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Abstract

Hybrid physics-machine learning models are increasingly being used in simulations of trans-

port processes. Many complex multiphysics systems relevant to scientific and engineering

applications include multiple spatiotemporal scales and comprise a multifidelity problem

sharing an interface between various formulations or heterogeneous computational entities.

To this end, we present a robust hybrid analysis and modeling approach combining a phys-

ics-based full order model (FOM) and a data-driven reduced order model (ROM) to form the

building blocks of an integrated approach among mixed fidelity descriptions toward predic-

tive digital twin technologies. At the interface, we introduce a long short-term memory

network to bridge these high and low-fidelity models in various forms of interfacial error

correction or prolongation. The proposed interface learning approaches are tested as a

new way to address ROM-FOM coupling problems solving nonlinear advection-diffusion

flow situations with a bifidelity setup that captures the essence of a broad class of transport

processes.

Introduction

Numerical simulations are the workhorse for the design, testing, and implementation of scien-

tific infrastructure and engineering applications. While immense advances in computational

mathematics and scientific computing have come to fruition, such simulations usually suffer a

curse of dimensionality limiting turnaround. The field of multifidelity computing, therefore,

aims to address this computational challenge by exploiting the relationship between high-fidel-

ity and low-fidelity models. One such multifidelity approach becomes crucial, especially for

multi-query applications, such as optimization, inference, and uncertainty quantification, that

require multiple model evaluations in an outer-workflow loop. To this end, sampling-based

approaches have been often introduced to leverage information from many evaluations of

inexpensive low-fidelity models fused by only a few carefully selected high-fidelity computa-

tions. An excellent review of the state-of-the-art multifidelity approaches for outer-loop con-

texts can be found in [1].
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In this paper, we focus on a different type of multifidelity formulation targeting domain

decomposition type problems that consist of multiple zones with different characteristics as

well as multiphysics systems where different levels of solvers are devoted to coupled physical

phenomena. A key aspect of the zonal multifidelity approach is its ability to handle intrinsic

heterogeneous physical properties, varying geometries, and underlying governing dynamics.

This heterogeneity can be mild as in aerospace applications with spatially varying parameters.

However, in media where there is a permittivity such as in electrostatics or porous media, this

might be more pronounced. For example, fluid flow in rock often follows Darcy’s law, whereas

flow in a fracture is modeled as Poiseuille flow. Moreover, a related process in subsurface flows

might include a high fidelity approach around wells (that drive the flow) and a low-fidelity

model for subdomains in the interior [2, 3]. This discussion can also be extended to an active

flow control problem to elucidate the concept of the zonal multifidelity approach that we tackle

in this work. In general, boundary-layer control poses a grand challenge in many aerospace

applications including lift enhancement, noise mitigation, transition delay, and drag reduc-

tion. Among many other actuator technologies, blooming jets [4–6] and sweeping jets [7–9]

offer new prospective solutions in improving the aerodynamics efficiency and performance of

the future air vehicle systems. The size of these actuators is usually orders of magnitude smaller

than the length scales of the entire computational domain (e.g., an aircraft wing or tail).

Including the full representations of each controller’s internal flow dynamics in a comprehen-

sive numerical analysis of the entire system is an extremely daunting approach [10]. Mean-

while, the effective flow physics of these actuators can often be accurately characterized by a

latent reduced order space due to the existence of strong coherent structures such as quasi-

periodic or time-periodic shedding, pulsation, or jet actuation. Therefore, in practice, those

flow actuators can be modeled by considering a reduced order surrogate coupled and tied to

the global simulation of the whole wing or tail [11, 12].

The above examples illustrate that different levels of models and descriptions can be

devoted to different zones and components of the problem in order to allocate computational

resources more effectively and economically. This might be the case for many other coupled

multiphysics systems, such as geometric multiscale [13–18] and heterogeneous multiscale [19,

20] problems, fluid-structure interactions [21], and industrial scale applications [22–24]. Since

various zones and/or physics in these systems are connected through interfaces, data sharing,

and consistent interface treatment among respective models are inevitable. Likewise, multirate

and locally adaptive stepping methods can yield a mismatch at the space-time interface, and

simple interpolation or extrapolation might lead to solution divergence or instabilities [25].

Moreover, even if we are interested in simulating just one portion of the domain correspond-

ing to some specific dynamics, we still need to specify the physically consistent interface condi-

tions. Running a high fidelity solver everywhere only to provide the flow state at the interface

seems to be unreasonable. Therefore, we consider formulating an interface modeling approach

to facilitate the development of efficient and reliable multifidelity computing. This should

serve and advance the applicability of the emerging digital twin technologies in many sectors

[26]. However, just like any technology, it comes with its own needs and challenges [27–32].

In practice, two modeling paradigms are in order.

• Physics-based modeling: This approach involves careful observation of a physical phenome-

non of interest, development of its partial understanding, expression of the understanding in

the form of mathematical equations, and ultimately, solution of these equations. Due to the

partial understanding and numerous assumptions along the steps from observation to the

solution of the equations, a large portion of the essential governing physics might be, inten-

tionally or unintentionally, ignored. The applicability of high fidelity simulators with
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minimal assumptions has so far been limited to the offline design phase only. Despite this

significant drawback, what makes these models attractive are sound foundations from first

principles, interpretability, generalizability, and existence of robust theories for the analysis

of stability and uncertainty. However, most of these models are generally computationally

expensive, do not adapt to new scenarios automatically, and can be susceptible to numerical

instabilities.

• Data-driven modeling: With the abundant supply of big data, open-source cutting edge and

easy-to-use machine learning libraries, cheap computational infrastructure, and high quality,

readily available training resources, data-driven modeling has become very popular. Com-

pared to the physics-based modeling approach, these models thrive on the assumption that

data is a manifestation of both known and unknown physics and hence when trained with

an ample amount of data, the data-driven models might learn the full physics on their own.

This approach, involving in particular deep learning, has started achieving human-level per-

formance in several tasks that were until recently considered impossible for computers.

Notable among these are image classification [33], dimensionality reduction [34], medical

treatment [35], smart agriculture [36], physical sciences [37–39] and beyond. Some of the

advantages of these models are online learning capability, computational efficiency for infer-

ence, accuracy even for very challenging problems as far as the training, validation and test

data are prepared properly. However, due to their data-hungry and black-box nature, poor

generalizability, inherent bias and lack of robust theory for the analysis of model stability,

their acceptability in high stake applications like digital twin and autonomous systems is

fairly limited. In fact, the numerous vulnerabilities of deep neural networks have been

exposed beyond doubt in several recent works [40–42].

In this work, we put forth a hybrid analysis and modeling (HAM) framework as a new para-

digm in modeling and simulations by promoting the strengths and mitigating the weaknesses

of physics-driven and data-driven modeling approaches. Our HAM approach combines the

generalizability, interpretability, robust foundation and understanding of physics-based

modeling with the accuracy, computational efficiency, and automatic pattern-identification

capabilities of advanced data-driven modeling technologies. In the context of multifidelity

computing, we advocate and explore the utilization of statistical inference to bridge low-fidel-

ity and high-fidelity descriptions. In particular, we adopt the long short-term memory (LSTM)

neural network to match the reduced order model (ROM) and full order model (FOM) solu-

tions at their intersect. To form the building blocks of our HAM approach for coupling ROM

and FOM descriptions, we introduce an array of interface modeling paradigms as depicted in

Fig 1 and described next.

The Direct Prolongation Interface (DPI) approach utilizes standard projection based ROMs,

where the system’s state at the interface is obtained by the reconstruction of a Galerkin projec-

tion ROM solution. However, traditional Galerkin ROM often yields an inaccurate solution in

case of systems with strong nonlinearity. Therefore, we utilize machine learning to correct and

augment ROM solution in a hybrid framework, as follows.

In the Prolongation followed by machine learning Correction Interface (PCI) methodology,

an LSTM is used to rectify the field reconstruction from Galerkin ROM at the interface by

learning the correction in the higher dimensional space. Although this seems to be a straight-

forward implementation, it might amount to learning a high dimensional correction vector,

especially for two- and three-dimensional domains.

To mitigate the potential computational challenges dealing with excessively large input/out-

put vectors, amachine learning Correction followed by Prolongation Interface (CPI) approach
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can be employed to provide a closure effect to remedy the instabilities and inaccuracies of

Galerkin ROM due to modal truncation.

For CPI, the LSTM learns the correction terms in ROM space, defined by the number of

modes in ROM approximation. As a result, the reconstruction quality will eventually be lim-

ited by the Galerkin ROM dimension. Therefore, the Uplifted Prolongation Interface (UPI)
framework not only corrects the Galerkin ROM solution, but also expands the ROM subspace

to enhance the reconstruction quality. Our primary motivation in this paper is to describe and

test these four interface modeling approaches to tackle ROM/FOM coupling problems and

show how we can elucidate these multifidelity mechanisms within the HAM framework.

ROM-FOM coupling framework

In order to demonstrate the performance of the introduced HAM approaches for ROM-FOM

coupling, we consider a coupled system as follows,

@u
@t
¼ f1ðu; m1Þ þ g1ðu; v; m1; m2Þ; ð1Þ

@v
@t
¼ f2ðv; m2Þ þ g2ðu; v; m1; m2Þ; ð2Þ

where u and v are the coupled variables and g1 and g2 define this coupling, while μ1 and μ2

denote the set of system’s parameters. We highlight that the coupled variables might represent

the state variables at different regions of the domain (e.g., multi-component systems), different

physics (e.g., fluid-structure interactions) and/or different scales within the same domain (e.g.,

multiscale systems). We suppose that the dynamics of u can be approximated by a reduced

Fig 1. The proposed multifidelity concepts toward hybrid ROM/FOM coupling. Dashed blocks refer to the

interface learning approaches introduced in the present work: (a) Direct Prolongation Interface (DPI), (b)

Prolongation followed by a machine learning Correction Interface (PCI), (c) machine learning Correction followed by

a Prolongation Interface (CPI), and (d) Uplifted Prolongation Interface (UPI) where the latent space is enhanced

through machine learning before we apply the prolongation operator.

https://doi.org/10.1371/journal.pone.0246092.g001
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order model (ROM) while a full order model resolves v and both solvers need to communicate

information to satisfy the coupling. We begin by describing the derivation of a reduced order

model of u via Galerkin projection equipped with proper orthogonal decomposition (POD)

for basis construction. Then, we formulate the coupling between ROM and FOM solvers.

Reduced order model

Introducing a spatial discretization to Eq (1), it can be rewritten in a semi-discrete continuous-

time as follows,

du
dt
¼ Fðu; v; mÞ ¼ L1uþ L2v þN ðu; vÞ; ð3Þ

where the boldfaced symbols represent the arrangement of discretized variables in 1D vector

(e.g., u 2 Rn1 and v 2 Rn2 , where ni denotes the spatial resolution), m 2 Rp defines the system’s

parameters, and F : Rn1 � Rn2 � Rp ! Rn is a deterministic operator with linear and nonlin-

ear components L, and N , respectively. These operators depends on the numerical scheme

adopted for spatial discretization.

We exploit the advances and developments of ROM techniques to build surrogate models

to economically resolve portions of domain and/or physics. The ROM solution can thus be

used to infer the flow conditions at the interface so that a FOM solver can be efficiently

employed for the sub-domains of interest. The standard Galerkin ansatz is applied for the

dynamics of u as

uðtÞ � FαðtÞ; ð4Þ

where the columns of matrix F ¼ ½�1; �2; . . . ; �r� 2 R
n1�r form the orthonormal bases of a

reduced subspace with an intrinsic dimension of r, and α defines the projection coordinates

associated with F. Usually, the basis functions ϕ are constructed to capture the dominant

modes or underlying structures of the flow. Proper orthogonal decomposition (POD) is one

popular technique to systematically construct F such that the solution manifold preserves as

much variance as possible when projected onto the subspace spanned by F [43–45]. By substi-

tuting this approximation into Eq (3) and performing the inner product with F, we get the fol-

lowing,

dα
dt
¼ FTL1Fα þ F

TL2v þ F
TN ðFα; vÞ: ð5Þ

The first coefficient (FTL1F) can be precomputed, so the computational cost for evaluating

the linear term depends on r. However, in general, the evaluation of the third term on the right

hand side (nonlinear term) depends on the FOM dimension n. Fortunately, most fluid flow

systems are characterized by quadratic nonlinear operator, which allows the reduction of Eq

(5) into

dα
dt
¼ Lα þ αTNα þ C; ð6Þ

where L is an (r × r) matrix andN is an (r × r × r) tensor representing the model coefficients

while C defines the contribution of v into the ROM of u. We will see that the computation of C

may either be computed offline during ROM construction or as part of the online FOM solver

of v with negligible computational overhead. Thus, the floating point operation (flop) count to

evaluate the right hand side of the ROM (i.e., Eq (6)) is often O(r3).
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In the following, we formulate the four methodologies outlined in Fig 1 to match the ROM

solution for α with the FOM solution at the interface. For all cases, a ROM representation is

adopted for u, which can be economically solved to compute an estimate of the interface flow

condition to feed the FOM solver of v. For example, in multi-component systems like that

depicted in Fig 2, the ROM solution at the interface is regarded as a boundary condition for

the FOM.

1. DPI: Direct Prolongation Interface. The objective of the DPI approach is to recover the flow

variables at the interface from the ROM solution (i.e., the time integration of Eq (6)). In

other words, we seek to learn a mapping G1 : Rr ! Rd, that minimizes kuðiÞ � G1ðαÞk
where u(i) represent the portion of information at the interface that is shared from the

ROM to the FOM solver, with d being the dimension of the interface. For multi-component

systems, this interface can be a single point (e.g., for 1D systems), a line (e.g., for 2D sys-

tems), or a surface (e.g., for 3D systems). Indeed, this prolongation map naturally results

from the Galerkin ansatz, and can be written as

G1ðαÞ ¼ Yα; ð7Þ

Fig 2. Schematic illustration of the methodologies introduced to utilize ROM to economically provide sound interface conditions in a multifidelity domain

decomposition problems. Galerkin ROM yields inaccurate predictions (represented by rough curve), and direct prolongation of these results might be not efficient. PCI

adds a correction effect to the prolonged solution in FOM space. Instead, CPI and UPI introduce the correction at ROM level before prolongation. UPI adds an extra

superresolution effect to augment solution quality.

https://doi.org/10.1371/journal.pone.0246092.g002
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where Θ represents the portion of the basis F that is computed at the interface location.

Since the ROM approximation is built upon the assumption of representing the flow within

a low order subspace, the approximation given by Eq (4) basically introduces a projection

error. This error can be significant for complex systems, where the flow dynamics are char-

acterized by a wide spectrum while only few modes are considered to minimize the compu-

tational burden of solving the ROM. Moreover, the nonlinear interactions as well as the

modal truncation coupled with the Galerkin projection methodology usually cause Eq (6)

to yield erroneous predictions of the coefficients α(t). Therefore, the solution from the DPI

approach is potentially inaccurate [46]. Consequently, the reconstruction G1ðαÞ is no lon-

ger optimal and a correction needs to be introduced.

2. PCI: Prolongation followed by Correction Interface. The PCI framework aims to correct the

mapping G1 to yield more accurate interface condition. To do so, we utilize a long short-

term memory (LSTM) neural network to learn a mapping G2 : Ri ! Ri such that

G2ðG1ðαÞÞ ¼ uðiÞ � G1ðαÞ: ð8Þ

In other words, LSTM is fed with a predictor of u(i) obtained by DPI and approximates the

deviation of this value from the true state variables at the interface. Hence, this deviation

estimate can be added as a correction term in a predictor-corrector fashion. In PCI, both

inputs and outputs of the LSTM lie in the FOM space and thus the LSTM map can be con-

sidered as nudging scheme from the ROM prolongation G1 to the FOM solution [47].

We highlight that the PCI approach can be feasible for one-dimensional (1D) problems

(where the interface can be just a single point). However, for higher dimensional systems,

the sizes of input and output vectors grow rapidly (unless a too coarse mesh is adopted).

For such cases, PCI becomes prohibitive, and the learning and correction should be per-

formed in a reduced latent space instead.

3. CPI: Correction followed by Prolongation Interface. The CPI methodology works by intro-

ducing the correction in the latent subspace, rather than the FOM space. This is especially

crucial for 2D and 3D configurations. In particular, the CPI aims at curing the deviation

in modal coefficients predicted from solving the Galerkin ROM equations, known as clo-

sure error. Due to the modal cut-off in ROM approximation, Eq (6) does not necessarily

capture the true projected trajectory of α(t). Therefore, we introduce an LSTM mapping

G3 : Rr ! Rr to provide a closure effect to adjust the Galerkin ROM trajectory. Specifically,

the LSTM for CPI takes the values of modal coefficients acquired from integrating Eq (6) in

time and predicts the discrepancy between these values and their optimal values. Those are

defined by the true projection (TP) of the FOM solution onto the basis functions as follows,

αTP ¼ FTu: ð9Þ

Therefore, the CPI contribution can be written as

G3ðαÞ ¼ FTu � α: ð10Þ

We highlight here that the size of the input and output vectors is O(r), independent of the

FOM resolution, which offers a potential flexibility dealing with 2D and 3D problems.

Once the modal coefficients are corrected, they are prolonged from the ROM space to the

FOM space using the reconstruction map G1. For all results, we also show the results

obtained from the true projection of FOM solution onto the ROM subspace at the interface
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as,

uTP ¼ G1ðα
TPÞ: ð11Þ

We highlight that uTP represents the best approximation of the true flow field that can be

achieved using a linear subspace with an intrinsic dimension of r.

4. UPI: Uplifted Prolongation Interface. Although the CPI methodology cures the closure error

and provides a stabilized solution, it does not address projection error. Unless a large num-

ber of modes are resolved, the projection error can be significant, especially for problems

with discontinuities and shocks. To deal with those situations, an uplifting ROM has been

proposed [46], where both closure and projection errors are taken care of. For closure, simi-

lar to CPI, the Galerkin ROM predictions are tuned to match their true projection values.

In addition, following Galerkin ROM solution, the ROM subspace is expanded to capture

some of the smaller scales missing in the initial subspace as follows,

u � Fα þCβ; ð12Þ

where the columns of C = [ψ1, ψ2, . . ., ψq] form orthonormal basis functions for a q-dimen-

sional subspace complementing that spanned byF and β defines the corresponding projec-

tion coordinates. Similar to F, C can be computed through the POD algorithm. Note that

F and C are orthogonal to each others (i.e., FTC =CTF = 0). Indeed,C represents the

next q basis functions generated by POD after the first r being dedicated toF. Those are

also constructed a priori during an offline stage using the collected set of snapshot data. We

highlight that the Galerkin ROM equations only solve for α to keep the computational cost

as low as possible.

Therefore, a complementary model for β has to be constructed so that the uplifting

approach can be employed. To accomplish this, a mapping from the first r modal coeffi-

cients to the next q modes is assumed to exist. Nonlinear Galerkin projection has been pur-

sued to express this mapping as β ¼ HðαÞ, but it has been found challenging for most

systems [48]. Instead, we exploit the LSTM learning capabilities to infer this map from data.

This uplifting approach enhances the quality of prolonged solution by providing a superre-

solution effect. In particular, the UPI architecture is trained to read the Galerkin ROM pre-

diction for the first r modal coefficients as input, and return the true coefficients of the first

r + q modes. Thus, it provides a closure effect for the first r modes and a superresolution

effect for the next q modes, simultaneously in a single network as follows,

G4 : Rr ! Rrþq ð13Þ

G4ðαÞ ¼
αTP

βTP

" #

: ð14Þ

We note here that the first r + q spatial modes have to be built and stored beforehand,

which introduces slightly more storage costs. For the present study, we explore the specific

case where q = r, but a generalization is straightforward.

The ROM-FOM coupling philosophy as well as the introduced interface learning

approaches are summarized in the cartoon shown in Fig 2. These methodologies are also appli-

cable to a wide range of computational problems with multifidelity domain decomposition.

The depicted system is assumed to be fully characterized by three mutually orthogonal sets of
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basis functions, namely F,C, and z as below

u ¼ Fα þCβþ zg; ð15Þ

where α, β, and γ are the corresponding projection coordinates. We also suppose that Galerkin

ROM resolves the F set of modes (i.e., truncating the contributions of C, and z). We reiterate

here that the Galerkin ROM yields inaccurate solution (sketched by the noisy (rough) curve of

predicted α). Consequently, the quality of the direct prolongation mapping is compromised.

The PCI aims at correcting the reconstructed solution at the interface. Even though the PCI

technique acts only on a small portion of the domain (i.e., the interface), it might amount to

excessively large input and output sizes.

On the other hand, CPI treats the Galerkin ROM deficiencies at the ROM level. In particu-

lar, it introduces a closure effect to better predict α. This closure simply compensates the

effects of truncated modes (i.e., C and z) onto the dynamics of F. This yields a better estimate

of α, as illustrated by the smooth curve in Fig 2. We note that in CPI, the effects of C and z are

only considered to improve the prediction of α. However, their contributions to the solution

manifold reconstruction are not included, resulting in a substantial reconstruction error (pro-

jection error). To deal with this caveat, UROM seeks to add a superresolution enhancement by

incorporating the C set of basis into the reconstruction step by learning the dynamics of the

corresponding β coordinates. This is represented by a higher resolution (denser) reconstruc-

tion in UPI case, compared to CPI, and DPI. Note that the PCI is still showing the highest reso-

lution (the densest reconstruction) as it nudges the prediction at the interface to its FOM

counterpart (i.e., including all F, C, and z).

Demonstrations

We demonstrate the ROM-FOM coupling methodologies using two examples of varying com-

plexities. In the first one, we describe a fluid flow scenario over a bizonal domain with hetero-

geneous physical properties using the one-dimensional Burgers problem. For this case, we

shall see that the interface between different sub-domains is defined by a single point (i.e.,

d = 1). Second, we consider the Marsigli flow problem represented by the two-dimensional

Boussinesq equations to demonstrate the ROM-FOM coupling for multiphysics systems. In

particular, a ROM solver is devoted for the mass and momentum transport equations while a

FOM is reserved for the energy transport.

The one-dimensional Burgers problem

In order to represent a zonal multifidelity simulation, we consider the following one dimen-

sional (1D) viscous Burgers problem,

@u
@t
þ u

@u
@x
¼
@

@x
n
@u
@x

� �

� gu; ð16Þ

ðn; gÞ ¼

(
ð10� 2; 0Þ for 0 � x � xb

ð10� 4; 1Þ for xb < x � 1;

ð17Þ

where xb is the spatial location of the interface defining the physical heterogeneity. We high-

light that Eq (16) includes the
@

@x
n
@u
@x

� �

term instead of the commonly used n
@

2u
@x2

term to per-

mit the spatial variation of ν. For the given setup, the stiffness and physical properties in the

left part dictates higher spatial as well as temporal resolutions than those required for the right
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partition. If we opt to a global unified (unique fidelity) solver over the whole domain, the qual-

ity of the solution will be dominated by stiffness of the left zone. In other words, a smaller time

step would be required to satisfy numerical stability when using an explicit temporal integra-

tion scheme. Specifically, assuming that we utilize the forward in time and central in space

finite difference scheme (FTCS) to solve Eq (16) with a spatial grid resolution of 4096, a time

step of approximately 2.5 × 10−6 will be required for the left part of domain, while a time step

of 2.5 × 10−4 would be sufficient if we were able to only resolve the right part. Therefore,

domain decomposition approaches might be adopted to segregate partitions with varying

numerical requirements. Despite the effectiveness and efficiency of these approaches, idle

delays can arise in order to accommodate information transfer from the left zone to the right

zone through their common interface. Instead, low-fidelity proxy models can be utilized to

avoid such lags by approximating the effective dynamics of stiff regions and providing sound

interface boundary conditions to the rest of the computational domain.

The discretized domain is divided into a left zone with uL 2 Rn1 for x 2 [0, xb] and a right

zone with uR 2 Rn2 for x 2 [xb, 1], where n1 + n2 = n + 1. We build a reduced order model for

the left sub-domain as follows,

uLðtÞ ¼ FαðtÞ; ð18Þ

dα
dt
¼ Lα þ αTNα; ð19Þ

where L andN represent the tensorial ROM coefficients which can be precomputed during

the offline stage as,

Li;k ¼ h
@

@x
n
@u
@x

� �

� g�i;�ki; ð20Þ

Ni;j;k ¼ h� �i
@�j

@x
;�ki; ð21Þ

where the angle parentheses denote the inner product (i.e., ha;bi = aT b).

For data generation, we solve the full order model representing the 1D Burgers equation

(Eq (16)) over the entire domain using a spatial mesh resolution of 4096 and time step of

2.5 × 10−6. For initial condition, we consider a square-like wave defined as,

uðx; 0Þ ¼ 0:5 � 0:5 tanh
x � xb
�

; ð22Þ

where a value of xb = 0.75 is considered as the location of the interface and � = 0.005 is used to

define the sharpness of the shock at xb. Dirichlet boundary conditions are assumed at both

boundaries (i.e., u(0, t) = u(1, t) = 0). We compute the evolution of the velocity field for t 2
[0, 2], and collect snapshots every 100 time steps. That is snapshots are collected every

2.5 × 10−4 time units (working with normalized variables).

For ROM construction, we consider the truncated solution snapshots for the left part of the

domain (i.e., 0� x� 0.75) for t 2 [0, 1]. For POD basis generation, we use only 200 snapshots

distributed evenly from t = 0 to t = 1, to reduce the computational cost of solving the corre-

sponding eigenvalue problem. Once ROM is constructed, it is integrated in time with a time

step of 2.5 × 10−4 to match the time step in the right part of the domain (to be handled via a

FOM solver). During the deployment phase of the coupled system, the ROM feeds the FOM

solver with the boundary condition at xb. On the other hand, the effects of the interface on
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the ROM dynamics are considered during the offline stage of data generation and basis

construction.

We utilize labelled data at the time interval of t 2 [0, 1] for the training and validation of the

LSTM neural networks. In particular, four fifths of the collected data set are randomly selected

for training while the remaining one fifth is reserved for validation purposes (to avoid overfit-

ting). We highlight that numerical experiments reveal that the performance in our case is not

significantly sensitive to the neural network hyperparameters. Thus, we manually tune the

hyperparameters during the training and validation stages by repeating the previous procedure

multiple times while varying the seeds for the random number generator and using averaged

loss values for assessment. We adopt an LSTM architecture of 2 layers with 20 cells in each

layer. In the meantime, we note that automated hyperparameter search tools can be utilized

for optimized architectures. Testing of the proposed schemes is performed for t 2 [0, 2], corre-

sponding to a temporal extrapolation behavior with respect to the training interval.

Since the coupling between ROM and FOM is represented by the physical interface at xb,
we notice that the Θ in the DPI map (i.e., G1ðαÞ ¼ αÞ is simply the last row of the matrix F. In

Fig 3, we plot the velocity at the interface obtained from adopting ROM for the left part of the

domain, and corrected with machine learning architectures as described before for r = 2 and

r = 4. We note that FOM solution corresponds to the velocity at the interface obtained by

applying a FOM solver all over the domain using a time step of 2.5 × 10-6, while the true pro-

jection (TP) represents the projection of the truncated velocity field in the left zone onto the

POD subspace. The shaded area in Fig 3 stands for the time interval utilized for POD basis

generation, ROM formulation, and LSTMs training.

It can be seen that DPI results, especially for r = 2, are not very accurate due to the mutual

effects of modal truncation and model nonlinearity in Galerkin ROM. On the other hand, the

PCI solution gives almost perfect match with FOM. As the PCI approach nudges the pro-

longed ROM solution to its FOM counterpart, it gives even higher accuracy than TP. That is

Fig 3. Velocity at the interface obtained by considering ROM in the left part of the domain, with r = 2 (top) and r = 4 (bottom). FOM solution

corresponds to solving the governing equation over the entire domain, while TP denotes the projection of the FOM solution in the left zone onto the

corresponding POD subspace.

https://doi.org/10.1371/journal.pone.0246092.g003
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TP is limited by the maximum quality that can be obtained using a rank-r approximation. For

CPI, since the LSTM introduces a closure effect, it steers the ROM results to match the TP

solution. Finally, the UPI recovers some of the smaller scales (truncated modes) so it yields bet-

ter reconstruction than TP since it spans a larger subspace. For r = 2, UPI uplifts the solution

to a rank-4 approximation, while for r = 4, it is uplifted to a rank-8 approximation.

For quantitative assessment, we document the ℓ2 norm of the deviation of the predicted

velocity at the interface compared to the FOM solution in Table 1. Results are reported for r 2
{2, 4, 8}. We see that the error in the CPI case almost matches that of TP, while PCI gives the

highest accuracy since it is trained to learn the correction with respect to the FOM solution.

Also, CPI results are significantly close to TP, illustrating the closure effect introduced by CPI

to account for the effect of modal truncation on ROM dynamics. Another interesting observa-

tion is that UPI quality at a given value of r is equivalent to TP with twice that value. This indi-

cates that UPI is able to give a superresolution effect up to 2r (since we select q = r). Also, we

notice that at r = 2, DPI yields lower ℓ2 norm than TP. This is because TP solution is obtained

by the projection of the FOM solution onto the POD subspace generated using data at t 2
[0, 1]. So, this subspace is optimal only for t 2 [0, 1], while testing is performed up to t = 2.

Therefore, TP solution no longer represents the best rank-r approximation beyond t = 1.

Finally, we investigate the coupling efficiency by solving the right part (i.e., 0.75� x� 1)

using a high fidelity FOM solver applied only onto this subdomain. This is fed with a boundary

condition u(0.75, t) from the low-fidelity interface learning approaches described before. Fig 4

shows the spatiotemporal velocity profile with r = 2, compared to the FOM predictions. Again,

we observe that the solution with PCI boundary is similar to this FOM solution. Also, CPI

matches the TP results, but they both smooth-out the surface peak because of the low rank lim-

itations. Although it seems that the accuracy of UPI cannot exceed that of CPI with r + q
assuming optimal performance for both CPI and UPI, there is a computational side in this

comparison. The CPI with r + q modes implies the solution of a Galerkin ROM with a dimen-

sion of r + q, while the UPI requires the solution of a Galerkin ROM with r. We have seen that

for fluid flows with quadratic nonlinearity, the computational cost of solving a Galerkin ROM

scales cubically with the number of modes. Thus, the implementation of CPI with r + q with q
= r is about 8 times more costly than UPI with r + q. At this point, we highlight that the selec-

tion of r and q is highly dependent on the problem in hand, the corresponding decay of POD

eigenvalues, and the level of accuracy sought. A compromise between computational cost of

solving a Galerkin ROM with r and the corresponding stability, the amount of information

captured by r and r + q modes, and reliability of UPI with r + q is always in place.

The two-dimensional Boussinesq problem

Boussinesq equations represent a simple approach for modeling geophysical waves such as

oceanic and atmospheric circulations induced by temperature differences [49] as well as other

situations, like isothermal flows with density stratification. In the Boussinesq approximation,

Table 1. ℓ2 norm for the deviation of the velocity at the interface with respect to its FOM value for t 2 [0, 2].

Setup r = 2 r = 4 r = 8

TP 4.56 1.25 0.21

DPI 3.67 1.46 0.44

PCI 0.23 0.07 0.03

CPI 4.57 1.27 0.23

UPI 1.28 0.24 0.11

https://doi.org/10.1371/journal.pone.0246092.t001
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variations of all fluid properties other than the density are neglected completely. Moreover, the

density dependence is ignored in all terms except for gravitational force (giving rise to buoy-

ancy effects). As a result, the continuity equation can be adopted in its constant density form,

and the momentum equation can be simplified significantly. The dimensionless form of the

2D incompressible Boussinesq equations in vorticity-streamfunction formulation can be rep-

resented by the following two coupled transport equations [50, 51],

@o

@t
þ J o;cð Þ ¼

1

Re
r2oþ Ri

@y

@x
; ð23Þ

@y

@t
þ Jðy;cÞ ¼

1

RePr
r2y; ð24Þ

where ω, ψ and θ denote the vorticity, streamfunction and temperature fields, respectively. In

Boussinesq flow systems, there are three leading physical mechanisms, namely viscosity, con-

ductivity, and buoyancy, giving rise to three dimensionless numbers; Reynolds number Re,

Richardson number Ri, and Prandtl number Pr.

We utilize the 2D Boussinesq equation to illustrate the ROM-FOM coupling for multiphy-

sics situations. In particular, we suppose that we are more interested in the temperature field

predictions. Thus, we dedicate a FOM solver for Eq (24) However, we see that the solution of

this equation requires evaluating the streamfunction field at each time step. The kinematic

relationship between vorticity and streamfunction is given by the following Poisson equation,

r2c ¼ � o; ð25Þ

which implies that the streamfunction is not a prognostic variable, and can be computed from

the vorticity field at each timestep. In typical simulations, the solution of Eq (25) consumes sig-

nificant amount of time and computational resources and is considered the bottleneck for

Fig 4. Spatio-temporal velocity profile obtained from applying high fidelity (FOM) solver onto the right

subdomain (0.75� x� 1), fed with interface boundary from a low-fidelity (ROM) solution with r = 2.

https://doi.org/10.1371/journal.pone.0246092.g004
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most incompressible flow solvers. Therefore, we can consider a ROM solver for the voriticity

dynamics as follows,

oðx; y; tÞ ¼ �oðx; yÞ þ
Xr

k¼1

akðtÞ�
o

k ðx; yÞ; ð26Þ

where �o denotes the time-averaged vorticity field and the POD is performed on the fluctuating

part of ω. We note that Eq (25) allows us to assume the same modal coefficients αk(t) for both

ω and ψ as follows,

cðx; y; tÞ ¼ �cðx; yÞ þ
Xr

k¼1

akðtÞ�
c

k ðx; yÞ; ð27Þ

where the time-averaged streamfunction field and the corresponding basis functions can be

computed from the following relations,

r2 �cðx; yÞ ¼ � �oðx; yÞ; ð28Þ

r2�
c

k ðx; yÞ ¼ � �
o

k ðx; yÞ: ð29Þ

Thus, the Galerkin ROM of Eq (23) can be written as

dak
dt
¼ Bk þ

XR

i¼1

L
ðo;cÞ

i;k ai þ
XR

i¼1

L
ðo;yÞ

i;k βi þ
XR

i¼1

XR

j¼1

N
ðo;cÞ

i;j;k aiaj; ð30Þ

where β represent the projection of the temperature fields onto the reduced subspace defined

as

bkðtÞ ¼ hyðx; y; tnÞ � �yðx; yÞ;�ykðx; yÞi; ð31Þ

where the �y denotes the time-averaged field of θ and Fθ are the corresponding orthonormal

POD modes. The predetermined coefficients in Eq (30) are calculated as follows,

Bk ¼ h� Jð�o; �cÞ þ
1

Re
r2 �o þ Ri

@�y

@x
;�

o

k i; ð32Þ

L
ðo;cÞ

i;k ¼ h
1

Re
r2�

o

i � Jð�
o

i ;
�cÞ � Jð�o; �ci Þ;�

o

k i; ð33Þ

L
ðo;yÞ

i;k ¼ hRi
�
y

i

@x
;�

o

k i; ð34Þ

N
ðo;cÞ

i;j;k ¼ h� Jð�oi ; �
c

j Þ;�
o

k i: ð35Þ

We notice that the ROM defined by Eq (30) equipped with Eq (27) can be adopted to

approximate the instantaneous streamfunction field, which is required to solve Eq (24) for the

temperature in FOM space. On the other hand, the solution of the FOM (i.e., Eq (24)) along

with Eq (31) feeds the ROM solver with β values. This constitutes a two-way ROM-FOM cou-

pling problem, in contrast to the one-way coupling in the aforementioned 1D Burgers exam-

ple. We also highlight that the computational cost of the projection step (i.e., Eq (31)) is

minimal compared to the solution of Eq (24).
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For demonstration, we consider a strong-shear flow exhibiting the Kelvin-Helmholtz insta-

bility, known as Marsigli flow or lock-exchange problem. The physical process in this flow

problem explains how differences in temperature/density can cause currents to form in the

ocean, seas and natural straits. For example, Marsigli discovered that the Bosporus currents

are a consequence of the different water densities in the Black and Mediterranean seas [52].

Basically, when fluids of two different densities meet, the higher density fluid slides below the

lower density one. This is one of the primary mechanisms by which ocean currents are formed

[53].

The problem is defined by two fluids of different temperatures, in a rectangular domain (x,

y) 2 [0, 8] × [0, 1] with a a vertical barrier dividing the domain at x = 4, keeping the tempera-

ture, θ, of the left half at 1.5 and temperature of the right half at 1. Initially, the flow is at rest

(i.e., ω(x, y, 0) = ψ(x, y, 0) = 0), with uniform temperatures at the right and left regions (i.e.,

θ(x, y, 0) = 1.5 8 x 2 [0, 4] and θ(x, y, 0) = 1 8 x 2 (4, 8]). Free slip boundary conditions are

assumed for flow field, and adiabatic boundary conditions are prescribed for temperature

field. Reynolds number of Re = 104, Richardson number of Ri = 4, and Prandtl number of

Pr = 1 are set in Eqs (23) and (24). A Cartesian grid of 4096 × 512, and a timestep of

Δt = 5 × 10−4 are used for the FOM simulations. Standard second-order central finite differ-

ence schemes are adopted for the discretization of linear terms while the second order Ara-

kawa scheme [54] is used to compute the Jacobian term. The evolution of the temperature

field is shown in Fig 5 at t = 0, 2, 4, 8. At time zero, the barrier is removed instantaneously trig-

gering the lock-exchange problem, where the higher density fluid (on the right) slides below

the lower density fluid (on the left) causing an undercurrent flow moving from right to left.

Conversely, an upper current flow moves from left to right, causing a strong shear layer

between the counter-current flows. As a result, vortex sheets are produced, exhibiting the Kel-

vin-Helmholtz instability.

Fig 5. Temperature field at different time instances for 2D Boussinesq problem using 4096 × 512 grid and

Δt = 0.0005.

https://doi.org/10.1371/journal.pone.0246092.g005
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Considering the dimensionality of this problem, we emphasize that the PCI approach

becomes highly unfeasible. For example, with the current mesh resolution (i.e., 4096 × 512),

the dimension of the state space of the prolonged interface is� 2 × 106. Building and training

of LSTMs with an input and output vector sizes of two millions become prohibitive. Even the

training of convolutional neural network with such high resolutions (which are typical in fluid

flow simulations) requires excessive computational resources. Therefore, we present results for

ROM-FOM coupling using approaches that operate in ROM space (i.e., DPI, CPI and UPI).

We note that 800 time snapshots are 454stored for POD basis construction. For the Galerkin

ROM solver, r = 8 modes are retained. We also utilize the dataset of the stored 800 snapshots

for LSTM training and validation (80% randomly selected for training and the rest for valida-

tion, similar to the previous example). A two-layer LSTM with 20 cell in each layer constitutes

our LSTM architecture. During the testing phase, the trained neural networks are deployed at

each and every timestep. This corresponds to the application of the presented approached

16000 times.

Fig 6 shows the predictions of the temperature field at final time (i.e., t = 8) computed from

DPI, CPI, and UPI approaches compared to the FOM field. We emphasize that the ROM--

FOM coupling results correspond to the solution of the vorticity equation with a ROM solver,

which feeds the FOM solver with streamfunction to solve the temperature equation only as

opposed to the FOM results which comes from the solution of both the 2D Boussinesq equa-

tions using a FOM simulation. Although the CPI results are better than those of DPI, we can

observe that the fine details of the flow field are not accurately captured. That is 8 modes are

not sufficient to sufficiently represent the flow field. This is a common problem for convec-

tion-dominated flows which exhibit slow decay in the POD eigenvalues and the generated

global basis functions suffer from modal deformation [55]. On the other hand, the implemen-

tation of the UPI approach with r = 8 and q = 8 recovers an increased amount of the fine flow

structures that are not well-represented by the first r = 8 modes.

Fig 6. Final temperature fields as obtained from different ROM-FOM coupling approached, compared to the

FOM solution. We note that the PCI becomes infeasible for higher dimensional systems.

https://doi.org/10.1371/journal.pone.0246092.g006
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Although the ROM is built for the vorticity equation only, the basis functions of the temper-

ature fields should be generated as well to carry-out the coupling from FOM to ROM. More-

over, in order to illustrate the temporal variation of the coupling quality, we project the

resolved temperature fields at different times onto their POD basis. This is depicted in Fig 7,

showing the effect of different approaches on the resulting predictions of temperature fields.

The FOM trajectory corresponds to the solution of both the 2D Boussinesq equations in FOM

space, then projecting the obtained fields on the basis functions of θ (see Eq (31)). For the rest,

the streamfunction fields are obtained from ROM predictions and fed into FOM solver to

compute the temperature fields.

Conclusions

We provide an interface learning approach via ROM-FOM coupling for multifidelity simula-

tion environments. This learning paradigm is built with a hybrid analysis and modeling

(HAM) framework to enhance the ROM approximation of interface conditions. A demonstra-

tion with a bizonal 1D Burgers problem is considered to assess the performance of the intro-

duced learning schemes for multi-component systems. For 1D problems, we find that a

prolongation followed by a machine learning correction interface (PCI) yields very good pre-

dictions. However, this might be unfeasible for 2D and 3D cases, where a correction in ROM

subspace is essential. For such, a machine learning correction in ROM space followed by a pro-

longation interface (CPI) can produce sufficient accuracy. For complex systems where the pro-

jection error is significantly large, an uplifted prolongation interface (UPI) methodology can

Fig 7. Projection of the predicted temperature fields at different times from FOM, DPI, CPI and UPI onto the

POD basis function.

https://doi.org/10.1371/journal.pone.0246092.g007
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be adopted to recover some of the truncated scales. This is further illustrated using the lock-

exchange problem governed by the 2D Boussinesq problem, where the ROM and FOM solvers

address the vorticity and temperature equations, respectively. The coupling from ROM to

FOM is represented by the 2D streamfunction fields reconstructed from the ROM solver, sav-

ing the run time for Possion equation, which is the most demanding part of an incompressible

flow solver. Owing to the relative simplicity, robustness and ease of these interface learning

methods, we expect a growing number of applications in a large variety of interfacial problems

in science and engineering. Of particular interest, this ROM-FOM coupling could be a viable

method for developing next generation digital twin technologies.
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