Enabling autonomous teams in large-scale agile
through architectural principles

Jan Henrik Gundelsby

Knowit
Lakkegata
Oslo, Norway

jhg@knowit.no

ABSTRACT

Teams in large-scale projects and programs need to reach
agreement on many decisions with experts, managers and
other stakeholders. The need for aligning the work and the
process with the rest of the organization reduces team au-
tonomy. Coordination by architecture is one strategy to
handle this challenge. Consequently, we did a case study of
a large-scale software program consisting of nine teams, to
understand how the architecture can enable team autonomy.
Initially teams had limited autonomy, because of high task
dependencies with other teams and experts. By introducing
an architecture based on business domains and APIs, teams
got full responsibility for a set of components, and solved
the alignment problem by letting other teams access the re-
sources through an API. The new architectural strategy can
be understood as structuring by business domains and APIs,
instead of features that span the whole code base.

CCS Concepts

eSoftware and its engineering — Collaboration in
software development; Programming teams;

Keywords

Autonomy, Self-management, System architecture, API-first,
Microservices, DevOps, Teamwork

1. INTRODUCTION

According to the agile principles, motivated and empow-
ered software developers, testers and designers - relying on
technical excellence and simple designs - create business
value by delivering working software to users at regular short
intervals. These principles have spawned many practices
that are believed to deliver greater value to customers. The
core of these practices is the idea of self-managing or au-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

tonomous teams whose members work at a pace that sus-
tains their creativity and productivity.

Large projects and programs are increasingly adopting ag-
ile development practices and most developers today report
to work in agile teams [1]. Using agile practices in large
projects creates new challenges because self-managing ag-
ile teams need to reach agreement on many decisions with
experts, managers and other stakeholders. The teams also
need to be highly aligned. If one team breaks the quality,
functionality, or change important components, it will affect
other teams. The need for aligning the work and the process
with the rest of the organization, and for coordinating deci-
sions externally, reduces team autonomy and empowerment.

Coordination by architecture is one strategy for strength-
ening team autonomy. The software architecture is the fun-
damental technical organization of a system, and for more
than forty years, researchers have argued that system archi-
tecture play an important role in coordinating development
work [2, 3]. In 1972, David Parnas [3] suggested that modu-
lar design enables independent decision making. Ovaska et
al. [4] found that participants in a large-scale distributed
project coordinated their development work through soft-
ware module interfaces. Relying on this strategy, each soft-
ware module could be developed separately, and thus the
coordination problems could be mitigated. However, expe-
rience shows that the effectiveness of coordination by archi-
tecture is limited since system modules are never truly inde-
pendent. This study aims to answer the following research
question:

How can software architecture in large-scale agile initia-
tives enable autonomous teams?

1.1 Software architecture and team autonomy

A classic definition of software architecture is given by
Clements [5]: "The software architecture of a program or
computing system is the structure or structures of the sys-
tem, which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among
them.” Every software system has an architecture because
every system can be shown to be composed of elements and
relations among them. The architecture embodies informa-
tion about how the elements relate to each other. A recent
trend within architecture is microservices architecture. It
is defined as ”an approach to developing an application as
a set of small independent services. Each of the services
is running in its own independent process” [6]. When re-

This is the accepted version of the publication. The final version is published in
XP '18: Proceedings of the 19th International Conference on Agile Software Development: Companion
https://doi.org/10.1145/3234152.3234183

lating microservice architecture to the definition of software
architecture, each software element corresponds to an inde-
pendent microservice. We use the label “component” as a
synonym for "microservice”.

In large agile projects or programs, teams are often as-
signed the responsibility for a component or collection of
components. Guzzo and Dickson [7] define an autonomous
team as “employees that typically perform highly related or
interdependent jobs, who are identified and identifiable as a
social unit in an organization, and who are given significant
authority and responsibility for many aspects of their work,
such as planning, scheduling and assigning tasks to mem-
bers, and making decisions with economic consequence.” In
their study of a large-scale agile program, Dingsgyr et al. [§]
found that the system architecture gave individual teams a
stable working environment with room for teams to design
their own local sub-architectures that contributed to team
efficiency. The architecture enabled the teams to take many
decisions regarding their work, i.e. increased the level of
autonomy.

In the following, Section 2 describes our methods, anal-
ysis and our case-study. Section 3 describes results. First
through a description of how the large-scale program was
organized to mitigate scaling challenges, and then providing
details on software reference architecture and team auton-
omy. Section 4 discusses the results and concludes.

2. METHOD

To answer our research question, we conducted a case
study[9] of a large-scale software development program. The
software development program consists of nine teams. As
this is an ongoing longitudinal case study, we are continu-
ously collecting new data. For this paper, we did a group
interview with one team (Alpha) and follow-up interviews of
two of the developers and one architect from the program.
We observed the team and collected case material such as
Jira documentation and strategy documents. The author
has since 2003 been one of the key developers and architects
in the software development program. The data included in
this paper was gathered from March to December 2017.

The author used a variety of strategies to analyze the ma-
terial. One such strategy was to describe the program and its
context in a narrative to achieve an understanding of what
was going on in the program. In the analysis, we emphasized
how events were interpreted by different participants in the
program. In this study, the interviews, documentation and
observations were compared to each other. By doing this,
some phenomena started to emerge, which were compared
to existing theories on autonomy and architecture. We then
identified, analyzed, and reported patterns (themes) that
emerged within the data by using thematic analysis.

3. RESULTS

This section present challenges related to autonomy when
scaling a development organization relying on microservices.
We present a new strategy to give the team a higher level
of autonomy, and the new organizational and architectural
setup. Lastly, we present findings on team autonomy.

3.1 Challenges scaling a development organi-
zation

Our case is a large Norwegian municipality with approx-

imately 50 000 employees, and 50 organizational units, all
varying in size, responsibilities, domain, IT-competence and
funding. The municipality have its own development pro-
gram, responsible for integrating hundreds of internal sys-
tems and is a data hub for communicating to the public
and businesses. The platform is an in-house developed ser-
vice delivery platform (SDP). A SDP enables automation
of routine activity associated with building, testing, and
deploying services, including the provisioning and ongoing
management of infrastructure services. It is the foundation
on which deployment pipelines for building, testing, and de-
ploying individual services run [10]. The SDP is built from
open source components as a foundation and run on premise.
Java, Scala and Python are used as the main programming
languages.

Since 2009 the municipality has standardized on a mi-
croservices architecture, slowly scaling both the develop-
ment organization and the number of components. In 2016
there were approximately 200 components running in pro-
duction. This resulted in several challenges: One being a
too large codebase to comprehend, as one of the developers
stated: "I don’t know what this microservice does?” "What
happens if I change X?7”, "Let’s add Y instead”. At the time,
the teams were organized as feature teams, building a feature
making it all the way to production using DevOps-principles
[11]. The developers deployed to production themselves, and
also monitored the components. Having full responsibility
of a feature gave the teams a high level of autonomy. A fea-
ture often involved changes in numerous microservices. Of-
ten developers from other teams were needed to understand
the structure and logic of the components involved, when
implementing a feature. Many dependencies made a feature
cumbersome to implement and test. As more features were
added, the program became even more complex because
different components often had different non-functional re-
quirements. One set of components required a particular
type of service level agreement. Another set of components
had different requirements to scale independently of others
and with a higher user load.

While the team was given responsibility to develop and
maintain the feature, team autonomy was limited by the
software architecture. It had become a big ball of mud. In
2016 the municipality started working on a new strategy to
maximize team autonomy, enabling teams to deliver quality
software rapidly and independently of each other.

3.2 A new architectural strategy for enabling
autonomous team

The new strategy had two goals. First, teams were given
responsibility for a collection of microservices within a busi-
ness domain, instead of having responsibility for a set of
features implemented all across the code base. A domain is
a structure which comprise software elements [5], with some
form of natural grouping. The main idea being that the
team can focus on one business domain exposing a defined
API, or other natural grouping of the microservices. Due to
practical reasons, a team could be responsible for multiple
domains.

Second, aligning API-boundaries with team boundaries
[10]. By introducing an API-centric architecture (Fig. 1),
teams are responsible for one or more domains and they ap-
ply explicit service boundaries between domains. The only
interface into a domain is through the API-component, no

This is the accepted version of the publication. The final version is published in
XP '18: Proceedings of the 19th International Conference on Agile Software Development: Companion
https://doi.org/10.1145/3234152.3234183

Consumer

eam A - responsibility

:Component

Team B - responsibility]

-

.

Message-
broker

|

|

I

I

[

L e

|

;
I

| Component
-

S |

Figure 1: API-centric architecture

exceptions are made. An API-centric architecture, is anal-
ogous with the "API-mandate” famously issued by Amazon
CEO Jeff Bezoz [12].

3.2.1 Program setup

When the new strategy was decided, the program con-
sisted of a project management team with solution architects
and managers, 80 developers organized into nine develop-
ment teams and one infrastructure/platform-team providing
the SDP to the development teams. The goal of the SPD
was to enable teams to deploy code to production, create
their own test environments and experiment with different
tools and technology. Each team had a product owner, was
co-located in open office spaces, conducted a daily stand-up
meeting [13], but there was is no governance in place for ag-
ile practices across teams. Teams followed Kanban, Scrum,
or could pick the practices from the agile method best suited
for the team. Working remotely (e.g. from home) was al-
lowed, but not encouraged. For task management and plan-
ning the program relied on Jira. A Scrum-of-Scrums [14]
were conducted every Monday. Every second week three co-
ordination activities were conducted. 1) an internal team
lead-meeting discussing the internal workings of teams, 2)
and an architect-forum focusing on strategy, platform and
other national initiatives relevant for the municipality, 3)
a demo day where teams presented their latest progress to
everyone interested.

3.2.2 Team setup and autonomy

All teams are run by the mantra ”if you build it, you run
it” [15], meaning that developers are also doing operations
and are in full control of the application lifecycle. A team
consists of people with the combined competence to imple-
ment, test and deploy into production. Within the domain
strategy, all components can be deployed independently and
the team is responsible for the internal structure of the do-
main, planning, scheduling and assigning tasks to members.
Each domain has its own version control of the team’s com-
ponents, and only team members can deploy code to produc-
tion. The code is open to other teams, and pull requests can
be created by other teams, but the code has to be approved
and deployed by the team responsible for the component.
All teams have full responsibility for one or several domains
except one team that was responsible for shared functional-

ity, shared libraries and frameworks. This team had many
dependencies to others, and therefore experienced problems
with task dependencies. Team size is scaled with the number
of components they are responsible for, splitting the team
and domains if necessary.

Team Alpha is a small team with four members includ-
ing the team lead. The members work for three different
consulting companies. The team has responsibility for 38
components. The team lead has time developing code and
mentoring people on the team by e.g. doing code reviews.
Team Alpha delivers software regularly, and the product has
received a high degree of attention in the organization. At
one point they even won a price for their product. On the
architectural side of things, the dependencies to other teams
are few and well-defined via APIs. When making changes
to components almost all changes are done to components
well-known and owned by the team. The domain is rela-
tively simple to understand and has a stable API.

4. DISCUSSION AND CONCLUSION

This is an ongoing study where we have studied nine
teams, one of them in more depth. We will now discuss
our research question

4.1 (RQ) How can software architecture in
large-scale agile initiatives enable
autonomous teams?

We have described how a large-scale program changed
structure of the system (the architecture) to enable auto-
nomous teams. Before the architectural change, teams had
the full responsibility of a set of features (development, main-
tenance and operations). However, teams could not make
decisions regarding their plans, schedules or task without
discussing and negotiating with other teams or experts. That
is, the old architecture resulted in a constant need for align-
ment and coordination that reduced the team autonomy be-
cause of high task dependency. Task dependencies refer to
conditions where completion of one task is necessary before
the next can begin [16]. The new architectural strategy, or-
ganized according to business domains and APIs, enabled
the teams to have full responsibility for a set of compo-
nents, and solved the alignment problem by letting other
teams access the domain through an API (Figure 1). The
new architectural strategy can be understood as structur-

This is the accepted version of the publication. The final version is published in
XP '18: Proceedings of the 19th International Conference on Agile Software Development: Companion
https://doi.org/10.1145/3234152.3234183

ing by domains and APIs, instead of features that span the
whole code base.

By introducing the domain concept, team goals became
clearer since a team then handled a business domain. Clar-
ity of organizational goals increases team performance of au-
tonomous teams [17]. While teams became more autonomous
we found that the team responsibility for shared functional-
ity, shared libraries and frameworks, still had many depen-
dencies to other teams and therefore low autonomy. While
the architectural strategy is important we found that the
self-service platform supported autonomy. In addition to
deploy code to production, teams could then create their
own test environments and experiment with different tools
and technology.

4.2 Implications for practice

We believe that our study has the following main impli-
cations for practice:

Find the right type of domain. Three strategies are
1) a team is responsible for an end-user product and put
all components related to the product in one domain or 2)
mapping a team to an organizational unit. 3) Components
may have different non-functional requirements, e.g. some
have a 24/7 SLA. In this case, it may be necessary to group
components with the same service level agreement in the
same team domain.

Modify the service boundaries continuously. If a
team is not able to deliver features independently, it is essen-
tial to continuously modify the service boundaries accord-
ingly. Practitioners often refer to Conway’s Law [18] when
using this method, suggesting evolving your team and or-
ganizational structure to promote your desired architecture.
This is also referred to as the "Inverse Conway manoeuvre”
[19].

Implement API versioning and management. The
external domain API that other teams depend on needs to
be stable. Versioning and API-management of an API are
critical, meaning that other teams can rely on the stability
of external domains and its components. API-management
therefore need to include properties such as well-documented
APIs, well-defined service level agreements (SLAs), authen-
tication and authorization and knowing who is using the
API so it can evolve in a safe manner.

4.3 Conclusion and further work

We found that a architecture organized by domains with
API’s and service boundaries, and a self-service platform
enables team autonomy. Our findings point out a number
of directions for future research. We plan to collect data
from more teams to understand the coordination challenges
and if different types of business domains influence team
autonomy. Further, there is a need to understand how to
increase autonomy in teams responsible for shared function-
ality, shared libraries and frameworks. Finally, as domain
change, there is a need to understand how such changes in-
fluence autonomy.

5. REFERENCES

[1] Viktoria Stray, Nils Brede Moe, and Gunnar R.
Bergersen. Are daily stand-up meetings valuable? a
survey of developers in software teams. In Agile
Processes in Software Engineering and FExtreme
Programming (XP2017). Springer, (in press).

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]
(12]

(13]

(14]

(15]
(16]

(17]

(18]

(19]

James D Herbsleb and Rebecca E Grinter.
Architectures, coordination, and distance: Conway’s
law and beyond. IEEE software, 16(5):63-70, 1999.
David Lorge Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053-1058, 1972.

Paivi Ovaska, Matti Rossi, and Pentti Marttiin.
Architecture as a coordination tool in multi-site
software development. Software Process: Improvement
and Practice, 8(4):233-247, 2003.

Paul C Clements. Software architecture in practice.
Diss. Software Engineering Institute, 2002.

Namiot Dmitry and Sneps-Sneppe Manfred. On
micro-services architecture. International Journal of
Open Information Technologies, 2(9), 2014.

Richard A Guzzo and Marcus W Dickson. Teams in
organizations: Recent research on performance and
effectiveness. Annual review of psychology,
47(1):307-338, 1996.

Torgeir Dingsgyr, Nils Brede Moe, Tor Erlend Faegri,
and Eva Amdahl Seim. Exploring software
development at the very large-scale: a revelatory case
study and research agenda for agile method
adaptation. Empirical Software Engineering,
23(1):490-520, 2018.

Robert K Yin. Case study research and applications:
Design and methods. Sage publications, 2017.

Jez Humble, Joanne Molesky, and Barry O’Reilly.
Lean enterprise: How high performance organizations
innovate at scale. ” O’Reilly Media, Inc.”, 2014.

Mike Loukides. What is DevOps? ” O’Reilly Media,
Inc.”, 2012.

Martin Fowler. Who needs an architect? IEEE
Software, 20(5):11-13, 2003.

Viktoria Stray, Nils Brede Moe, and Dag I. K.
Sjoberg. The daily stand-up meeting: Start breaking
the rules. IEEE Software, (in press), 2018.

Maria Paasivaara, Casper Lassenius, and Ville T
Heikkila. Inter-team coordination in large-scale
globally distributed scrum: Do scrum-of-scrums really
work? In Proceedings of the ACM-IEEE international
symposium on Empirical software engineering and
measurement, pages 235-238. ACM, 2012.

C O’Hanlon. A conversation with verner vogels, 2006.
Diane E Strode. A dependency taxonomy for agile
software development projects. Information Systems
Frontiers, 18(1):23-46, 2016.

Erik Gonzalez-Mulé, Stephen H Courtright, David
DeGeest, Jee-Young Seong, and Doo-Seung Hong.
Channeled autonomy: The joint effects of autonomy
and feedback on team performance through
organizational goal clarity. Journal of Management,
42(7):2018-2033, 2016.

Melvin E Conway. How do committees invent.
Datamation, 14(4):28-31, 1968.

Rebekka Parsons. Inverse conway maneuver.
https://www.thoughtworks.com /radar/techniques/inverse-
conway-maneuver,

2015.

This is the accepted version of the publication. The final version is published in
XP '18: Proceedings of the 19th International Conference on Agile Software Development: Companion
https://doi.org/10.1145/3234152.3234183

