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Abstract
Ensembles of geomodels provide an opportunity to investigate a range of parameters and possible operational outcomes
for a reservoir. Full-featured dynamic modelling of all ensemble members is often computationally unfeasible, however
some form of modelling, allowing us to discriminate between ensemble members based on their flow characteristics, is
required. Flow diagnostics (based on a single-phase, steady-state simulation) can provide tools for analysing flow patterns
in reservoir models but can be calculated in a much shorter time than a full-physics simulation. Heterogeneity measures
derived from flow diagnostics can be used as proxies for oil recovery. More advanced flow diagnostic techniques can also
be used to estimate recovery. With these tools we can rank ensemble members and choose a subset of models, representing
a range of possible outcomes, which can then be simulated further. We demonstrate two types of flow diagnostics. The
first are based on volume-averaged travel times, calculated on a cell by cell basis from a given flow field. The second use
residence time distributions, which take longer to calculate but are more accurate and allow for direct estimation of recovery
volumes. Additionally we have developed new metrics which work better for situations where we have a non-uniform initial
saturation, e.g., a reservoir with an oil cap. Three different ensembles are analysed: Egg, Norne, and Brugge. Very good
correlation, in terms of model ranking and recovery estimates, is found between flow diagnostics and full simulations for all
three ensembles using both the cell-averaged and residence time based diagnostics.

Keywords Flow diagnostics · Ensemble modelling · Reservoir simulation · MRST · MATLAB

1 Introduction

Ensemble modelling is becoming an increasingly popular
part of petroleum reservoir simulation as a way of capturing
uncertainty in reservoir parameters and assisting with
decision making and forecasting. For a particular reservoir,
an ensemble of equiprobable models can be created for each
geological scenario, spanning the range of uncertainty in
various parameters, such as porosity, permeability, etc. Use
of multiple geological scenarios will often be essential to
capture the uncertainty inherent to the reservoir [2] as, e.g.,
exemplified in the Watt Field study [1].

Combining simulation results from the whole ensem-
ble should give a more accurate picture of the range of
results which could be encountered during future opera-
tion of the field. However, full multiphase simulations of
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highly-detailed 3D reservoir models can be computation-
ally expensive to run and this tends to put limits on the
parameter ranges that can be investigated. Thus, simplified
models are required as a way of ranking models and approx-
imating the range of uncertainty, before further in-depth
analysis can be carried out on a few selected models.

Flow diagnostics provide a way to quantify and visually
inspect flow fields in a fraction of the time it would take
to carry out a full physics simulation. The prerequisite is a
set of representative fluxes. From these we can obtain a set
of visually intuitive quantities that give the travel time
for mass-less particles that passively follow the flow field
from an injector into the reservoir and from a point in the
reservoir to the nearest producer; delineate regions drained
by specific producers or swept (flooded) by specific injec-
tors; determine whether pairs of injectors and producers
communicate or not and measure the relative strength of
their connection; determine how flux is allocated between
different injectors and producers; establish the volumetric
region influenced by specific well-pairs; give the distribution
of residence-times for all flow paths connecting injectors
and producers; measure the dynamic heterogeneity within
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drainage, sweep, or well-pair regions; or compute simple
estimates of economic measures such as net present value.
Most of these quantities have traditionally been associated
with streamline simulation [4, 27, 32–34], but it has also
been shown that similar quantities can be computed equally
well using standard finite-volume methods [20, 25, 26].

Flow diagnostics are quick to compute and can thus be
used to interactively explore fluid communication in a geo-
logical model before or after running more comprehensive
multiphase flow simulations. Quantities that measure the
heterogeneity in flow paths naturally suggest themselves
as proxies characterising flow in the reservoir, as this het-
erogeneity will have a large influence on how a reservoir
might be swept by invading fluids (e.g., injected water)
and how the in-situ fluids might be displaced and pro-
duced. Representative flow fields necessary to compute
flow diagnostics can in many cases be computed from
a single-phase, incompressible flow equation, or from a
single multiphase pressure solve if the initial fluid distribu-
tion and necessary fluid data are available. This way, both
the flow simulation, and the subsequent flow diagnostics
calculations are very quick to run. Although using a sim-
plified model means results are not quantitatively correct,
the relative heterogeneity between models can still be esti-
mated. Various types of flow diagnostics computed with
finite-volume methods have been utilized to develop prox-
ies that differentiate between macroscopic and microscopic
sweep improvements resulting from polymer injection [13],
to optimize waterflood performance [5, 19, 20], to validate
rapid prototyping of reservoir models [9], in production data
integration [23], to rank downscaled models in chemical
EOR [35] or validate upscaling methods [16, 22], and to
cluster [36] or initialize [3] data-driven models, to mention
a few applications.

Flow diagnostics can be especially useful when faced
with an ensemble of models of a reservoir that attempt to
span the possible range of uncertainty; see e.g., [12, 29–31,
37]. For a large ensemble it would be unfeasible to run a
full simulation for every realisation, and even more so in
the case of multiple geological scenarios that each have an
associated ensemble of realizations. Using flow diagnostics,
on the other hand, it is possible to gain insight into the
flow behaviour of many different models in a fraction of
the time it would take to simulate them all individually.
Flow diagnostics is not unique to this end; examples of
other approaches to rank or prescreen ensemble models
at a low computational cost that are somehow similar in
spirit include the use of linearized flow models to identify
worst cases [7] and the use of fast marching combined
with the concepts of depth of investigation and diffusive
time-of-flight for unconventional reservoirs [38, 39].

In this paper, we review the basic concepts of flow diag-
nostics and demonstrate how they can be used to rank and

quickly choose realizations that are likely to span the range
of uncertainty present and are therefore good candidates
for further investigation. We also present new formulations
that improve proxies of multiphase performance measures
and extend them to cases with non-uniform initial satura-
tion. To assess to what extent these various flow-diagnostics
techniques can be used to robustly rank ensemble models,
we apply them to three different cases: the conceptual Egg
model [10], the Norne field from the Norwegian North Sea
(ensemble generated with the code from [18], but without
some of the fault parameters), and the model ensemble from
the Brugge benchmark [24]. All methods discussed have
been implemented in the diagnostics module of the open-
source MATLAB Reservoir Simulation Toolbox (MRST).
Features are freely available online in MRST 2020a (and
subsequent versions) [28] along with the graphical user
interfaces used to visualise and inspect flow diagnostics
results for ensemble members [17].

2 Basic flow diagnostics

To make the paper more self contained, we first review
basic quantities used in flow diagnostics before discussing
extensions. A more detailed introduction can be found in
the recent textbook by Lie [15, Chapter 13] or in one of the
original articles that introduce these methods in a finite-
volume setting [20, 26].

2.1 Time-of-flight

Flow diagnostics rely on two basic quantities: time-of-
flight and influence regions. To define these, we assume a
reservoir with porosity φ and a superficial Darcy velocity
v defined as volumetric discharge per area. For ease of
exposition, we assume for the moment that v is steady
and divergence free, i.e., ∇ · v(x) = 0 for all x ∈ Ω .
Through each point x there will be a unique curve that
starts at the nearest injector (or fluid source), terminates
at the nearest producer (or fluid sink), and is tangential to
the velocity field at every point. We can parameterize this
streamline Ψ by its arc length r . In streamline simulation
[4], however, it is more common to use time-of-flight
(TOF) as spatial coordinate, which measures the travel time
of a theoretical particle by the interstitial fluid velocity
v/φ. We can define the TOF coordinate τ through two
mathematically equivalent equations:

τ(r) =
∫ r

0

φ(xΨ (s))

|v(xΨ (s))| ds, v · ∇τ = φ. (1)

In flow diagnostics, we usually refer to two different TOF
values: forward TOF, τf , defined as the travel time from the
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nearest injector to a given point in the reservoir, and back-
ward TOF, τb, defined as the travel time from the given
point to the nearest producer. The total travel time along
a streamline from inflow to outflow is called residence
time and equals the sum of τf and τb. Forward and backward
TOF are useful to identify regions that are likely to remain
unswept or undrained, whereas the residence time distin-
guishes high-flow and stagnant regions.

As an alternative to tracing streamlines and evaluating
the integral in Eq. 1 to compute point values of τ , we
can solve the second equation in Eq. 1 using a standard
finite-volume method, as first proposed by [21] and [6].
This gives us volume-averaged values of τ , which means
that the discrete τ -values represent volumetric averages of
τ over all streamline segments crossing individual cells.
Cell-averaged τ -values may be more difficult to interpret
conceptually, but have the advantage that they are directly
linked to how the propagation of a piston-like displacement
front would be resolved by a standard multiphase simulator.

2.2 Influence regions and volumetric partitions

Influence regions are defined as the locus of the points that
lie on all streamlines emanating from a point set whose
influence we want to trace, typically a well or a segment of
a well. Since each point can only lie on a single streamline,
these influence regions are distinct volumetric objects that
together form a partition of unity. Mathematically, we can
define an influence region as the solution to the following
steady advection equation

v · ∇C = 0, C|inflow = 1. (2)

This equation will only make sense if the inflow condition
is set only on parts of the inflow boundary (e.g., specific
wells or a group of wells), since otherwise C would be
identical to one inside a connected domain. The quantity C

is sometimes referred to as a steady tracer concentration,
but in the current context it is a purely theoretical quantity
used to delineate reservoir volumes and should not be
confused with the concentrations of physical tracers.

When Eq. 2 is solved with a finite-volume method, the
computed values will lie in the interval [0, 1] and represent
the portion of the total fluid volume passing through each
grid cell that can be attributed to the point set defining
the inflow condition. Influence regions computed with
a standard finite-volume method will contain significant
numerical diffusion and will thus not be sharply defined.
However, they will give the regions influenced by passively
advected quantities in a standard multiphase simulation.

Influence regions naturally lead to volumetric partitions
of the reservoir volume. Sweep regions are simply defined
as the influence regions of individual injectors, whereas
drainage regions are defined by solving Eq. 2 with a

reversed flow field and inflow conditions set at producers.
Intersecting influence region from injectors and producers
gives us well-pair regions, well-allocation factors, the
relative communication strength of individual well pairs,
etc. More details are found in [15, Chapter 13] and [20].

Because each cell can be part of several influence
regions, it is often advantageous to compute time-of-flight
associated with each influence region C by solving a
discrete version of

v · ∇(τC) = φC, τ |Γi
= 0 (3)

to reduce undesirable averaging effects. Here, Γi denotes
the part of the inflow boundary that defines the influence
region, which is assumed to satisfy Eq. 2 with C|Γi

= 1.
That is, we solve for τC and back out τ = (τC)/C in all
cells with positive C-values.

2.3 Residence-time distributions

The heterogeneity of a displacement process is linked with
the variability in travel times through the reservoir, e.g., the
distribution of τ at the outlet boundary, which we refer to as
residence-time-distribution (RTD). For the outlet boundary
Γo, the normalized RTD can be defined as

To(t) = 1
Fo

∫
Γo

δ
(
t − τf (σ )

)
v(σ ) · n(σ ) dσ,

Fo = ∫
Γo

v(σ ) · n(σ ) dσ,
(4)

where δ is the Dirac delta function, τf is the solution
of the TOF-Eq. 1 on Γo parameterized by the surface
coordinate σ , and n is the outward pointing unit normal.
It follows that the normalization factor Fo equals the total
flow rate (allocation) from Γi to Γo. This formulation is
not particularly useful for discrete approximations (as we
discuss subsequently). We can instead compute the RTD by
tracing a unit pulse from Γi to Γo, i.e., by solving the linear
transport equation

φ
∂c

∂t
+ v · ∇c = 0, c|Γi

= δ(t), c(x, 0) = 0, (5)

and letting

To(t) = 1

Fo

∫
Γo

c(σ, t) v(σ ) · n(σ ) dσ . (6)

The normalization Fo is defined so that
∫ ∞
0 To dt = 1 and

equals the total volumetric flow. The equivalence of Eqs. 4
and 6 follows from the fact that c(x, t) = δ(t − τf (x)) is
indeed the solution of Eq. 6, see Eq. 24 in the Appendix.
Furthermore, influence region Eq. 2 and time-of-flight Eq. 1
are zeroth and first order moment equations of Eq. 5 as
shown in the Appendix, so
∫ ∞

0
c(x, t) dt = 1,

∫ ∞

0
tc(x, t) dt = τf (x). (7)
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2.4 Measures of dynamic heterogeneity: F-Φ
diagram and Lorenz coefficient

Classical sweep theory includes a number of static measures
for characterizing heterogeneity, such as flow and storage
capacity, the Lorenz coefficient, the Koval factor, and
Dykstra–Parson’s permeability variation coefficient; see e.g.,
[14] for a more comprehensive overview. Flow diagnostics
reinterprets these measures in a dynamic setting so that
they characterize the heterogeneity in flow paths rather than
the heterogeneity in static petrophysical properties. Large
dynamic heterogeneity means large variations in the length
of flow paths between injectors and producers, which in a
water- or gas-flooding scenario typically manifests itself in
early breakthrough of injected fluids.

To define such measures, we start by defining the flow
capacity F(t) and the storage capacity Φ as

F(t) =
∫ t

0
To(s) ds, Φ(t) = Fo

Φo

∫ t

0
sTo(s) ds. (8)

The normalization term Φo is the total pore volume, since

Φo =
∫ ∞

0
t

∫
Γo

c v · n dσ dt =
∫ ∞

0
t

∫
Ω

v · ∇c dx dt

= −
∫

Ω

φ

∫ ∞

0
t
∂c

∂t
dt dx =

∫
Ω

φ

∫ ∞

0
c dt dx

=
∫

Ω

φ dx. (9)

Flow and storage capacities can also be computed directly
from cell-averaged τ -values, as explained later on in the text
and more thoroughly in Section 13.2 of [15].

The F − Φ diagram (plot of F versus Φ) is often used to
illustrate dynamic heterogeneity. If we think of the reservoir
as a bundle of streamtubes, with a piston-displacement
process taking place inside each streamtube, Φ(t) denotes
the volume fraction of the streamtubes that have broken
through by time t , whereas F(t) is the corresponding
fractional flow of the displacing fluid. If all flow paths have
the same residence time, F(Φ) = Φ is a straight line, but in
the general case, F(Φ) ≥ Φ is a concave curve. The more
concave the curve is, the larger is the spread in residence
times, from fast flow paths that break through early (small
values of Φ) to slow flow paths that may take for ever to
break through (Φ close to unity). This spread is usually
characterized by the Lorenz coefficient Lc, which measures
twice the area between the concave F(Φ) curve and the
straight line F = Φ, i.e.,

Lc = 2
∫ 1

0

(
F(Φ) − Φ

)
dΦ. (10)

This means that Lc = 0 for a homogeneous displacement
and Lc = 1 for an infinitely heterogeneous displacement.
Previous experience has shown that Lc correlates very

well with forecasts of hydrocarbon recovery predicted by
multiphase flow simulations and hence can be used as
an effective flow proxy in various reservoir management
workflows [20, 26, 27].

Flow and storage capacities can also be calculated
directly from the cell-averaged τ -values computed by a
finite-volume discretization of the TOF Eq. 1, as first
suggested by Shahvali et al. [26]. Assuming that the cells
have been sorted in ascending order by their average
residence times τ̄j , so that τ̄1 ≤ τ̄2 ≤ · · · ≤ τ̄N ,

Φi =
i∑

j=1

Vj

/ N∑
j=1

Vj , Fi =
i∑

j=1

qj

/ N∑
j=1

qj , (11)

where Vj is the pore volume of cell j and qj = Vj/τ̄j is
the flow rate into the cell. As discussed in [13, 15], flow
and storage capacity values obtained from Eq. 11 can differ
substantially from those obtained by simulating the pulse
Eq. 5. The reason is that τ̄ equals the mean of the RTD distri-
bution inside each cell, which can be very different from the
first mode. However, Lorenz coefficients and other hetero-
geneity measures obtained from Eq. 11 are still suited for
ranking as they correlate well with full simulation output.

2.5 Sweep efficiency and fractional recovery

An alternative flow proxy is the volumetric sweep efficiency
Ev(t), which measures how efficiently injected fluids are
used. It is defined as the volume fraction of in-place fluid
that has been displaced by injected fluid by time t , or
equivalently, by the ratio between the volume contacted by
the displacing fluid at time t and the volume contacted
at time t = ∞. The normalized sweep efficiency can be
expressed in terms of τf

Ev(t) = 1

Φo

∫
{x:τf (x)≤t}

φ(x) dx

= 1

Φo

∫
Ω

∫ t

0
δ
(
s − τf (x)

)
φ(x) ds dx (12)

or computed directly from F and Φ by the following
formula (see Eqs. 27– 28 in the Appendix)

Ev = Φ + (1 − F)tD, tD = dΦ

dF
= t Fo

Φo

. (13)

In a completely homogeneous piston displacement, the in-
place volume will be displaced by time tD , and thus tD
represents units of pore volume injected. Before first break-
through (t < min τf ), Ev equals the injected pore volume
tD . After breakthrough, Φ is the volume fraction of flow
paths that have been fully swept, whereas (1 − F)tD is the
volume fraction contributed by the swept parts of the flow
paths that have not yet broken through. This means that,
Ev(tD) is a concave curve bounded above by y =min(x, 1).
This curve highlights fluid responses after first breakthrough
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and can be used as a proxy for recovery factor. Fractional
recovery curves, i.e., (1 − F) as function of tD , emphasize
breakthrough behavior and can have utility as a proxy for
early-time fractional recovery (see Figure 13.6 of [15]).

The heterogeneity measures described so far correlate
well with recovery factors predicted by traditional multi-
phase simulators as long as the initial fluid distribution
is relatively uniform. The effect of spatially varying sat-
urations on time-of-flight is easily incorporated into the
flow diagnostics analysis by solving a multiphase pressure
equation with mobilities evaluated from the initial fluid
distribution to compute a representative flow field for the
time-of-flight Eq. 1, which is what we do herein. The chal-
lenge arises if the reservoir includes a significant stationary
or semi-stationary water zone because flow paths that tra-
verse this zone do not directly affect the displacement of
hydrocarbons and should therefore not be included in the
calculation of heterogeneity measures. For nonuniform ini-
tial saturations, as typically seen in field models, it will
usually be desirable to restrict the heterogeneity measures
to, e.g., the initial hydrocarbon volumes, to improve the
correlation with the true recovery factor. Variants of this
approach have been suggested for the Lorenz coefficient [8,
20] but have the weakness that they only consider the het-
erogeneity in the oil zone and not how far, measured in τb,
the oil is from a producer. Sweep efficiency, however, gener-
alizes more naturally to individual phases. The oleic sweep
efficiency, for instance, can be expressed as

Ev,o(t) = 1

Vo

∫
{x:τb(x)≤t}

φ(x)So(x) dx

= 1

Vo

∫
Ω

∫ t

0
δ
(
s − τb(x)

)
φ(x)So(x) ds dx, (14)

where So is the oil saturation and Vo = ∫
Ω

φSo dx is the
total oil volume. In this definition, we have used the back-
ward time-of-flight (τb) as we wish to approximate the oil
volumes produced at time t rather than the oil volumes dis-
placed (as would be the case using τf ). For the total sweep
Eq. 12, however, the forward and backward expressions are
equivalent.

We can also compute approximations to sweep efficiency
from cell-averaged τ-values by using Eq. 12 directly such that

Ev(t) =
∑

{j |τf,j ≤t}
Vj

/ N∑
j=1

Vj , (15)

where the cell indices are sorted according to ascending τf

values. Similarly, the oleic sweep efficiency Eq. 14 can be
approximated by

Ev,o(t) =
∑

{j |τb,j ≤t}
So,jVj

/ N∑
j=1

So,jVj , (16)

where So,j is the oil saturation of grid cell j , and cell indices
are sorted by ascending τb-values.

3Multiphase performancemeasures

If residence-time distributions are available, it is possible to
go one step further than Eq. 14 in approximating recovery
by considering the evolution of multiphase fluid saturations
along the time-of-flight variable. This is analogous to what
is done in streamline simulation, as we regard an interaction
region as an implicitly defined flow unit. The main
difference is that here we account for varying arrival times
by employing the RTD in the 1D transformed transport
equations. An earlier variant of this idea was reported by
[13].

Assume a steady-state flow situation in a region with total
allocation rate Fo. A given 3D saturation field Sw,0(x) can
be mapped to the 1D time-of-flight by (see Eq. 25 in the
Appendix for an explanation)

Sw,0(τf ) = 1∫
Ω

φcf dx

∫
Ω

φcf Sw,0 dx

= 1

Fo[1 − F(τf )]
∫

Ω

φ(x)cf (x, τf )Sw,0(x) dx. (17)

Hence, Sw,0(τf ) represents the average saturation over
all x in the level set τ(x) = τf within Ω .

3.1 1D solution along forward time-of-flight

When solving for water transport along the forward time-
of-flight, the RTD only appears in the evaluation of
production rates. Hence the transport equation along τf

simply becomes

∂Sw

∂t
+ ∂fw(Sw)

∂τf

= δ(τf ), Sw(τf , 0) = Sw,0, (18)

where fw is the water fractional flow function. The
approximate water production rate qw then becomes

qw(t) = Fo

∫ ∞

0
T(τf ) fw

(
Sw(τf , t)

)
dτf . (19)

Since we assume a steady-state situation, the approximation
of oil rate in a two-phase scenario is then simply given
qo(t) = Fo − qw(t). For an interaction region having large
variance in its RTD, the production approximation Eq. 19
may suffer from significant smearing effects compared to
a full resolution simulation. One option to ameliorate such
effects (but at a higher cost), would be to split the RTD
into several bins and solve a transport equation for each
bin. As such an approach is refined, it eventually becomes
equivalent to streamline simulation.
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3.2 1D solution along reverse direction of backward
time-of-flight

The challenge with solving 1D transport equations along
forward time-of-flight is that we average both over flow
paths that will reach producers within a relevant timeframe
and over flow paths that will not. Alternatively, one can
solve for saturation along the reverse direction of the
backward time-of-flight (τb) instead. This way, we only
average the 1D transport solutions over fluid volumes that
are likely to reach the well over the production time horizon.
Analogously to Eq. 17, we map the 3D saturation field to
the reverse time-of-flight by employing the backward tracer
pulse response cb to obtain Sw,0(τb). For the 1D transport
equation, the RTD now becomes the source term, whereas
the flux term must be modified to account for the amount of
flow having broken through. Accordingly,

∂Sw

∂t
− (

1 − F(τb)
)∂fw(Sw)

∂τb

= T(τb),

Sw(τb, 0) = Sw,0, (20)

where F(τb) is the flow capacity function Eq. 8. Finally the
approximate water rate becomes

qw(t) = Fofw (Sw(0, t)) . (21)

From Eqs. 19 and 21, we can further derive approximations
for recovery ro and recovery factor rf

ro(t) =
∫ t

0
qo(s) ds and rf (t) = ro(t)∫

Ω
φSo dx

. (22)

As shown in the last example in the next section, the version
based on backward time-of-flight gives superior results for
cases with a nonuniform initial saturation distribution.

4 Results

In this section, we apply the flow diagnostics just outlined
to three different ensemble models. Our purpose is in part to
demonstrate the utility of flow diagnostics as a tool to pre-
screen and rank ensemble models and in part to investigate
to what extent the dynamic heterogeneity and multiphase
performance measures can be used as less computationally
costly, reduced-physics (proxy) alternatives to traditional
multiphase flow simulation. All simulations and flow
diagnostics were computed using the MATLAB Reservoir
Simulation Toolbox (MRST) [15, 17].

4.1 The Eggmodel

The Egg model [10] is a synthetic reservoir model that
consists of one hundred ensemble realisations of a chan-
nelised reservoir. We use the first fifty realisations in our

analysis. The model has seven horizontal layers with vary-
ing permeability, however, permeability is strongly corre-
lated between the layers, leading to an almost 2.5D perme-
ability field. Porosity is constant therefore all members have
the same total pore volume. The waterflooding scenario
described in the default setup comprises eight injectors with
specified water injection rate and four producers with speci-
fied bottom-hole pressure; see Fig. 1. Initially, the reservoir
is filled with oil and a connate water saturation of 0.2; the
residual oil saturation is 0.25. The oil and water phases have
cubic and quartic relative permeabilities curves and 5 cP and
1 cP viscosities, respectively.

The strong permeability contrast between the meander-
ing channels and the low-permeability background implies
that the overall displacement efficiency to a large degree
is determined by how well injectors and producers are
connected: if there is a direct connection through a chan-
nel, we should expect early water breakthrough and poor
areal sweep. It is therefore reasonable to expect that mea-
sures of dynamic heterogeneity should be able to rank the
ensemble and distinguish high, low, and mid-range per-
formers. One can, for instance, use a cross plot of sweep
efficiency versus Lorenz coefficient, as shown to the left
in Fig. 2, to identify outliers with high sweep/low Lorenz
and low sweep/high Lorenz (numbers 22 and 38) that are
likely to represent the best and worst reservoir performance,
respectively. Closer inspection of the two extreme ensem-
ble members reveals that number 22 has no direct channel
connection between injectors and producers, whereas num-
ber 38 has several such connections and thus will see a
much earlier water breakthrough (Fig. 1). Differences in
flow behaviour between the models can clearly be seen from
the RTD distribution in the upper-right plot as well as the
unbalanced sweep regions.

Figure 2 also highlights the flow diagnostics for the other
two realizations shown in Fig. 1. Even though both come
out as mid-range performers, measured in terms of dynamic
heterogeneity and our simple proxy for net-present value
(NPV), the residence-time distribution indicates that their
dynamic behavior will be distinctly different. Realization
number 19 has the earliest water breakthrough among
all the ensemble members because of a high-permeability
connection between INJECT04 and PROD03, but a plot of
the estimated oil rate (not reported here) indicates that it
later may be able to maintain a slightly higher oil production
than realization number 8. Altogether, this demonstrates
the importance of considering more than one type of flow
diagnostics, as they measure/emphasize different aspects of
how heterogeneity affects the displacement process.

Having seen how measures of dynamic heterogeneity
clearly distinguish different realizations, the next question
to ask is to what extent these diagnostics can supplement
or replace rank measures from full dynamics multiphase
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Fig. 1 Setup of the Egg model ensemble with four different permeability realizations (units md) to the left and well positions to the right

simulations. That is, we must investigate correlation, preser-
vation of rank, and how much recovery estimates from flow
diagnostics deviate from their true multiphase equivalents.

We start by comparing recovery estimates Eq. 22 for the
four selected ensemble members with recovery predicted by
full two-phase simulations. Figure 3 also reports the total
water cut over all wells for each ensemble member. Overall,
the match between full simulations and flow diagnostics
is good. Initially, total recovery is the same for both full
simulations and flow diagnostics due to uniform saturation
around the producers prior to water breakthrough. Water
breakthrough occurs first for the flow diagnostics as a result
of numerical diffusion in the 1D simulation used to evaluate

phase rates from the RTDs. This smears out the advancing
front, causing it to reach the producers slightly earlier than
in the simulations. At later times, the recovery from flow
diagnostics overestimates simulated recovery because the
pulse-tracer simulations used to compute the RTDs do not
account for coupling between flow and transport. Hence,
flow diagnostics is unable to resolve two-phase flow effects
like preferential flow paths induced by mobility differences,
which reduce the volume of the reservoir being swept.

In an ensemble setting, we expect to have good correla-
tions for the whole ensemble between the simulation metric
in question and the flow-diagnostic metric to be used as a
proxy. Here, a good match has been found between flow
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Fig. 2 Use of flow diagnostics to rank the fifty first members of the
Egg ensemble. The left plot shows sweep efficiency at 1 PVI ver-
sus Lorenz coefficient. (Sweep efficiency was computed from Eqs. 11
with 13 as input.) The inlets show sweep regions for each of the four

ensemble members from Fig. 1, which are marked with distinct colors
in the three diagnostics plots. The right column reports residence-time
distributions and a simple proxy of net-present value (see [20]), both
plotted as function of dimensionless time (pore volumes injected)
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Fig. 3 Cumulative oil recovery (left) and total water cut in all wells (right) through time for four realizations of the Egg model. Solid lines
represent multiphase simulations, dashed lines are results estimated from flow diagnostics

diagnostics based on RTDs and simulations for recovery in
terms of correct ranking of models (high Pearson correla-
tion coefficient1 ρ); see Fig. 4. Spearman correlations are
similar but not reported for brevity. Consistent with Fig. 3,
flow diagnostics underestimates the actual recovery at early
times and overestimates it at later times.

To further investigate the differences between flow diag-
nostics and simulation results through time we have calcu-
lated the Pearson correlation coefficient between results at
different times (see Fig. 5). A correlation coefficient greater
than 0.9 is considered a good correlation, meaning flow
diagnostics results have effectively captured the ranking of
models given by simulation results. Up until around 1 PVI,
we find good correlations at tD,sim = tD,FD , as expected.
Beyond 1 PVI this trend flattens out so simulated rankings
correlate best with flow-diagnostics rankings at 1 PVI. This
can be explained by the fact that simulated rankings do not
change beyond this point even though absolute values are
likely to increase over time. (Ranking based on flow diag-
nostics, on the other hand, does not exhibit the same good
auto-correlation after 1 PVI.)

As simpler alternative to the recovery estimates is to
use a dynamic heterogeneity measure like sweep efficiency
or Lorenz coefficient. The left plot in Fig. 6 shows that
the cross-correlation between simulated recovery factor and
sweep efficiency exhibit a similar overall trend as observed
for the recovery estimates in Fig. 5, except for the fact that
best correlations systematically lie off the central axis. This
has a simple explanation. For a piston-like displacement
(no mobility contrasts, linear relative permeability curves),
in a single region between an injector and a producer, the

1The Pearson coefficient ρ measures linear correlation between two
data sets, defined as the their covariance divided by the product of
their respective variations. Correlations corresponding to ρ = ±1
correspond to data points lying on an exact line. The Spearman
coefficient assesses to what extent data show monotonic covariation.

flooding front will reach the producer after 1 PVI. For the
two-phase fluid properties used in the Egg model, however,
the leading displacement front travels 2.72 times faster
than a piston displacement front. Therefore, the simulated
recovery factor at q PVI will correlate best to the sweep
calculated from flow diagnostics at 2.72 q PVI.

When sweep efficiency is computed from cell-averaged
τ -values, we only compute the mean residence times
for each grid cell and fail to capture the fastest flow
paths that give early breakthrough. Hence, the region of
best correlation will therefore be shifted more towards
the central axis and its placement is somewhat harder to
predict than for the RTD diagnostics. Empirical evidence we
have gathered by studying different models and scenarios
suggests using sweep at 1 PVI as a good rule of thumb for
cases with uniform initial saturation. As an example, Fig. 7
demonstrates how correlation improves by using sweep at 1
PVI instead of at 0.5 PVI.

In previous research [20], we observed that the Lorenz
coefficient worked well as a simple proxy for recovery
when used, for instance, to optimize well placement (see
also [11]). For the Egg model, however, correlations for
the Lorenz coefficient were generally inferior to sweep
efficiency and are not included.

4.2 The Norne field

Our next example is slightly more complicated than the
Egg ensemble. A benchmark model for the Norne field in
the Norwegian North Sea is available from the Open Porous
Media project. The reservoir consists of twenty-two dif-
ferent reservoir zones and has considerable stratigraphic
and structural complexity. We used code based on [18] to
derive an ensemble of 100 models, with varied permeability,
porosity, net to gross, and vertical transmissibility multipli-
ers between layers. In the corner-point model of the Norne
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Fig. 4 Cross plots of simulated recovery versus recovery estimated from RTDs at 0.5 PVI (left) and 1.0 PVI (right) for the Egg model. The red
lines are regression lines fit to the data and ρ is the Pearson correlation coefficient

Fig. 5 The upper plots show Pearson coefficients for the cross-
correlation between recovery/recovery factors predicted by simulation
and by flow diagnostics at different times for the Egg model. The lower
plots show auto-correlation for each of the two methods for estimat-
ing recovery. Blue dashed lines indicate where the correlated measures

are sampled at the same dimensionless time for multiphase simulation
and flow diagnostics (tsim = tfd). Finer contour intervals have been
displayed for the range [0.9,1.0]
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Fig. 6 Pearson coefficients for the cross-correlation between simulated recovery factor and sweep efficiency computed from RTDs (left) and from
cell-averaged τ -values (right) for the Egg model. Blue dashed lines indicate tsim = tfd and tsim = 2.72tfd

field, there is a large variation in permeability in different
horizontal layers and this layering structure varies between
ensemble members (Fig. 8), leading to more complex 3D
flow patterns compared to the Egg model. For simplicity,
we assume that the reservoir is fully saturated with oil and
set up a hypothetical waterflooding problem driven by a
pattern consisting of six injection wells controlled by con-
stant injection rate and five producers controlled by constant
bottom-hole pressure. Relative permeability curves for both
oil and water are quadratic with zero residual oil and con-
nate water saturations. Viscosities are 5 cP and 1 cP for oil
and water respectively. Figure 9 reports various diagnostics
for the whole ensemble.

Good correlations can be seen between the simulated
recoveries and flow diagnostic measures such as recovery,
recovery factor, and sweep efficiency, all estimated from
RTDs. Two such correlations are reported in Fig. 10.
Sweep efficiencies measured from cell-averaged τ -values

also correlate well, and the correlation coefficients are only
slightly worse than for the RTD-derived measures.

The Lorenz coefficient also correlates well with simu-
lated recoveries (see Fig. 11), as long as these are sampled
at the same dimensionless times and the Lorenz coeffi-
cient is evaluated at “time infinity”, i.e., using the whole
RTD distribution or the whole span of cell-averaged τ -
values available. Why these two prerequisites are necessary
follows from the definition of the coefficient, which mea-
sures the relative spread in the distribution of flow rates
q as function of the volume V of the associated flow
paths (think of streamtubes). Recall that the residence time
is defined as τ = V/q. If two realizations have differ-
ent pore volume or different total field injection rates, the
same instance in time will map to different τ -values. It
is therefore important to align the simulated recoveries in
dimensionless time (pore volumes injected) before trying
to compare them using a relative flow-diagnostics quan-

Fig. 7 Cross plots of simulated recovery versus sweep efficiency computed based on cell-averaged τ -values at t = 0.5 PVI (left) and t = 1.0 PVI
(right) for the Egg model. The red lines are regression lines fit to the data and ρ is the Pearson correlation coefficient
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Fig. 8 The Norne ensemble model represented by horizontal permeability (in unit darcy) for four ensemble members

tity. Likewise, since the Lorenz coefficient measures how
much the dynamic heterogeneity departs from homogene-
ity, i.e., how the residence times of the flow paths deviate

from being uniform, the corresponding ranking will not be
correct if we truncate the underlying RTD at a too small
τ -value.
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Fig. 9 Use of flow diagnostics to rank members of the Norne ensem-
ble. The left plot shows sweep efficiency at 1 PVI versus Lorenz
coefficient. The inserts show sweep regions from injector I1 for four

ensemble member. The right column reports residence-time distribu-
tions and derived oil rate, both as function of dimensionless time (pore
volumes injected)
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Fig. 10 Cross plots of simulated
recovery versus recovery
estimated from RTD (top) and
simulated recovery factors at 18
years versus sweep efficiency
estimated from RTD (middle)
for the Norne field model. The
bottom plot shows recovery
factors at 18 years versus sweep
efficiency based on
cell-averaged τ -values. Pearson
correlation factors ρ are all
above 0.9. Recoveries measured
as a function of dimensionless
time show similar correlations.
The red lines are regression
lines fit to the data
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Fig. 11 Correlation between
recovery factors sampled at the
same dimensionless times and
Lorenz coefficient at infinity
computed from RTD (top) and
from cell-averaged τ -values
(middle) for the Norne
ensemble. The horizontal red
lines indicates the lower limit
ρ = 0.9 for what is an
acceptable correlation. The plot
at the bottom shows correlation
between RTD-derived Lorenz
coefficient and simulated
recovery factors sampled at the
same instance in time
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Fig. 12 Initial oil saturation and well configuration for the Brugge model. Injection wells are shown in blue and production wells are shown in red

4.3 The Brugge field

The last example increases the complexity further towards
full realism by introducing a non-uniform initial satura-
tion. The Brugge ensemble comprises 104 realisations of
a synthetic reservoir model [24]. The reservoir has a two-
phase initial condition with an oil cap at the top of the
reservoir and water underneath, separated by a sharp inter-
face. There are 10 rate-controlled injectors surrounding the
oil cap and 20 producers controlled by bottom-hole pressure
within the oil cap (Fig. 12). Relative permeability curves for
both oil and water are quadratic with zero residual oil and

connate water saturations. Viscosities are 5 cP and 1 cP for
oil and water respectively.

With this well configuration most of the flow takes place
within a small part of the reservoir, between the injectors
and the producers. However, cell-averaged time-of-flight
values will take into account flow paths that have really
long residence times as they pass through the relatively
stagnant water zone. This means that metrics which take
the whole volume of the reservoir into account, such as the
Lorenz coefficient, do not function well as proxies for het-
erogeneity, as they include information from a large part of
the reservoir that is not involved in the majority of the flow.

Fig. 13 Recovery estimated for the Brugge ensemble by solving a 1D displacement formulated along forward time-of-flight (left) using Eqs. 18
and 19 and along backward time-of-flight (right) using using Eqs. 20 and 21



Comput Geosci

Fig. 14 Correlation between
simulated recovery and recovery
estimated by solving a 1D
displacement problem at 6 years,
formulated in terms of forward
time-of-flight (top) and in terms
of backward time-of-flight
(middle) for the Brugge
ensemble. The plot at the bottom
shows correlation between
simulated recovery factor and
oleic sweep efficiency estimated
from cell-averaged τb-values at
6 years. The red lines are
regression lines fit to the data
and ρ is the Pearson correlation
coefficient
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Fig. 15 Pearson coefficients for the cross-correlation between simulated recovery and recovery estimates from 1D solution along forward
time-of-flight (left) and from 1D solution along the reverse direction of backward time-of-flight (right) for the Brugge ensemble

Estimating recovery from a 1D displacement solution
calculated along forward time-of-flight (using Eqs. 18
and 19) requires the average initial saturation between
the injector and the producer. For a non-uniform initial
saturation, this can introduce a large error in recovery
estimates, as shown in the left plot of Fig. 13, which in
turn will lead to poor recovery estimates and model ranking.
Recovery estimates calculated using flow rates computed
from a displacement problem formulated using backward
time-of-flight, i.e., using Eqs. 20 and 21, are much closer
and show good ranking of models, as demonstrated in the
right plot of Fig. 13. These observations are corroborated
by Fig. 14. The figure also attests that discrete estimates of
oleic sweep calculated using backward time-of-flight Eq. 16
are a very good proxy for ranking models based on recovery
factor.

Figure 15 shows that rankings from the calculations of
recovery based on backward time-of-flight are good for a
large range of times, suggesting ranking between the sim-
ulations and flow diagnostics changes very little through
time, although obviously total recovery will be different at
different times. The formulation based on forward time-of-
flight, on the other hand, which was so effective for both
the Egg and the Norne models, is not usable at all when the
saturation distribution along and across different flow paths
is far from uniform, as is the case here because of the large
water zone.

5 Conclusions, recommendations,
and outlook

The purpose of this work is to investigate how well a flow
diagnostics proxy can rank models in an ensemble in the

same order as would be given when ranking the models by
simulation results. This can be determined by looking at
the correlation between a specific flow-diagnostics proxy
and a simulation parameter (generally recovery or recovery
factor). Care must be taken to ensure that the metrics being
compared are of a similar type. For instance simulated
recovery factor is a normalised variable, which can be
compared with normalised flow-diagnostics measures such
as recovery factor, sweep efficiency, or Lorenz Coefficient,
whereas simulated recovery should only be compared with
estimated recovery.

For the three ensemble case studies used here we have
found good correlations between simulation results and
appropriate flow-diagnostics proxies at specific times. Both
the RTD flow diagnostics and flow diagnostics based on
cell-averaged quantities show good capability for achieving
similar rankings to simulations, for most cases considered
herein Pearson (and Spearman) correlation coefficients have
been greater than 0.9.

The most accurate, but also most computationally costly
flow diagnostics are recovery and recovery factors estimated
from representative 1D displacement simulations along
time-of-flight. These should generally be computed using
our new backward time-of-flight formulation, as this accounts
better for nonuniform initial saturations. For simple scenar-
ios, like the Egg model, with flow paths primarily driven by
heterogeneity and pressure drop, and for which multiphase
effects coming from the coupling of flow and transport are
not particularly prominent, these measures will not only
correlate very well with simulations but also provide quite
accurate predictions. For cases with more tortuous flow
paths and stronger coupling effects, the best one generally
can hope for is good correlation, as observed for both the
Norne and Brugge ensembles, so that the diagnostics can
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be used to compare and rank models, perturb underlying
parameters in optimization loops, etc. A necessary prereq-
uisite for this is that we can compute representative flow
fields for the pulse-tracer simulations, which may be chal-
lenging for cases with complex production scenarios with
wells coming on and off throughout the time horizon of
interest. Note also that correlations between results are
generally best when comparing FD results and simulation
results at the same time-of-flight / simulation time, indi-
cating that the ranking of ensemble members changes in
a similar way through time for both the flow diagnostics
and the simulations. This is particularly true early in sim-
ulations before multiphase coupling effects have become
established.

In most cases, a simpler and viable alternative is to
use a heterogeneity measure like sweep efficiency, which
can be computed both from tracer-pulse RTDs and from
the basic cell-averaged τ -values. The basic diagnostics are
much quicker to calculate than RTD diagnostics. Ranking
results from basic diagnostics are almost as good as results
from RTD diagnostics, so for large ensembles it is possible
to use the basic diagnostics to rank models and still be able
to capture the range of uncertainty in results and identify
ensemble members that are likely to perform better or worse
in a simulation. These models can then be carried forward
and simulated further.

For sweep efficiency it is important to remember that
multiphase displacement fronts travel faster and will at the
same instance in time have swept a larger region than a
theoretical fluid particle whose passive advection follows
the time lines defined by time-of-flight. This will affect
and shift the best match-up between simulations and flow
diagnostics. In practice, however, we have found that using
sweep efficiency at one pore volume injected is a very good
recovery proxy. Likewise, when using Lorenz coefficient
as a proxy, it is important to not truncate the underlying
residence-time distribution. (As a simple rule of thumb, the
RTD should span at least 50 PVI.)

In the ensembles considered herein, we have assumed
that variation in heterogeneity is only reflected in permeabil-
ity and porosity (or in associated quantities like net to gross
or multipliers). With this assumption, it does not matter
for the ranking capabilities whether the ensemble members
have been generated around a single base case or from mul-
tiple geological scenarios. However, if the fluid volumes in
place vary largely within the realizations to be ranked, it
will not make sense to use absolute flow diagnostic quanti-
ties that, e.g., measure oil recovered. We nonetheless believe
that it should still be both possible and reason-
able to apply relative measures like Lorenz coefficient,
sweep efficiency, etc, but this remains to be fully
verified.

In our experiments, we have assumed single rock-typing
(i.e., a single set of residual saturations and relative per-
meability curves) is applicable to all ensemble members
or that the properties associated with different rock types
exhibit so small variation that they can be approximated
well by a single (average) set of rock–fluid properties.
Time-of-flight, influence regions, and derived heterogene-
ity measures can be computed for scenarios with multiple
rock types that exhibit significant property variation, but
will not account in local variations in propagation speeds
for multiphase displacement fronts. As a first step in this
direction, one can introduce fluid acceleration factors A for
each rock type. These should measure how fast a multiphase
displacement front moves relative to the flow field and can
be determined from the self-similar 1D Buckley–Leverett
profile associated with each rock type. For two-phase
incompressible flow, the propagation speed equals the max-
imum derivative of the upper concave envelope of the cor-
responding fractional flow function. (If similar acceleration
factors are needed to mimic more complex flow physics,
1D numerical solutions will generally be necessary.) The
acceleration factors can then be incorporated into an alter-
native travel-time equation on the form, v · ∇ τ̂ = φ/A(x).
The modified travel time τ̂ should work as input to the
basic flow diagnostic quantities described in Section 2, but
more research is necessary to verify this. Moreover, it is not
clear how to extend the multiphase performance measures
described in Section 3 because with multiple rock types it
will be difficult to determine a representative 1D solution
that can be mapped onto the travel times.

Appendix

In this appendix, we will derive some basic properties of the
pulse Eq. 5 and its relation to flow/storage capacities and
sweep. The k-th moment of c is defined as

mk(x) =
∫ ∞

0
tk c(x, t) dt . (23)

By integrating Eq. 5 over time and using that c(x, 0) =
limt→∞ c(x, t) = 0 for all x ∈ Ω , we obtain

v · ∇m0 = 0, m0|Γi
= 1.

Hence, m0 satisfies the tracer Eq. 2 and it also follows that

m0(x) =
∫ ∞

0
c(x, t) dt = 1.
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Similarly, by integrating the product of Eq. 5 with t , we
obtain

0 = φ

∫ ∞

0
t
∂c

∂t
dt + v · ∇m1

= −φ

∫ ∞

0
c dt + v · ∇m1

= −φ + v · ∇m1.

In other words, m1 satisfies the time-of-flight Eq. 1, which
we can interpret as follows

m1(x) =
∫ ∞

0
tc(x, t) dt = τf (x).

To represent the solution of Eq. 5, we first observe that if we
disregard domain boundary conditions, then any function
of the form c(x, t) = g

(
t − τf (x)

)
, where g : R →

R is a differentiable function, is a solution of Eq. 5. By
substitution, we have

φ
∂c

∂t
+ v · ∇c = φg′ (t − τf (x)

) + v

· [g′ (t − τf (x)
) (−∇τf (x)

)]
= g′ (t−τf (x)

) (
φ−v · ∇τf (x)

)=0. (24)

Since we can regard the delta function as the limit of a
sequence of differentiable functions, it follows that the solu-
tion of Eq. 5 can be represented as c(x, t) = δ (t − τ(x)).

By conservation of mass, we have∫ ∞

0

∫
Γi

c(σ, t)v(σ ) · n(σ ) dσ ds =
∫

Ω

φ(x)c(x, t) dx +
∫ t

0

∫
Γo

c(σ, t)v(σ ) · n(σ ) dσ ds, (25)

which leads directly to the following relation between flow
capacity and sweep efficiency:

Fo(1 − F(t)) = Φo

d

dt
Ev(t).

From this relation and the definitions of flow and storage
capacities Eq. 8, we get the following alternative RTD-
representation:

To(t) = −Φo

Fo

d2

dt2
Ev(t). (26)

Furthermore, we obtain the relation [15]

Ev(t) = Fo

Φo

∫ t

0

(
1 − F(s)

)
ds

= Fo

Φo

((
1 − F(t)

)
t +

∫ t

0
s
dF (s)

ds
ds

)

= Fo

Φo

(
(1 − F(t))t + 1

Fo

∫ t

0
sTo(s) ds

)

= Fo

Φo

t
(
1 − F(t)

) + Φ(t). (27)

By observing that Φo
dΦ
dt

= tFo
dF
dt
, we obtain the

relation dΦ
dF

= Fo

Φo
t , and hence

Ev = Φ + (1 − F)
dΦ

dF
. (28)
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7. Gómez-Hernández, J.J., Carrera, J.: Using linear approximations
to rank realizations in groundwater modeling: Application to
worst case selection. Water Resour. Res. 30(7), 2065–2072 (1994).
https://doi.org/10.1029/94WR00322

8. Izgec, O., Sayarpour, M., Shook, G.M.: Maximizing volumetric
sweep efficiency in waterfloods with hydrocarbon F-Φ curves.
J. Pet. Sci. Eng. 78(1), 54–64 (2011). https://doi.org/10.1016/j.
petrol.2011.05.003

9. Jackson, M.D., Hampson, G.J., Rood, D., Geiger, S., Zhang, Z.,
Sousa, M.C., Amorim, R., Brazil, E., Samavati, F.F., Guimaraes,
L.N.: Rapid reservoir modeling: Prototyping of reservoir models,
well trajectories and development options using an intuitive,
sketch-based interface. In: SPE Reservoir Simulation Symposium.
Society of Petroleum Engineers. https://doi.org/10.2118/173237-
MS (2015)

10. Jansen, J.D., Fonseca, R.M., Kahrobaei, S., Siraj, M.M., Van
Essen, G.M., Van den Hof, P.M.J.: The egg model–a geological
ensemble for reservoir simulation. Geosci. Data J. 1(2), 192–195
(2014). https://doi.org/10.1002/gdj3.21

11. Jesmani, M., Bellout, M.C., Hanea, R., Foss, B.: Well placement
optimization subject to realistic field development constraints.
Comput. Geosci. 20(6), 1185–1209 (2016). https://doi.org/10.
1007/s10596-016-9584-1

12. Kaplan, R., Pyrcz, M.J., Strebelle, S.: Deepwater reservoir connec-
tivity reproduction frommps and process-mimicking geostatistical
methods. In: Geostatistics Valencia 2016, pp. 601–611. Springer
(2017). https://doi.org/10.1007/978-3-319-46819-8 40

13. Krogstad, S., Lie, K.A., Nilsen, H.M., Berg, C.F., Kippe, V.:
Efficient flow diagnostics proxies for polymer flooding. Comput.
Geosci. 21(5-6), 1203–1218 (2017). https://doi.org/10.1007/
s10596-017-9681-9

14. Lake, L.W.: Enhanced oil recovery. Prentice-Hall (1989)
15. Lie, K.A.: An Introduction to Reservoir Simulation Using

MATLAB/GNU Octave: User Guide for the MATLAB Reservoir
Simulation Toolbox (MRST). Cambridge University Press,
Cambridge (2019)

16. Lie, K.A., Kedia, K., Skaflestad, B., Wang, X., Yang, Y., Wu,
X.H., Hoda, N., et al.: A general non-uniform coarsening and
upscaling framework for reduced-order modeling. In: SPE Reser-
voir Simulation Conference. Society of Petroleum Engineers.
https://doi.org/10.2118/182681-MS (2017)

17. Lie, K.A., Krogstad, S., Watson, F., Borregales Reveron, M.A.:
User guide to flow diagnostics in MRST – Flow diagnostics
preprocessors for model ensembles. SINTEF Digital. https://hdl.
handle.net/11250/2687239 (2020)

18. Lorentzen, R.J., Luo, X., Bhakta, T., Valestrand, R., et al.: History
matching the full Norne field model using seismic and production
data. SPE J. 24(4), 1452–1467 (2019). https://doi.org/10.2118/
194205-PA

19. Mfoubat, H.R.N.B., Zaky, E.I.: Optimization of waterflooding
performance by using finite volume-based flow diagnostics
simulation. J. Pet Explor. Prod. Technol. 10, 943–957 (2020).
https://doi.org/10.1007/s13202-019-00803-5

20. Møyner, O., Krogstad, S., Lie, K.A.: The application of flow
diagnostics for reservoir management. SPE J. 20(2), 306–323
(2014). https://doi.org/10.2118/171557-PA

21. Natvig, J.R., Lie, K.A., Eikemo, B., Berre, I.: An effi-
cient discontinuous Galerkin method for advective transport in
porous media. Adv. Water Resour. 30(12), 2424–2438 (2007).
https://doi.org/10.1016/j.advwatres.2007.05.015

22. Nunna, K., Liu, C.H., King, M.J.: Application of diffuse source
functions for improved flow upscaling. Comput. Geosci. 24, 493–
507 (2020). https://doi.org/10.1007/s10596-019-09868-x

23. Olalotiti-Lawal, F., Hetz, G., Salehi, A., Castineira, D.: Appli-
cation of flow diagnostics to rapid production data integration
in complex grids and dual-permeability models. SPE J. 25(4),
2000–2020 (2020). https://doi.org/10.2118/195253-PA

24. Peters, L., Arts, R., Brouwer, G., Geel, C., Cullick, S., Lorentzen,
R.J., Chen, Y., Dunlop, N., Vossepoel, F.C., Xu, R.: Results
of the Brugge benchmark study for flooding optimization and
history matching. SPE Reserv. Eval. Eng. 13(03), 391–405 (2010).
https://doi.org/10.2118/119094-PA

25. Rasmussen, A.F., Lie, K.A.: Discretization of flow diagnostics
on stratigraphic and unstructured grids. In: ECMOR XIV –
14th European Conference on the Mathematics of Oil Recovery.
https://doi.org/10.3997/2214-4609.20141844 (2014)

26. Shahvali, M., Mallison, B., Wei, K., Gross, H.: An alternative to
streamlines for flow diagnostics on structured and unstructured
grids. SPE J. 17(3), 768–778 (2012). https://doi.org/10.2118/
146446-PA

27. Shook, G., Mitchell, K.: A robust measure of heterogeneity for
ranking earth models: The F-Phi curve and dynamic Lorenz
coefficient. In: SPE Annual Technical Conference and Exhibition.
https://doi.org/10.2118/124625-MS (2009)

28. Computational Geosciences Group SINTEF Digital. MRST (Ver-
sion 2020a). Zenodo. https://doi.org/10.5281/zenodo.3891372
(2020)

29. Spooner, V., Geiger, S., Arnold, D.: Flow diagnostics for
naturally fractured reservoirs. Pet. Geosci. 25(4), 490–500 (2019).
https://doi.org/10.1144/petgeo2018-136

30. Spooner, V., Geiger, S., Arnold, D.: Ranking fractured reservoir
models using flow diagnostics. In: SPE Reservoir Simulation
Conference, 10-11 April, Galveston, Texas, USA. Society of
Petroleum Engineers. https://doi.org/10.2118/193861-MS (2019)

31. Spooner, V.E., Geiger, S., Arnold, D.: Dual-porosity flow
diagnostics for spontaneous imbibition in naturally fractured
reservoirs. Water Res. Res. 57(5), e2020WR027775 (2021).
https://doi.org/10.1029/2020WR027775

32. Tanaka, S., Kam, D., Xie, J., Wang, Z., Wen, X.H., Dehghani,
K., Chen, H., Datta-Gupta, A.: A generalized derivative-
free rate allocation optimization for water and gas flooding
using streamline-based method. In: SPE Annual Technical
Conference and Exhibition. Society of Petroleum Engineers.
https://doi.org/10.2118/187298-MS (2017)

33. Tanaka, S., Onishi, T., Kam, D., Dehghani, K., Wen, X.H.:
Application of combined streamline based reduced-physics
surrogate and response surface method for field development
optimization. In: International petroleum technology conference.
OnePetro. https://doi.org/10.2523/IPTC-19958-MS (2020)

34. Thiele, M., Batycky, R., Fenwick, D.: Streamline simulation for
modern reservoir-engineering workflows. J. Petrol. Tech. 62(01),
64–70 (2010). https://doi.org/10.2118/118608-jpt

35. Torrealba, V.A., Hoteit, H., Chawathe, A., et al.: Improving
chemical-enhanced-oil-recovery simulations and reducing sub-
surface uncertainty using downscaling conditioned to tracer
data. SPE Reserv. Eval. Eng. 22(4), 1426–1435 (2019).
https://doi.org/10.2118/187276-PA

36. Trehan, S., Durlofsky, L.J.: Machine-learning-based modeling of
coarse-scale error, with application to uncertainty quantification.
Comput. Geosci. 22(4), 1093–1113 (2018). https://doi.org/10.
1007/s10596-018-9740-x

https://doi.org/10.1007/s10596-019-09864-1
https://doi.org/10.1016/j.advwatres.2008.12.010
https://doi.org/10.1029/94WR00322
https://doi.org/10.1016/j.petrol.2011.05.003
https://doi.org/10.1016/j.petrol.2011.05.003
https://doi.org/10.2118/173237-MS
https://doi.org/10.2118/173237-MS
https://doi.org/10.1002/gdj3.21
https://doi.org/10.1007/s10596-016-9584-1
https://doi.org/10.1007/s10596-016-9584-1
https://doi.org/10.1007/978-3-319-46819-8_40
https://doi.org/10.1007/s10596-017-9681-9
https://doi.org/10.1007/s10596-017-9681-9
https://doi.org/10.2118/182681-MS
https://hdl.handle.net/11250/2687239
https://hdl.handle.net/11250/2687239
https://doi.org/10.2118/194205-PA
https://doi.org/10.2118/194205-PA
https://doi.org/10.1007/s13202-019-00803-5
https://doi.org/10.2118/171557-PA
https://doi.org/10.1016/j.advwatres.2007.05.015
https://doi.org/10.1007/s10596-019-09868-x
https://doi.org/10.2118/195253-PA
https://doi.org/10.2118/119094-PA
https://doi.org/10.3997/2214-4609.20141844
https://doi.org/10.2118/146446-PA
https://doi.org/10.2118/146446-PA
https://doi.org/10.2118/124625-MS
https://doi.org/10.5281/zenodo.3891372
https://doi.org/10.1144/petgeo2018-136
https://doi.org/10.2118/193861-MS
https://doi.org/10.1029/2020WR027775
https://doi.org/10.2118/187298-MS
https://doi.org/10.2523/IPTC-19958-MS
https://doi.org/10.2118/118608-jpt
https://doi.org/10.2118/187276-PA
https://doi.org/10.1007/s10596-018-9740-x
https://doi.org/10.1007/s10596-018-9740-x


Comput Geosci

37. Willis, B.J., Sech, R.P.: Quantifying impacts of fluvial intra-
channel-belt heterogeneity on reservoir behaviour, pp. 543–572.
Wiley, New York (2018). https://doi.org/10.1002/9781119424437.
ch20

38. Xie, J., Yang, C., Gupta, N., King, M.J., Datta-Gupta, A.:
Depth of investigation and depletion in unconventional reservoirs
with fast-marching methods. SPE J. 20(4), 831–841 (2015).
https://doi.org/10.2118/154532-PA

39. Zhang, Y., Bansal, N., Fujita, Y., Datta-Gupta, A., King, M.J.,
Sankaran, S.: From streamlines to fast marching: Rapid simulation
and performance assessment of shale-gas reservoirs by use of
diffusive time of flight as a spatial coordinate. SPE J. 21(5),
1883–1898 (2016). https://doi.org/10.2118/168997-PA

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1002/9781119424437.ch20
https://doi.org/10.1002/9781119424437.ch20
https://doi.org/10.2118/154532-PA
https://doi.org/10.2118/168997-PA

	The use of flow diagnostics to rank model ensembles
	Abstract
	Introduction
	Basic flow diagnostics
	Time-of-flight
	Influence regions and volumetric partitions
	Residence-time distributions
	Measures of dynamic heterogeneity: F- diagram and Lorenz coefficient
	Sweep efficiency and fractional recovery

	Multiphase performance measures
	1D solution along forward time-of-flight
	1D solution along reverse direction of backward time-of-flight

	Results
	The Egg model
	The Norne field
	The Brugge field

	Conclusions, recommendations, and outlook
	Appendix A 
	References


