C.3 in Appendix C. For each vessel,
actory, and order setting we generate three sets (suffix 0–2) of five
nstances for which the only difference is the delivery time window
ength (marked ‘‘d’’ in the ID), which varies from one to five days. The
nitial inventory level is set to medium level of 0.4.

.2. Parameter tuning and heuristic setup evaluation

The process of tuning the parameters presented of the ALNS heuris-
ic corresponds to the procedure proposed by Røpke and Pisinger
2006). We tune the parameters sequentially, varying only one param-
ter at a time. For each parameter, three to five different values are
ested. For each parameter value, we run the heuristic on each of the
uning instances three times and choose the parameter value corre-
ponding to the best performance, amounting to a trade-off between
un time and solution quality. For the following parameter to tune, we
pply the final values of the already tuned parameters and the initial
alues of the parameters that have not yet been tuned. The tuning
rocess was performed once for each parameter. Appendix D provides
ore details of the tuning process as well as the resulting parameter
alues.
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Table 5
Comparison of the ALNS heuristic run for 40 000 iterations three times to an exact solver run for 3600 s and 600 s on the set of smaller instances. The gap values represent the
gap between the relevant objective value and the best objective produced in the experiment, as defined by Eq. (49). For the 3600 s run with an exact solver, the MIP gap is also
reported.

Gurobi (3600 s) Gurobi (600 s) ALNS

Obj. Gap MIP Gap Time Obj. Gap Time Obj. Gap Time
[NOK] [%] [%] [s] [NOK] [%] [%] [NOK] [%] [s]

p-3-1-10-ℎ-0 148 152 0.00 0.01 3600 148 152 0.00 600 148 800 0.44 236
p-3-1-10-ℎ-1 258 868 0.00 0.00 3600 258 868 0.00 600 260 123 0.48 257
p-3-1-10-ℎ-2 250 985 0.00 0.00 13 250 985 0.00 13 252 199 0.48 400
p-3-1-10-𝑙-0 180 567 0.00 0.35 3600 180 567 0.00 600 182 295 0.96 284
p-3-1-10-𝑙-1 424 385 0.00 0.23 3600 424 385 0.00 600 425 556 0.28 348
p-3-1-10-𝑙-2 259 913 0.00 0.01 3600 259 913 0.00 600 261 926 0.77 257
p-3-1-15-ℎ-0 334 513 0.00 0.01 3600 334 513 0.00 600 336 480 0.59 479
p-3-1-15-ℎ-1 155 255 0.00 16.11 3600 155 255 0.00 600 155 925 0.43 420
p-3-1-15-ℎ-2 382 181 0.00 0.89 3600 382 181 0.00 600 384 317 0.56 436
p-3-1-15-𝑙-0 513 762 0.00 2.71 3600 513 762 0.00 600 516 126 0.46 606
p-3-1-15-𝑙-1 165 985 0.00 31.79 3600 166 035 0.03 600 169 562 2.16 314
p-3-1-15-𝑙-2 237 889 0.00 0.00 3600 237 889 0.00 600 238 556 0.28 385

Avg. 3-1-(...) 276 038 0.00 4.34 3301 276 042 0.00 551 277 655 0.66 369

p-5-2-10-ℎ-0 90 065 0.00 0.00 860 90 065 0.00 600 92 358 2.55 255
p-5-2-10-ℎ-1 136 060 0.00 1.25 3600 136 060 0.00 600 138 114 1.51 201
p-5-2-10-ℎ-2 124 362 0.00 2.21 3600 124 362 0.00 600 126 672 1.86 257
p-5-2-10-𝑙-0 107 486 0.00 49.26 3600 107 513 0.02 600 108 087 0.56 544
p-5-2-10-𝑙-1 408 457 0.00 1.13 3600 408 464 0.00 600 409 456 0.24 346
p-5-2-10-𝑙-2 88 803 0.00 0.00 767 88 803 0.00 600 90 181 1.55 327
p-5-2-15-ℎ-0 133 926 0.00 18.21 3600 138 641 3.52 600 144 369 7.80 317
p-5-2-15-ℎ-1 166 669 0.00 2.46 3600 166 669 0.00 600 169 356 1.61 363
p-5-2-15-ℎ-2 147 474 0.00 10.06 3600 147 518 0.03 600 154 946 5.07 379
p-5-2-15-𝑙-0 96 082 0.00 0.97 3600 96 082 0.00 600 98 451 2.47 408
p-5-2-15-𝑙-1 144 342 0.00 7.17 3600 144 342 0.00 600 145 097 0.52 494
p-5-2-15-𝑙-2 156 899 0.00 9.08 3600 162 936 3.85 600 158 705 1.15 374

Avg. 5-2-(...) 150 052 0.00 8.48 3136 150 955 0.62 600 152 983 2.24 355

Avg. (...)-𝒉-(...) 194 043 0.00 4.27 3073 194 439 0.30 551 196 972 1.95 333

Avg. (...)-𝒍-(...) 232 048 0.00 8.56 3364 232 558 0.33 600 233 667 0.95 391

Avg. total 213 045 0.00 6.41 3218 213 498 0.31 576 215 319 1.45 362
Using the tuned parameter values, we proceed to evaluate the setup
f the ALNS heuristic. Specifically, we analyze the effect of using adap-
ive weights and several different operators, referred to as configurations

of the large neighborhood search (LNS), and explore different setups
related to integration of the production sub-problem and the routing
sub-problem. The results are shown in Appendix E. In conclusion, the
heuristic performs significantly better when a range of operators is
applied, and slightly better than when operators are chosen randomly.
As for sub-problem integration, the setup described in Section 3 has the
best performance among the investigated setups.

4.3. Computational results

This section presents the computational results. Section 4.3.1 eval-
uates the performance of the ALNS heuristic as a whole, whereas Sec-
tion 4.3.2 is dedicated to the production schedule heuristic described
in Section 3.3.4.

4.3.1. ALNS heuristic performance
The performance of the ALNS heuristic is evaluated by comparing

the results to those produced by the commercial MIP solver Gurobi on
the 60 test instances presented in Table C.2. The number of iterations
is set with the intention to roughly match the companies’ preferable
maximum run of ten minutes.

Specifically, we perform 40 000, 20 000, 10 000, and 5000 itera-
tions on the test instances with <20, 20, 40, and 60 orders, respectively.
The heuristic is run three times for each test instance. As for the
commercial solver, we report the results both after 600 and 3600 s.

First, we examine 24 smaller instances with 10 and 15 orders,
three products, and a time period length of two hours. The results
are presented in Table 5. As seen from the MIP gap, defined as the
14

absolute difference between Gurobi’s primal and dual bounds, divided
by the primal bound, Gurobi is able to find optimal or close-to-optimal
solutions for several of these instances after 3600 s. The gap column is
defined as

gap =
|𝑧′ − 𝑧|
|𝑧|

, (49)

where 𝑧′ and 𝑧 are the objective values of the relevant solution and
the best solution for a given test instance produced in the experiment
(by either Gurobi or the ALNS heuristic), respectively. For the ALNS
heuristic, the average gap across these instances amounts to 1.45%.

Comparing the solutions from Gurobi to those of the heuristic, we
observe that for most of the smaller gaps, the routing is similar except
for departure and arrival times. This results in different inventory costs.
Recall that when we solve the production sub-problem, we fix the pro-
duction deadlines to the vessels’ latest arrival times. Consequently, fish
feed that is already available at the factory may be held as inventory
for a slightly longer time than necessary. The exact solver, on the other
hand, is able to reduce the inventory cost by letting vessels depart
as early as possible. In practice, a fish feed planner would probably
choose to shift the production to earlier time periods and let the vessels
depart from the factory earlier. However, we argue that the deviation
is negligible in a practical setting, as the departure time can easily be
adjusted for by the fish feed planner, and because the cost difference is
marginal.

Furthermore, we observe that the gaps of the solutions increase with
the number of vessels and factories. Specifically, comparing the 3-1-
(...) setting to the 5-2-(...) setting, the average MIP gap increases from
4.27% to 8.48%, and the gap of the ALNS from 0.66% to 2.24%. These
results indicate that the multi-depot attribute has a significant impact
on problem complexity.

Next, we investigate the average results for the settings correspond-

ing to high and low initial inventory, denoted (...)-ℎ-(...) and (...)-𝑙-(...),
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Table 6
Comparison of the ALNS heuristic to an exact solver run for 3600 s and 600 s on the set of test instances containing 20, 40, and 60 orders. The ALNS heuristic is run three times
for 20 000, 10 000 and 5000 iterations for instances of 20, 40, and 60 orders, respectively. The gap values represent the gap between the relevant objective value and the best
objective produced in the experiment, as defined by Eq. (49). Note that for some instances, the exact solver was not able to find a feasible solution within 600 s. These runs are
denoted by ‘‘–’’. The corresponding average rows, marked with an asterisk, do not include these missing values.

Gurobi (3600 s) Gurobi (600 s) ALNS

Obj. Gap Time Obj. Gap Time Obj. Gap Time
[NOK] [%] [s] [NOK] [%] [s] [NOK] [%] [s]

p-3-1-20-ℎ-0 1 468 888 762.18 3600 2 739 733 1508.12 600 170 374 0.00 611
p-3-1-20-ℎ-1 506 675 12.71 3600 1 855 736 312.82 600 450 118 0.13 587
p-3-1-20-ℎ-2 1 390 970 693.18 3600 2 508 636 1330.51 600 175 747 0.22 479
p-3-1-20-𝑙-0 2 019 899 189.99 3600 4 210 157 504.44 600 696 551 0.00 833
p-3-1-20-𝑙-1 661 168 219.68 3600 4 446 078 2049.68 600 206 848 0.01 693
p-3-1-20-𝑙-2 1 296 383 461.39 3600 4 426 196 1816.74 600 232 048 0.49 607
p-3-1-40-ℎ-0 4 163 952 1177.67 3600 6 157 022 1789.22 600 329 299 1.04 759
p-3-1-40-ℎ-1 6 724 128 2614.14 3600 7 247 089 2825.23 600 247 948 0.08 655
p-3-1-40-ℎ-2 5 943 428 2260.09 3600 5 943 428 2260.09 600 254 445 1.04 598
p-3-1-40-𝑙-0 7 974 148 2560.37 3600 8 675 162 2794.23 600 308 202 2.82 971
p-3-1-40-𝑙-1 7 680 881 2305.22 3600 7 878 787 2367.19 600 319 602 0.08 693
p-3-1-40-𝑙-2 7 474 128 2589.21 3600 7 474 128 2589.21 600 279 602 0.60 632
p-3-1-60-ℎ-0 11 447 168 2789.15 3600 – −− 600 405 657 2.38 658
p-3-1-60-ℎ-1 9 188 074 2483.97 3600 11 161 864 3039.06 600 356 268 0.19 618
p-3-1-60-ℎ-2 12 852 484 1036.98 3600 14 676 456 1198.34 600 1 133 375 0.26 1194
p-3-1-60-𝑙-0 12 531 787 1281.23 3600 14 313 594 1477.62 600 931 711 2.69 1101
p-3-1-60-𝑙-1 10 164 539 975.70 3600 14 149 972 1397.47 600 1 063 412 12.54 1233
p-3-1-60-𝑙-2 11 649 623 1121.62 3600 14 328 949 1402.59 600 960 646 0.74 1299

Avg. 3-1-(...) 6 396 574 1417.58 3600 *7 776 058 *1803.68 600 473 436 1.41 790

p-5-2-20-ℎ-0 150 297 0.00 3600 2 490 180 1556.84 600 158 099 5.19 457
p-5-2-20-ℎ-1 181 239 3.88 3600 223 224 27.94 600 174 477 0.00 374
p-5-2-20-ℎ-2 206 911 2.45 3600 1 743 561 763.30 600 203 334 0.68 418
p-5-2-20-𝑙-0 1 114 407 493.74 3600 2 216 200 1080.76 600 188 106 0.22 383
p-5-2-20-𝑙-1 221 918 20.03 3600 3 532 248 1810.58 600 184 878 0.00 561
p-5-2-20-𝑙-2 151 875 0.87 3600 2 339 026 1453.55 600 150 564 0.00 473
p-5-2-40-ℎ-0 6 740 367 2891.31 3600 9 115 794 3945.50 600 226 306 0.43 562
p-5-2-40-ℎ-1 6 489 026 2602.52 3600 9 806 050 3983.98 600 242 168 0.86 525
p-5-2-40-ℎ-2 3 776 309 1290.34 3600 9 622 765 3442.86 600 271 815 0.08 540
p-5-2-40-𝑙-0 6 916 795 2691.34 3600 9 697 981 3813.71 600 248 090 0.12 551
p-5-2-40-𝑙-1 7 072 428 2506.80 3600 7 936 992 2825.46 600 274 466 1.16 534
p-5-2-40-𝑙-2 6 412 426 2701.02 3600 9 287 675 3956.96 600 237 031 3.54 493
p-5-2-60-ℎ-0 12 611 209 3155.18 3600 – −− 600 393 039 1.45 573
p-5-2-60-ℎ-1 14 047 903 4590.95 3600 – −− 600 315 784 5.45 635
p-5-2-60-ℎ-2 12 682 847 2921.03 3600 – −− 600 446 298 6.31 623
p-5-2-60-𝑙-0 14 606 419 4215.51 3600 – −− 600 360 444 6.49 682
p-5-2-60-𝑙-1 13 583 492 4717.36 3600 – −− 600 324 695 3.20 606
p-5-2-60-𝑙-2 14 113 212 3378.98 3600 – −− 600 420 396 3.63 625

Avg. 5-2-(...) 6 726 616 2099.35 3600 *5 667 641 *2388.45 600 267 777 2.16 534

Avg. (...)-𝒉-(...) 6 142 882 1733.82 3600 *6 092 253 *1998.84 600 330 808 1.43 604

Avg. (...)-𝒍-(...) 6 980 307 1777.38 3600 *7 660 876 *2089.35 600 410 405 2.13 721

Avg. total 6 561 595 1755.60 3600 *6 721 850 *2096.07 600 370 607 1.78 662
respectively. A low initial inventory will typically lead to higher costs,
as this often imposes stricter requirements on the routing and increases
the number of production starts. Inventory costs, however, will be
lower in this setting. We see that the results agree with this. In fact,
the average objective in the low initial inventory setting is about
20% higher than in the high initial inventory setting. Furthermore,
we expect low initial inventories to give more complex problems, as
this setting will often require a higher level of coordination between
routing and production. The difference in average MIP gap supports
this. For the ALNS heuristic, on the other hand, the average gap is
significantly lower in the low initial inventory setting than in the high
initial inventory setting.

Table 6 presents the results for the larger test instances containing
20, 40, and 60 orders. These results demonstrate the superiority of the
ALNS heuristic over Gurobi for more realistically sized test instances
of the FFPRP. Running the Gurobi solver for one hour results in an
average gap of 1756% across all instances, whereas the average gap
is only 1.78% for the ALNS heuristic. The poor performance of Gurobi
for instances of only 20 orders illustrates the large complexity of the
FFPRP. For the instances with 60 orders, Gurobi is able to assign at
15

most 18 orders to routes, and for most instances, less than ten. On the
other hand, the heuristic leaves at most three orders unserved for these
test instances.

The gap between Gurobi’s dual bound and the average objective
value found by the ALNS heuristic is somewhat large. Specifically,
for the instances involving 20 orders, the average dual bound is 33%
lower than the average objective value found by the ALNS heuristic.
For the larger test instances, the difference is even greater. A possible
explanation is that the ALNS heuristic fails to find good solutions. How-
ever, we argue that the FFPRP may be a difficult problem to provide
strong dual bounds for. A similar PS-VRP including five to 15 customers
is studied by Belo-Filho et al. (2015). Here, the objective values of
the best solutions found by their matheuristic are on average 64.7%
worse than the corresponding dual bound. According to the authors, the
high level of detail incorporated in the production scheduling problem
cause weak dual bounds, and the large gap was therefore expected.
Similarly, the instances of the production sub-problems of the FFPRP
are highly detailed, due to the large number of time periods considered.
We, therefore, suggest that the reason for the large gaps of the ALNS
heuristic is related to weak dual bounds rather than poor solution

quality.
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Table 7
Results when running 5000 iterations of the ALNS heuristic using different time window lengths for otherwise similar test instances. The columns state the average objective value
and the average number of unserved orders, respectively, after three runs of the heuristic for each test instance.

𝑇 𝑇𝑊 = 1 𝑇 𝑇𝑊 = 2 𝑇 𝑇𝑊 = 3 𝑇 𝑇𝑊 = 4 𝑇 𝑇𝑊 = 5

Obj. Uns. Obj. Uns. Obj. Uns. Obj. Uns. Obj. Uns.
[NOK] [NOK] [NOK] [NOK] [NOK]

tw-3-1-30-𝑇 𝑇𝑊 d-0 1 099 364 4.0 856 886 3.0 657 324 2.0 439 982 1.0 433 257 1.0
tw-3-1-30-𝑇 𝑇𝑊 d-1 2 382 375 11.0 2 371 315 11.0 2 153 926 10.0 1 978 530 9.0 1 754 190 8.0
tw-3-1-30-𝑇 𝑇𝑊 d-2 2 182 778 8.0 1 958 110 7.0 1 697 187 6.0 1 261 208 4.0 1 029 736 3.0
tw-3-1-60-𝑇 𝑇𝑊 d-0 2 264 045 6.0 1 719 963 4.0 1 420 005 3.0 1 105 793 2.0 796 698 1.0
tw-3-1-60-𝑇 𝑇𝑊 d-1 1 693 323 4.0 908 949 1.0 619 451 0.0 543 583 0.0 556 317 0.0
tw-3-1-60-𝑇 𝑇𝑊 d-2 1 615 079 3.0 750 785 0.0 661 280 0.0 646 369 0.0 565 341 0.0
tw-5-2-30-𝑇 𝑇𝑊 d-0 1 224 390 4.0 1 175 323 4.0 726 176 2.0 481 739 1.0 472 276 1.0
tw-5-2-30-𝑇 𝑇𝑊 d-1 1 921 063 7.0 1 428 392 5.0 993 987 3.0 539 273 1.0 287 339 0.0
tw-5-2-30-𝑇 𝑇𝑊 d-2 823 417 2.0 746 173 2.0 751 471 2.0 358 132 0.0 234 571 0.0
tw-5-2-60-𝑇 𝑇𝑊 d-0 1 890 637 5.0 1 620 544 4.0 1 316 211 3.0 995 252 2.0 511 145 0.0
tw-5-2-60-𝑇 𝑇𝑊 d-1 1 297 209 3.0 1 220 285 3.0 786 582 1.0 501 577 0.0 477 061 0.0
tw-5-2-60-𝑇 𝑇𝑊 d-2 1 788 776 5.0 1 490 465 4.0 766 846 1.0 456 818 0.0 430 190 0.0

Average 1 681 871 5.2 1 353 932 4.0 1 045 871 2.8 775 688 1.7 629 010 1.2
4.3.2. Production schedule heuristic performance
To evaluate the performance of the greedy production heuristic

presented in Section 3.3.4, we use the instances with 20, 40, and 60
orders (a total of 60 instances). Specifically, we run the ALNS heuristic
with 5000 iterations for each of the 60 test instances and record the
production sub-problems solved when a promising routing solution is
found. From each of these instances, we sample 20 production sub-
problems, which gives us a total of 1200 production sub-problems, and
solve each of these both by the greedy production heuristic and Gurobi.
For the latter, we investigate the results when using time limits of both
30 and 120 s.

The results indicate that the production heuristic constructs suffi-
ciently good solutions within an average run time of 0.03 s. For the
commercial solver, run with time limits of 30 and 120 s, the average
run times were 16 and 55 s, respectively. Only for six out of the 1200
production sub-problem instances, a feasible production schedule was
found by the commercial solver within 120 s but not by the heuristic.
This indicates that the heuristic is seldom unable to find feasible
solutions when they exist. Furthermore, the average gap is 9.20% for
the production heuristic. In comparison, average gaps of 3.18% and
0.00% are obtained for the 30 and 120 s runs with the commercial
solver, respectively. We argue that the heuristic’s gap is sufficiently
small, given that the production cost, on average, contributes with
no more than 8.6% of the objective value for the solutions provided
by the ALNS heuristic. In conclusion, the production heuristic fulfills
its purpose to rapidly evaluate feasibility and estimate the cost of the
solution to the production sub-problem.

4.4. Impact of time window length

As mentioned in Section 1, fish feed companies are subject to cus-
tomer relation power imbalances. Specifically, customers may require
an order to be delivered within a short time window, for instance
within working hours, or on a specific weekday. These delivery time
restrictions limit the planning flexibility. Therefore, extending the de-
livery time windows may enable significant cost savings for the fish
feed companies and for the supply chain as a whole.

In the previous test instances, the time window length was set to
four days. However the actual delivery time flexibility experienced by
some fish feed producers may be much smaller. In order to analyze
the effect of this flexibility, we compare the results for a new set of test
instances, where the time window length is varied between one and five
days. Specifically, we first generate a test instance with a time window
length of one, and next, we make duplicate instances with increasing
time window lengths. The added time window length is distributed
evenly before and after the original time window. Furthermore, we use
16

sets of three and five vessels, one and two factories, and 30 and 60
orders. In all the test instances, we use a medium initial inventory level
of 0.4.

Table 7 presents the results. The reported objective value and the
number of unserved orders are averages across three runs for the same
test instance. The number of unserved orders has a significant impact
on objective value. In fact, the penalty for not delivering an order is
set to obtain solutions where the number of served orders is as large
as possible. Consequently, the magnitude of the objective values may
be somewhat artificial. For these reasons, we argue that the number
of unserved orders serves as a more useful metric to evaluate the cost
reduction potential of extending the delivery time windows.

As expected, the quality of the solutions improves significantly
when increasing the time window length. Specifically, the average
number of orders not served decreases from 5.2 to 1.2 when the
time window length is increased from one to five days. The fish feed
producers may to some extent be able to overcome this issue by
suggesting time windows to the customers that fit in their already
planned routes and schedules. However, in the case of unforeseen
events or the inclusion of a new customer on a route, the lack of
routing flexibility may be costly. Hence, obtaining a tighter customer
collaboration to increase time windows wherever practically possible
represents a significant cost reduction potential for the whole supply
chain, which in this experiment is quantified by the number of unserved
orders.

5. Concluding remarks

This paper studied the fish feed production routing problem (FF-
PRP), which is an important planning problem faced by fish feed
producers and distributors. The FFPRP is a highly complex and inte-
grated problem consisting of production scheduling and vessel routing.
The former incorporates multiple products as well as product groups.
The latter exhibits several extensions compared to the traditional VRP,
such as multi-depot, multi-trip, time windows, resource synchroniza-
tion, and heterogeneous vessels. A solution to the FFPRP consists of a
set of production schedules, each assigned to a production line, and
a set of routes, each assigned to a vessel. In addition, the production
schedules and the routes must correspond, meaning that the required
product quantities must be available at the factory before they can
be loaded onto vessels. Thus, an optimal solution to the FFPRP is
one where production costs and routing costs, including penalties for
not delivering customer orders, are minimized. To our knowledge, the
resulting integrated problem has not previously been studied.

We proposed a discrete time MIP model for the FFPRP. Further-
more, we proposed a decomposition-based adaptive large neighbor-
hood search (ALNS) heuristic, which decomposes the problem into
two sub-problems, i.e., the production scheduling and the routing

sub-problems. This decomposition is motivated by that the main cost
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Table A.1
Disease relatedness values.

diseaseClass(i) diseaseClass(j) 𝑅𝑑𝑖𝑠𝑒𝑎𝑠𝑒
𝑖𝑗

Green Red 10
Green Yellow 6
Yellow Red 4
Green Green 0
Yellow Yellow 0
Red Red 0

reduction potential for the FFPRP lies within the routing sub-problem.
We therefore primarily evaluate solutions in terms of routing cost,
whereas production feasibility and costs are evaluated only for the
promising routing solutions. The routing sub-problem is solved with an
ALNS heuristic, which is largely built upon Røpke and Pisinger (2006).
However, to account for the special features of the FFPRP, several
other extensions are also included. First, we have included a new
problem-specific destroy operator, which is concerned with relatedness
of fish farms in terms of fish disease outbreaks at the customers’ fish
farms. Second, we have implemented several new checks to handle the
required resource synchronization emerging from the limited number
of loading spots at the factories that are shared among the vessels.
Third, the proposed ALNS implementation is designed for the multi-trip
setting.

We generated a number of test instances based on real data from
the industry partners and it was shown that both the proposed heuristic
and the MIP solver are able to find high quality solutions in reasonable
time for small problem instances with less than 20 orders. However, for
the larger instances with 20 to 60 orders, the MIP solver had very high
optimality gaps even after one hour of running time. The average cost
across the solutions found by the MIP solver was more than 1700%
higher than that of the best solutions found by the ALNS heuristic.
Furthermore, in terms of run time, the MIP solver spends more than
50 min on each problem instance on average, whereas the average run
time of the heuristic is around 11 min. From this, we conclude that the
decomposition-based ALNS heuristic generates solutions to realistically
sized problem instances of the FFPRP of significantly higher quality
than MIP solvers within less time.
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ppendix A. Disease class relatedness

Table A.1 provides the disease class relatedness values. The lower
alue of 𝑅𝑑𝑖𝑠𝑒𝑎𝑠𝑒

𝑖𝑗 , the higher the relatedness. We assume 𝑅𝑑𝑖𝑠𝑒𝑎𝑠𝑒
𝑖𝑗 =

𝑅𝑑𝑖𝑠𝑒𝑎𝑠𝑒
𝑗𝑖 , and trivial relations are therefore excluded.

Appendix B. Order zone generation algorithm

Algorithm 4 presents the procedure of assigning order nodes to
disease classes.
17

n

Algorithm 4: Order Zone Generation
Result: set of order nodes for each disease class

1 𝑂 = set of all order nodes
2 𝑅 = set of order nodes assigned to the red disease class, initially

empty
3  𝑌 = set of order nodes assigned to the yellow disease class, initially

empty
4 𝐺 = set of order nodes assigned to the green disease class, initially

empty
5 𝑅 = percentage of order nodes to assign to the red disease class
6  = set of disease candidates, initially empty
7 while 𝑅 contains less than a share 𝑅 of the order nodes do
8 if  is empty then
9 randomly select an order node 𝑖 ∉ 𝑅 from 𝑂

10 else
11 randomly select an order node 𝑖 from 
12 end
13 add order node 𝑖 to 𝑅

14 add all order nodes 𝑗 ∉ 𝑅 located within a radius of 10
kilometers to order node 𝑖 to 

15 end
16 for order node 𝑖 in 𝑅 do
17 add all order nodes 𝑗 ∉ 𝑅 which are located within a radius of

30 kilometers to order node 𝑖 to  𝑌

18 end
19 𝐺 = 𝑂 ⧵ (𝑅 ∪ 𝑌 )
20 return the sets of order nodes corresponding to each disease class,

𝑅, 𝑌 and 𝐺

Table C.1
Overview of test instances used for parameter tuning of the ALNS heuristic. The
column names denote ID, number of vessels, number of factories, number of orders,
initial inventory level, number of time periods, and the corresponding number of days,
respectively.

Test instance ID || | | |𝑂
| 𝐼0

| | Days

t-3-1-20-ℎ 3 1 20 0.5 72 6
t-3-1-20-𝑙 3 1 20 0.2 72 6
t-3-1-40-ℎ 3 1 40 0.5 108 9
t-3-1-40-𝑙 3 1 40 0.2 108 9
t-3-1-60-ℎ 3 1 60 0.5 168 14
t-3-1-60-𝑙 3 1 60 0.2 168 14
t-5-2-20-ℎ 5 2 20 0.5 60 5
t-5-2-20-𝑙 5 2 20 0.2 60 5
t-5-2-40-ℎ 5 2 40 0.5 96 8
t-5-2-40-𝑙 5 2 40 0.2 96 8
t-5-2-60-ℎ 5 2 60 0.5 120 10
t-5-2-60-𝑙 5 2 60 0.2 120 10

Appendix C. Test instance overview

Tables C.1–C.3 provide overviews of the test instances used for
tuning, performance testing, and managerial insights, respectively.

Appendix D. Parameter tuning

Table D.1 provides an overview of the parameters, along with their
respective initial values and final values, in the order of calibration.
The initial value of a parameter refers to the value used before the
parameter was tuned. These were found through an ad-hoc trial and
error phase, while developing the ALNS heuristic. Also, many of the
initial values were to some extent inspired by Røpke and Pisinger
(2006) and Liu et al. (2018). Oppositely, the final value refers to the
value set after tuning. Only the parameters whose value was considered
to have a significant impact on the quality of the heuristic were subject
to tuning. For the parameters not tuned, we only report the final value.
The number of iterations 𝐼𝐴𝐿𝑁𝑆 was set to 5000. This amounts to run
imes in the range of one to ten minutes, depending primarily on the

umber of orders with which the test instance is concerned.



Computers and Operations Research 144 (2022) 105806I. Brekkå et al.
Fig. 10. Destroy operator weights 10(a) and repair operator weights 10(b) for 5000 iterations of the ALNS heuristic with adaptive weights on the parameter tuning instances. The
plots show an average across the 12 tuning instances, each instance run once.
Table C.2
Overview of test instances used for performance testing of the ALNS heuristic. The
column names denote ID, number of vessels, number of factories, number of orders,
initial inventory level, number of time periods, and the corresponding number of days,
respectively. The set is split into two subsets: a set of small instances and a set of larger
instances. The former set is customized so that the instances are sufficiently small to be
handled by exact solvers; these instances incorporate fewer orders to be served, only
three different products, and a time period length of two hours. The latter set consists
of more realistically sized problem instances, with a time period length of one hour.

Test instance ID || | | |𝑂
| 𝐼0

| | Days

p-3-1-10-ℎ-(0-2) 3 1 10 0.5 60 5
p-3-1-10-𝑙-(0-2) 3 1 10 0.2 60 5
p-3-1-15-ℎ-(0-2) 3 1 15 0.5 60 5
p-3-1-15-𝑙-(0-2) 3 1 15 0.2 60 5
p-5-2-10-ℎ-(0-2) 5 2 10 0.5 60 5
p-5-2-10-𝑙-(0-2) 5 2 10 0.2 60 5
p-5-2-15-ℎ-(0-2) 5 2 15 0.5 60 5
p-5-2-15-𝑙-(0-2) 5 2 15 0.2 60 5

p-3-1-20-ℎ-(0-2) 3 1 20 0.5 144 6
p-3-1-20-𝑙-(0-2) 3 1 20 0.2 144 6
p-3-1-40-ℎ-(0-2) 3 1 40 0.5 216 9
p-3-1-40-𝑙-(0-2) 3 1 40 0.2 216 9
p-3-1-60-ℎ-(0-2) 3 1 60 0.5 336 14
p-3-1-60-𝑙-(0-2) 3 1 60 0.2 336 14
p-5-2-20-ℎ-(0-2) 5 2 20 0.5 120 5
p-5-2-20-𝑙-(0-2) 5 2 20 0.2 120 5
p-5-2-40-ℎ-(0-2) 5 2 40 0.5 192 8
p-5-2-40-𝑙-(0-2) 5 2 40 0.2 192 8
p-5-2-60-ℎ-(0-2) 5 2 60 0.5 288 12
p-5-2-60-𝑙-(0-2) 5 2 60 0.2 288 12

Fig. 11. Weights for the roulette wheel selection of noise application in the insertion
methods. The plot shows an average across 12 runs on the tuning instances. Each
instance was run once, with 5000 iterations.
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Table C.3
Overview of test instances used for analyzing the impact of the length of the time
windows. The column names denote ID, number of vessels, number of factories, number
of order nodes and length of the delivery time window in number of days, respectively.
The ID prefix ‘‘tw’’ refers to the analyses concerned with time window length.

Test instance ID || | | |𝑂
| 𝑇 𝑇𝑊

tw-3-1-30-1d-(0-2) 3 1 30 1
tw-3-1-30-2d-(0-2) 3 1 30 2
tw-3-1-30-3d-(0-2) 3 1 30 3
tw-3-1-30-4d-(0-2) 3 1 30 4
tw-3-1-30-5d-(0-2) 3 1 30 5
tw-3-1-60-1d-(0-2) 3 1 60 1
tw-3-1-60-2d-(0-2) 3 1 60 2
tw-3-1-60-3d-(0-2) 3 1 60 3
tw-3-1-60-4d-(0-2) 3 1 60 4
tw-3-1-60-5d-(0-2) 3 1 60 5
tw-5-2-30-1d-(0-2) 5 2 30 1
tw-5-2-30-2d-(0-2) 5 2 30 2
tw-5-2-30-3d-(0-2) 5 2 30 3
tw-5-2-30-4d-(0-2) 5 2 30 4
tw-5-2-30-5d-(0-2) 5 2 30 5
tw-5-2-60-1d-(0-2) 5 2 60 1
tw-5-2-60-2d-(0-2) 5 2 60 2
tw-5-2-60-3d-(0-2) 5 2 60 3
tw-5-2-60-4d-(0-2) 5 2 60 4
tw-5-2-60-5d-(0-2) 5 2 60 5

Appendix E. ALNS setup evaluation

Appendices E.1 and E.2 present the analyses of different LNS con-
figurations and sub-problem integration setups, respectively.

E.1. LNS configurations

Table E.1 reports the results of the analysis of three different LNS
configuration setups. We conclude that the heuristic performs signif-
icantly better when a range of operators is applied. The benefit of
using adaptive weights when selecting operators as opposed to drawing
operators randomly is somewhat smaller, but still evident. Fig. 10
illustrates the average operator weights across the tuning instances
when applying the 5000 iterations of the ALNS heuristic with adaptive
weights. Lastly, we investigate the weights used in the roulette wheel
selection of whether or not to apply noise in the insertion methods. The
results are illustrated in Fig. 11.

E.2. Sub-problem integration

We investigate the effect of performing the simplified production
feasibility check presented in Section 3.4.7 in different phases of the
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Table D.1
Overview of parameters used in the ALNS heuristic. For parameters not subject to tuning, only the final values are reported.

Parameter Initial value Final value Description

𝑞 [0.1, 0.4] [0.1, 0.3] Interval of uniform distribution from which the share of order nodes to remove from the ALNS solution, 𝑞𝐴𝐿𝑁𝑆 , is
randomly drawn

(

𝑎(1)0 𝑎1
)

(

0.01 0.5
) (

0.005 1
)

Related removal; spatial and temporal relatedness weights
(

𝑎(2)0 𝑎2
)

(

0.01 0.1
) (

0.005 0.2
)

Related removal; spatial and disease-class relatedness weights
𝜎1 33 33 Score for finding new globally improving solution
𝜎2 9 9 Score for finding a new locally improving solution
𝜎3 13 1 Score for finding new solution
𝑟 0.1 0.2 Reaction parameter
𝜂 0.1 0.1 Noise control parameter
𝑝 5 5 Determinism parameter
𝜂′ 0.1 1.0 Destination factory noise control parameter
𝜚 0 0.05 Vessel visit permutation parameter
𝜖 0 0.05 Production solve parameter
𝜅 0.2 Lower threshold for the adaptive weights
𝜇 𝐼𝐴𝐿𝑁𝑆√

0.002 Simulated annealing cooling rate; set such that the final temperature is 0.2% ⋅ 𝑇𝑠𝑡𝑎𝑟𝑡
𝑇𝑠𝑡𝑎𝑟𝑡 Simulated annealing start temperature; set such that the probability of accepting a candidate solution is 50% if the

candidate solution is less than 10% worse than the current solution
𝐼𝑆 40 Number of iterations within one ALNS segment
𝛩 50 Maximum number of iterations with the same current solution
𝑇 𝐸 30 Maximum time limit (in seconds) for exact solver to improve the production solution in the final step
Table E.1
Results after running the ALNS heuristic for 10 000 iterations using three different setups. In the first setup (left), only one destroy and one repair operator is used (random
removal and greedy insertion). In the second setup (middle), operators are chosen randomly from the full set of operators. In the third setup (right), operators, also from the full
set of operators, are chosen based on adaptive weights. The gap values are defined as the percentage difference between the average and the best objective value.

LNS (one operator pair) LNS (random) ALNS (adaptive)

Obj. Prod. Time Gap Obj. Prod. Time Gap Obj. Prod. Time Gap
[NOK] [%] [s] [%] [NOK] [%] [s] [%] [NOK] [%] [s] [%]

t-3-1-20-𝑙 679 977 2.38 143 25.98 540 043 3.11 172 0.05 539 887 3.11 171 0.02
t-3-1-20-ℎ 149 754 9.52 101 4.71 143 090 9.72 187 0.06 143 141 9.75 166 0.09
t-3-1-40-𝑙 652 030 4.60 353 19.90 552 878 6.10 814 1.67 552 317 5.53 694 1.56
t-3-1-40-ℎ 280 869 10.07 207 6.43 271 186 10.76 597 2.76 269 876 10.46 515 2.27
t-3-1-60-𝑙 455 134 8.80 529 11.47 432 746 9.59 1365 5.98 416 564 10.03 1194 2.02
t-3-1-60-ℎ 418 618 11.21 453 13.52 398 307 11.08 1322 8.02 386 158 11.23 1123 4.72
t-5-2-20-𝑙 201 791 10.79 96 1.71 198 474 10.86 162 0.04 198 399 10.87 168 0.00
t-5-2-20-ℎ 205 139 11.67 115 12.88 182 336 12.09 187 0.33 183 778 12.56 178 1.12
t-5-2-40-𝑙 299 560 13.52 283 11.82 287 759 14.20 497 7.42 296 921 14.03 464 10.84
t-5-2-40-ℎ 216 228 14.94 213 9.37 210 979 14.56 503 6.72 206 325 16.31 441 4.36
t-5-2-60-𝑙 490 012 12.71 512 39.58 352 210 17.66 1213 0.32 374 138 16.86 1061 6.57
t-5-2-60-ℎ 492 291 12.11 457 28.21 406 589 13.27 1162 5.89 388 550 14.56 1017 1.19

Average 378 450 10.19 289 15.47 331 383 11.08 682 3.27 329 671 11.28 599 2.90
Table E.2
Results after running the ALNS heuristic for 10 000 iterations using three different sub-problem integration setups. In the first setup (left), the simplified production feasibility
check is performed for each insertion, whereas in the second setup (middle), we do not perform it at all. In the third setup (right), the simplified production feasibility check is
performed after the repair operator.

Often (each insertion) Never Default (after repair)

Obj. Prod. Time Gap Obj. Prod. Time Gap Obj. Prod. Time Gap
[NOK] [%] [s] [%] [NOK] [%] [s] [%] [NOK] [%] [s] [%]

t-3-1-20-𝑙 540 017 3.11 368 0.05 539 911 3.12 159 0.03 540 043 3.11 165 0.05
t-3-1-20-ℎ 143 090 9.72 459 0.06 143 118 9.74 153 0.07 143 034 9.74 167 0.02
t-3-1-40-𝑙 599 319 5.87 1539 64.77 663 593 4.79 625 82.44 493 861 6.76 670 35.78
t-3-1-40-ℎ 287 398 9.96 1465 8.91 268 114 10.82 482 1.60 270 038 10.81 451 2.33
t-3-1-60-𝑙 422 449 9.85 4150 3.50 412 182 10.44 1146 0.98 413 882 10.33 1160 1.40
t-3-1-60-ℎ 384 925 11.01 4217 4.88 394 734 11.03 1235 7.55 378 307 11.45 1205 3.07
t-5-2-20-𝑙 198 474 10.86 342 0.04 198 550 10.85 151 0.08 198 477 10.89 162 0.04
t-5-2-20-ℎ 182 692 12.57 411 0.98 182 265 12.50 174 0.75 183 962 12.75 186 1.69
t-5-2-40-𝑙 294 375 13.75 1314 10.15 283 794 14.48 476 6.19 298 644 14.01 504 11.75
t-5-2-40-ℎ 210 549 14.96 1153 7.02 206 204 16.11 421 4.81 209 587 16.52 388 6.53
t-5-2-60-𝑙 360 683 17.44 3595 2.91 357 880 17.49 1067 2.11 373 034 17.38 1103 6.43
t-5-2-60-ℎ 387 353 13.98 3744 3.75 397 007 14.51 988 6.34 385 112 13.97 998 3.15

Average 334 277 11.09 1897 8.92 337 279 11.32 590 9.41 323 999 11.48 597 6.02
ALNS heuristic. Table E.2 presents the results. In conclusion, the default
setup – where the simplified production feasibility check is applied after
the repair operator – has the best performance among the three setups
investigated.
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