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Abstract
Water-induced landslides pose a great risk to the society in Norway due to their high frequency and capacity to evolve in 
destructive debris flows. Hydrological monitoring is a widely employed method to understand the initiation mechanism of 
water-induced landslides under various climate conditions. Hydrological monitoring systems can provide relevant informa-
tion that can be utilized in landslide early warning systems to mitigate the risk by issuing early warnings. These monitoring 
systems can be significantly enhanced, and wider deployments can be achieved through the recent developments within the 
domain of the Internet of Things (IoT). Therefore, this study aims to demonstrate a case study on an automated hydrological 
monitoring system supported by the IoT-based state-of-the-art technologies employing public mobile networks. Volumetric 
water content (VWC) sensors, suction sensors, and piezometers were used in the hydrological monitoring system to monitor 
the hydrological activities. The monitoring system was deployed in a case study area in central Norway at two locations of 
high susceptible geological units. During monitored period, the IoT-based hydrological monitoring system provided novel 
and valuable insights into the hydrological response of slopes to seasonally cold climates in terms of VWC and matric suc-
tion. The effects of rainfall, snow melting, ground freezing, and thawing were captured. The current study also made an 
attempt to integrate the collected data into a physical-based landslide susceptibility model to obtain a more consistent and 
reliable hazard assessment.
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Introduction

A landslide is defined as the downslope movement of soil, 
rock, and organic materials under the effects of gravity. The 
adverse consequences of landslides such as fatalities, inju-
ries to people, economic losses, and environmental damages 

are well known and documented in the literature (Froude 
and Petley 2018; Haque et al. 2019; Lacasse et al. 2010; 
Nadim et al. 2006; Petley 2012). According to the statistics 
of the Centre for Research on the Epidemiology of Disasters 
(CRED 2021), the Emergency Events Database, retrieved 
in November 2021, roughly 488,000 deaths happened since 
2000 due to natural hazards associated with landslides, 
which also includes ground movement due to earthquakes. 
According to the database, the overall value of damages and 
economic losses, directly or indirectly related to landslides, 
was estimated to be over US$ 310 billion since 2000.

Landslides can be triggered by a wide range of factors 
including rainfall, snow melt, earthquakes, human activities, 
erosion, or a combination of different phenomena. Among 
different triggering factors, water is mainly involved in the 
majority of slope destabilizations (Michoud et al. 2013; 
Pecoraro et al. 2018). Water-induced landslides are one of 
the major hazards in Norway due to their high frequency 
on hillsides and capacity to turn into a high-speed destruc-
tive debris flow. They might be triggered by extreme rainfall 
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events, snow melt, or a combination of rainfall and snow 
melt. Such water-induced landslides can be initiated due to 
the increase in the soil water content and increasing soil 
weight, loss of soil suction, erosion, or artesian pressure.

The slopes in hillsides are usually unsaturated before 
landslide initiation (Bordoni et  al.  2015). The behav-
ior of unsaturated slopes depends highly on volumetric 
water content (VWC) and corresponding changes in suc-
tion (SafeLand 2012). Triggering events such as rainfall or 
snow melting lead to an increase in VWC and reduction in 
suction values, both of which are the parameters affecting 
unsaturated shear strength and eventually stability of the 
slopes. At the instant of water-induced landslide initiation, 
initiated slope might be either saturated with positive pore 
pressure due to perched water table or unsaturated with the 
presence of suction. Several studies performed hydrologi-
cal monitoring in hillsides in order to clarify the underlying 
initiation mechanism of water-induced landslides (Bordoni 
et al. 2021, 2015; Crawford et al. 2019; Godt et al. 2009; 
Kim et al. 2021; Smith et al. 2014; Wei et al. 2020). Hydro-
logical monitoring can provide important insights into 
the hydrological processes occurring in similar slopes 
(Comegna et al. 2016) such as water infiltration and cor-
responding changes in VWC and suction (Li et al. 2005).

In the study of Godt et al. (2009), landslide occurrence 
was reported in a natural slope under partially saturated con-
ditions based on the hydrological monitoring data. The study 
revealed that VWC and matric suction data can be used to 
predict the occurrence of partially saturated shallow land-
slides by employing the method of infinite slope stability for 
unsaturated conditions (Lu and Godt 2008). Similarly in the 
literature, the hydrological monitored data on the VWC and 
suction were excessively employed in combination with the 
infinite slope stability method for unsaturated conditions to 
assess the stability condition of slopes (Bordoni et al. 2015; 
Kim et al. 2021; Wei et al. 2020; Yang et al. 2019). Addi-
tionally, Song et al. (2021) employed hydrological monitor-
ing in an early warning system with the hazard levels based 
on the monitored parameters and corresponding stability 
assessment.

In this study, we examined a landslide-prone study area 
in central Norway where the landslide events initiate mainly 
due to intense rainfall events, snow melting, or a combina-
tion of them. To understand the initiation mechanism, hydro-
logical monitoring systems were deployed at two locations 
with two geological units, which are susceptible to sliding. 
Hydrological activities were monitored with VWC sensors, 
suction sensors, and piezometers. In practice, such moni-
toring systems have been challenging due to conventional 
monitoring systems including costly sensors, inflexible 
cable-based systems, limited scalability and flexibility, and 
regular maintenance. However, new, small, and less expen-
sive types of wireless sensors for monitoring geotechnical 

parameters started to emerge in the market, being inspired 
by the enabling technology of the Internet of Things (IoT). 
Several research studies on adopting the IoT concept in land-
slide monitoring (Abraham et al. 2020; Bhosale et al. 2017; 
Chaturvedi et al. 2018; Hou 2018) indicate that IoT can 
improve conventional monitoring with the provision of cost 
efficiency, flexibility, and ease to scale the system. There-
fore, the hydrological monitoring system, in this study, was 
developed based on the state-of-the-art IoT technology 
employing public mobile networks. This provided more effi-
cient deployment and operation of the monitoring system 
compared to the conventional systems. The architecture of 
the developed system was demonstrated by means of func-
tional roles in typical IoT-based systems. Through deployed 
IoT-based hydrological monitoring system, valuable insights 
into the hydrological response of the slopes to seasonally 
cold climate conditions in Norway were obtained. The usage 
of collected data in landslide prediction over the study area 
was illustrated through an automated physical-based model, 
as an attempt to provide a basis for an early warning system.

On this background, the remainder of the paper is struc-
tured as follows: the “Background in IoT” section provides 
the background in IoT and the typical system architecture 
with the functional roles in an IoT ecosystem. This section 
will serve as a baseline for the IoT application of the current 
study. In the “Deployed IoT-based hydrological monitor-
ing system” section, the deployed IoT-based hydrological 
monitoring system will be presented. Then, the “Case study 
of the IoT-based hydrological monitoring system” section 
will present the study area, the deployment of the system 
in the field, and data acquisition and interpretation of col-
lected data. The “Data processing and early warning strate-
gies” section will provide data processing and early warning 
strategies as an attempt to assess the stability condition over 
the study area based on collected data via a physical-based 
model. Finally, the “Discussion” section focuses on several 
discussion points, and the “Summary” section summarizes 
the paper.

Background in IoT

Over the last two decades, employing wireless sensors to 
monitor hydrological conditions has gradually moved from 
being an idea towards reality. As an example, Anumalla et al. 
(2005) pointed out the need for cost-efficient groundwater 
measurements, suggesting “the development of an infra-
structure for acquiring, transferring and analyzing real-time 
data” using a modified Wi-Fi network. Some 15 years later, 
several companies now offer wireless groundwater sensor 
networks, using various wireless solutions (e.g., Trimble 
Water 2021; Worldsensing 2021). However, the geotechni-
cal community is still lacking a unified and de facto standard 
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for wireless communication, not being anywhere close to the 
availability in personal communication and Internet access 
brought forth by Wi-Fi, 3G, and 4G.

For the employment of the IoT within the geotechnical 
engineering domain, one could benefit from some guid-
ance on the IoT concept. One such guide can be found with 
the International Telecommunication Union (ITU), which 
issued a recommendation (ITU 2012) that aimed to provide 
an overview of the IoT with the main objective of highlight-
ing this important area for future standardization. This rec-
ommendation can provide a baseline and reference for IoT 
applications within the geotechnical engineering domain. 
ITU (2012) states that the IoT can be perceived as a far-
reaching idea with technological and societal implications. 
This is followed up by a high-level technical overview and 
generic requirements but without any specific details on 
technologies or quantifiable characteristics. ITU does how-
ever introduce an IoT reference model, consisting of four 
distinct layers with associated capabilities. Furthermore, 
ITU extends the IoT reference model with an IoT ecosystem 
model, adding the human user as an integral part of the IoT 
ecosystem.

The IoT reference model consists of four distinct layers, 
shown on the left part of Fig. 1, being the Device, Network, 
Platform, and Application layers. The Device layer consists 
of electronic devices that interact with physical objects and 
the environment, typically being sensors or actuators. These 
electronic devices will typically use a Network layer to com-
municate with a Platform layer.1 The Network layer includes 
any physical or logical network providing access to a larger 
communication network (e.g., the Internet). The Platform 
layer will, on the other side, include any services related to 
data storage, basic data processing, and device management. 
This way, the Network layer addresses transportation of data, 
while the Platform layer addresses storage and processing 
of data. Finally, the Application layer performs application-
specific processing, evaluation, and presentation, based on 
data retrieved from the Platform layer.

In the IoT ecosystem model, shown on the right side 
of Fig. 1, the four layers from the IoT reference model are 
transformed into four roles that cover the exact same func-
tionality as the layers. These roles are conveniently called 
Device, Network, Platform, and Application. However, the 
ecosystem model also introduces a fifth role, the User,2 who 
receives information from the Application role. Although the 
addition of the User role may seem both trivial and obvious, 
this extension explicitly acknowledges that no system can 
be regarded complete without a beneficiary. It also directs 
attention to the importance of addressing user needs when 
developing any technical system. Therefore, this study will 
use the IoT ecosystem model as a reference on how to under-
stand and develop any IoT system.

Deployed IoT‑based hydrological monitoring 
system

Figure 2 illustrates an overall concept of IoT-based hydro-
logical monitoring and early warning system with the five 
functional roles in an IoT ecosystem shown in Fig. 1. In the 
Device layer, the sensors should be selected based on the 
triggering mechanism of the landslides and are responsible 
for sensing, actuating, controlling, and monitoring activi-
ties (Ray 2018). The monitored data is transferred to the 
Platform layer by the Network layer, which may involve 
different technologies depending on the network solutions, 
e.g., public mobile networks, satellite services, or unlicensed 
wireless technologies such as LoRa, Sigfox, and Wireless 
M-Bus. The Platform layer can then serve as a provider of 
data for hydrological monitoring and early warning systems, 
based on either local or cloud-based data storage and basic 
processing services. In the Application layer, the data from 
the Platform layer might be used to assess the stability con-
ditions of a single slope or, more generally, slopes over a 
landslide-prone region. This can be done by relating the col-
lected data to the stability conditions by defining threshold 

Fig. 1   The four layers of the 
IoT reference model as defined 
by ITU (to the left) and the cor-
responding functional roles in 
an IoT ecosystem (to the right) 
(modified after ITU 2012)

1  Note that ITU references the “Platform layer” as “Service support 
and Application support layer”.

2  Note that ITU references the “User” role as “Application customer”.
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values for different warning levels based on the monitored 
parameters or by utilizing physical-based models or data-
driven approaches (e.g., machine learning algorithms). The 
Application issues warnings or transmits the landslide stabil-
ity conditions to the User. The User could, for instance, be 
either a professional user representing authorities or infra-
structure owners or residents/public that are exposed to the 
landslide risk in an area of relevance.

This paper focuses mainly on two of the aspects, namely 
how the Device role can be implemented using public 
mobile networks and how the collected data can be utilized 
in the Platform layer to understand the hydrological pro-
cesses important for the stability of slopes over the study 
area. The other three roles, Network, Application, and User 
will play a less prominent part within this paper. However, 
they are still included to a certain detail as they are essen-
tial when it comes to establishing a fully operational IoT 
ecosystem.

Development of the device, network, and platform

Figure  3 illustrates the developed system architecture 
through the functional roles for the IoT ecosystem. Rep-
resenting the Device role in Fig. 3, the IoT Devices were 
constructed, each consisting of two excitation units sup-
porting one piezometer each, one Sparkfun Thing Plus 
Artemis microcontroller board providing interfaces to all 
the external sensors, one Nordic Thingy:91 Prototyping 
Platform communication module providing 4G connectiv-
ity through public mobile networks, and one battery pack 
providing power to the IoT Device. For each IoT Device, 
a sensor suite of up to three VWC sensors, three suction 
sensors, and two piezometers was supported. Each sensor 
was to be sampled every 15 min, with wireless transmission 
of the acquired measurements once every hour using the 
public mobile (4G) network. Furthermore, the IoT devices 
were required to operate on battery for 12 months without 
any maintenance. Regarding the selection of communication 

solution, the motivation for employing the public mobile 
network was to investigate how emerging 4G-based IoT 
technologies, intended for machine-type communication 
would work in practice, with regard to both technical inte-
gration and deployment in the field. Within the 4G/LTE3 
standard, Narrowband IoT (NB-IoT) and Long Term Evo-
lution Machine Type Communication (LTE-M) were con-
sidered to be the most relevant technologies for long-term 
sensors, as both are directed at machine-type communica-
tion (Höglund et al. 2017). The difference between them lies 
mainly in flexibility and cost: NB-IoT is focused on low-cost 
and low-power applications for stationary devices (e.g., sen-
sors), while LTE-M supports higher data rates and handover 
to neighboring cells at the cost of somewhat higher power 
consumption (Höglund et al. 2017). This may indicate that 
NB-IoT is a reasonable choice for geotechnical applications, 
supporting long-time operation in fixed positions. However, 
several manufacturers provide combined chipsets for NB-IoT 
and LTE-M (e.g., Nordic Semiconductor 2021), and within 
the field of professional geotechnical monitoring, it may 
be expected that flexibility is more important than extreme 
low-cost communication. Thus, the Nordic Thingy:91 Pro-
totyping Platform, being built upon the RF9160 System-in-
Package by Nordic Semiconductor supporting both LTE-M 
and NB-IoT, was selected as the communication module for 
the IoT Device.

Representing the Network role in Fig.  3, the public 
Mobile network provided wireless 4G coverage in the entire 
study area. As this service was commercially available at the 
time of the case study, the project’s work on network cov-
erage was limited to acquiring relevant subscriptions with 
relevant Norwegian national mobile operators and verifying 
connectivity in the study area. Due to practical issues related 

Fig. 2   The overall concept of the IoT-based hydrological monitoring of water-induced landslides and early warning systems (modified after 
Oguz et al. 2019)

3  The terms 4G and LTE can for all practical purposes be used inter-
changeably. However, from a technical point of view, “4G” refers to a 
set of requirements for mobile access, while “LTE” refers to a specific 
technology that fulfills the “4G” requirements (Dahlman et al. 2016).
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to the selected subscriptions and national rollout plans for 
NB-IoT and LTE-M, the IoT Devices were configured to 
make use of the LTE-M part of the 4G network.

Representing the Platform role in Fig. 3, the sensor meas-
urements were transmitted to a cloud-based Relay server, 
implemented on a virtual Linux server. The Relay server 
received UDP messages from the IoT Devices and forwarded 
these to a cloud-based database running on a commercial 
web hotel. The database served as persistent storage for 
sensor measurements and provided an external application 
programming interface (API) for downloading sensor meas-
urements over the Internet in CSV format.

For the Application role in Fig. 3, any software that uses 
the data that has been made available through the database 
should be regarded as an application. In this paper, the 
Application role is being manifested by the data processing 
and early warning strategies with an attempt to assess the 
stability condition over the study area based on collected 
data via a physical-based model in the “Data processing and 
early warning strategies” section.

During the past decade, there have been several devel-
opments on IoT-based systems for landslide prediction and 
early warning with different architectures and varying tech-
nologies in Device and Network layers. Some of these stud-
ies, e.g., Chaturvedi et al. (2018), Khaing and Thein (2020), 
Pathania et al. (2020), Soegoto et al. (2021), and Sruthy et al. 
(2020), showed the feasibility of such IoT-based systems in 
data acquisition and transfer using different communication 
technologies. The Application roles in these studies mainly 
appear as landslide warning systems based on threshold 
levels inferred from the monitored parameters. In the cur-
rent study, the physical-based modeling was employed in 
the Application layer and provided in the “Data processing 
and early warning strategies” section. In data communica-
tion, these studies employed advancements brought forth by 
wireless solutions, such as Wi-Fi, Bluetooth, and 2G-3G/
GSM-based cellular communication. Recent developments 
in the domain of IoT applications provided new opportuni-
ties through a new networking concept, called Low Power 

Wide Area Networks (LPWANs). LPWANs address the 
limitations of abovementioned wireless solutions by pro-
viding cost- and power-efficient wireless data transmission 
over long distances. Several technologies enabling LPWAN 
deployments have been developed in the last few years 
(Mekki et al. 2019). Among them, SigFox, LoRa, LTE-M, 
and NB-IoT can be considered, currently, as leading tech-
nologies. In this study, the state-of-art networking solutions, 
NB-IoT and LTE-M, employing 4G public mobile network 
were utilized in the Network layer.

Sensors

The selection of sensors for the monitoring system is based 
on capturing the development of the main triggering con-
ditions for the landslides in the studied area, IoT system 
constraints, and the implemented landslide modeling strat-
egies. Given that the landslides are mainly triggered by the 
changes in hydrological conditions in response to rainfall 
and snow melt events, the selection of sensors is based on 
monitoring the development of hydrological conditions. 
The system consists of VWC sensors, suction sensors, and 
piezometers. Monitoring of surface-water and channel flow 
was not implemented due to the corresponding sensory 
solutions requiring power and data transfer exceeding the 
constraints of the IoT system. Although monitoring snow 
amounts would be of great value for the project, this was not 
implemented in the project due to substantial power require-
ments for such sensory solutions. However, the effects of 
snow melting and soil thawing on the development of the 
hydrological conditions are monitored indirectly with the 
VWC and suction sensors. These sensors provide tempera-
ture measurements in addition to the respective measure-
ments of VWC and matric suction. Details on the selected 
sensors are provided in the following paragraphs.

VWC is measured by soil moisture sensors, TEROS 12 
(METER Group 2021a). The sensor sends an electromag-
netic field, a 70-MHz oscillating wave to the sensor nee-
dles that charge according to the dielectric and VWC of the 

Fig. 3   System architecture and functional roles for the IoT ecosystem, including internal components of the IoT Device (Protocols: UDP: User 
Datagram Protocol, SDI-12: Serial Data Interface at 1200 baud, and  HTTP: Hypertext Transfer Protocol)
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surrounding soil medium. The sensor outputs a raw output 
voltage based on the charging time, which is proportional 
to the surrounding VWC. Then, the raw output voltage 
(mV) is converted to the VWC using a calibration equation. 
Although the manufacturer provides an average calibration 
equation for mineral soils, the custom calibration equation 
should be developed for the specific surrounding soil to get 
more accurate values, as shown in the “Laboratory tests” 
section.

Matric suction is measured by a soil water potential sensor, 
i.e., suction sensor, TEROS 21 (METER Group 2021b). The 
suction sensor measures the water potential in the engineered 
ceramic discs through the dielectric permittivity. Using the 
known soil water characteristics (SWCC) of the discs (i.e., the 
relationship between the VWC and matric suction), the matric 
suction is calculated. As the suction sensors are not affected by 
the surrounding soil type but work using the known character-
istics of the ceramic discs, calibration for a specific soil type 
is not necessary. The suction sensor output is directly in kPa, 
and no conversion is needed. The measurement range is from 
9 kPa to the air-dry state. However, the sensor is calibrated to 
provide the most accurate results in the range of 10 to 100 kPa 
with the accuracy being ± 10%. The predictions for drier cases 
rely on the linear relationship between the water potential and 
water content on a logarithmic scale.

Piezometers from the M-600 series (Geonor 2021) are 
used to measure the pore water pressure or groundwater level 
measurements. The piezometer is a vibrating wire sensor that 
measures changes in pressure based on changes in the natu-
ral frequency of a wire that is connected to a membrane that 
deforms with varying values of pressure on the membrane. 
Each piezometer is tested and calibrated in the lab by the man-
ufacturer prior to being shipped for installation. Each of the 
piezometers is supplied with a calibration chart and a conver-
sion equation to translate the frequency output of the sensor 
to pore pressure values.

Case study of the IoT‑based hydrological 
monitoring system

Study area

The study area is between Hegra and Meråker located in the 
county of Trøndelag, central Norway (Fig. 4a). The area is 
a part of the catchment of the Sjørdal river and is about 200 
km2 in size. This area was chosen for the implementation of 
a landslide monitoring system due to being prone to shallow 
landslide events, with relatively steep slopes, above 20–25°, 
and having clear evidence of recent landslide events. Addi-
tionally, the other reasons for choosing the study area are 
the availability of nearby weather stations and groundwater 
measurements and mobile network (4G) coverage.

The bedrock in the study area is composed of Proterozoic 
and Cambrian metamorphic rocks deformed during the Cal-
edonian orogenesis, covered by a thin cover of Quaternary 
deposits of different origins (Fig. 4b). A shallow cover of 
altered bedrock prevails on top of the bedrock in the western 
sector, formed on-site by physical or chemical decomposi-
tion of the bedrock. In the central and eastern sector, the 
bedrock is covered by an incoherent or thin cover of till 
deposits (also herein called moraine deposits), picked up, 
transported, and deposited by glaciers. It is usually hard-
packed, poorly sorted, and can contain everything from 
clay to stone and block. The thickness of these deposits is 
mainly less than 0.5 m, but it can be much thicker locally. 
A humus/thin peat cover can be also observed on top of 
the bedrock with a thickness of 0.2–0.5 m, locally thicker. 
Rock exposures are frequently visible in this sector. Thick 
moraine deposits (with a thickness of 0.5 m to several tens 
of meters) and colluvial deposits left by previous landslides 
are not particularly representative in the study area and can 
be observed only locally at a few places. The bottom of the 
Stjørdal valley is filled with fluvial deposits, with a thickness 
that varies from 0.5 to more than 10 m, composed of sorted 
and rounded sand and gravel material. Glaciofluvial deposits 
are also locally represented and consist of sorted, often slop-
ing layers of different grain sizes. Along the Sjørdal river 
locally, it is possible to observe marine and fjord deposits, 
that consist of fine-grained, marine deposits with a thickness 
from 0.5 m to several tens of meters.

The study area is highly susceptible to different types of 
landslides in soils, such as debris slides, clay/silty slides, 
debris avalanches, and debris flows. The area is part of the 
landslide domain called “Trøndelagkysten” (Devoli and 
Dahl 2014), where slides in clayey-silty soils are the most 
frequent landslide types during periods of intense rainfall 
or rainfall combined with intense snow melting episodes 
that produce high groundwater and high soil saturation. 
Debris slides, debris avalanches, and debris flows in moraine 
deposits were also observed. The high susceptibility of the 
study area was also confirmed by other landslide suscepti-
bility assessments performed at the national level (Devoli 
et al. 2019; Fischer et al. 2012). The analysis of the Nor-
wegian national database of mass movements (NVE n.d.), 
showed that 93 mass movements were registered in the study 
area between 1750 and 2020. Figure 5 shows the registered 
landslide events mainly along the main transportation lines 
with the regional landslide susceptibility levels. Among 
these registered landslide events, 36 events (35 landslides 
in soil and 1 slushflow) were triggered by rainfall and 
snowmelt.

As the majority of soil-related landslide events initiated 
in fluvial and moraine deposits, both types of Quaternary 
deposits were selected to be monitored. Following the 
detailed investigation in the study area, two monitoring 
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locations, which will be called “Location 1” and “Location 
2” (Fig. 4c), were selected for further investigation and the 
installation of IoT-based hydrological monitoring systems.

Location 1, Kjelberget, is a south-facing open slope, ridge 
form, slightly channelized. The bedrock is covered by the 
thick fluvial deposit on the hillside towards the bottom of 
the valley, while a thin cover of moraine deposit appears 
on the higher parts of the hill (above 80–85 m average sea 
level). Location 2, Kvernbekkneset, is also a south-facing 
slope with a clear channelized shape and two main channels 
that run along this area. The bedrock is covered by moraine 
deposits that are locally less than 0.5 m thick.

In the national database of mass movements, three land-
slide events at Location 1 and one landslide event at Loca-
tion 2 were recorded. Despite being poorly described, the 
events can be classified as flows and in the category of 
debris slide in Location 1 and debris flow in Location 2. The 
events were shallow with a small volume estimated in the 
range of 5–50 thousand m3. Pictures of the deposits found 
in newspapers revealed that all events were characterized 
by high water content. The analysis of hydrometeorological 

conditions indicated that the landslides in both locations 
were triggered by intense rainfall, with values between 60 
and 80 mm/24 h or by a combination of intense rainfall com-
bined with intense snow melting (40–60 mm/24 h of water 
supply).

Laboratory tests

For the characterization of the geological units present 
at the two monitoring locations, i.e., fluvial and moraine 
deposits, excavation trial pits on intact slopes were con-
structed, and soil samples were collected for laboratory test-
ing. In situ density measurements were performed for top 
soil crust with the water replacement test (ASTM D5030/
D5030M-21 2021) at Location 1. Additionally, laboratory 
tests including methods for water content and organic con-
tent determination, sieve analysis and hydrometer tests for 
soil classification, pycnometer test for soil specific gravity, 
and large-scale direct shear tests were performed.

The measurements of wet in  situ density resulted in 
approximately 13–15 kN/m3 at the top 0.5 m crust at both 

Fig. 4   a Study area in national and regional scale, b Quaternary geology over the study area, and c two selected monitoring locations, Location 1 
and Location 2, at detailed scale
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locations. At Location 1, the water replacement test resulted 
in a wet in situ density of 18 kN/m3 at 0.9 m depth with 
a gravimetric water content of 8.88%. Additionally, it was 
observed that the top 20–40 cm crust has much higher 
organic content than deeper depths at both locations.

Complete grain size distribution curves were obtained for 
both fluvial and moraine deposits by performing wet sieve 
analysis and hydrometer tests. Figure 6 shows the grain size 
distribution curves of both soil types. The fractions of fines, 
sands, and gravels are 12.9 – 46.3 – 40.8%, respectively, for 
fluvial deposit and 16.2 – 57.7 – 26.1% for moraine, respec-
tively. The uniformity coefficient ( c

u
 ) and coefficient of cur-

vature ( c
c
 ) of fluvial deposits are 40.1 and 0.4, respectively, 

and of moraine are 29.7 and 0.7, respectively. Both soil types 
were classified as silty sand according to the European Soil 
Classification System (ISO 14688–2:2017 2017).

For the VWC sensors, custom calibration equations were 
developed by recording sensory outputs on samples of flu-
vial and moraine deposits in a controlled lab environment 
with known values of VWC. The collected soil samples were 
saturated at different degrees of saturation level and com-
pacted to satisfy the in situ density measurements. Figure 7 
shows the calibration curves for the VWC sensors with the 
laboratory data and the calibration curve provided by the 
manufacturer. The results revealed that the raw output volt-
age values correspond to lower VWC values in comparison 

Fig. 5   Registered landslide 
events over the study area with 
regional susceptibility

Fig. 6   Grain size distribution of moraine and fluvial deposits Fig. 7   Calibration chart for VWC sensor
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to the VWC values from the manufacturer’s calibration 
equation. In Fig. 7, the values in the parentheses are the cor-
responding degree of saturation, Sr (%), for the soil samples 
used in the calibration. These custom calibration equations, 
developed for fluvial and moraine deposits individually, are 
utilized to convert the sensory reading in mV to the VWC 
values in m3m−3.

Large-scale (30 × 30  cm) direct shear tests (ASTM 
D3080/D3080M−11 2021) were performed to estimate 
soil strength parameters due to the high fraction of coarse 
particles. Soil samples were collected from the trial pits 
at both locations. Soil specimens for each soil type were 
reconstituted by compacting the samples in the shear box 
to their in situ density. The tests were conducted at drained 
conditions with a constant shear strain rate of 1 mm/min. 
Figure 8 shows the large-scale direct shear test result for 
fluvial deposits in Fig. 8a−c, and for moraine deposits in 
Fig. 8d−f. Figure 8a, d shows the shear stress recorded dur-
ing shearing under different levels of vertical stresses. As the 
fluvial deposits were in a dense state, a peak and a residual 
strength have been observed. The vertical displacement data 
in Fig. 8b also complies with the behavior of a dense soil 
sample showing an initial contraction and then dilation until 
the failure. The end-of-test condition was defined as 10–15% 
strain along the shear plane where shear stress becomes 
constant and asymptotic to horizontal after the peak. Peak 

and end-of-test strength parameters can be seen in Fig. 8c 
for fluvial deposits, and only peak strength parameters are 
shown in Fig. 8f for moraine. The results of the large-scale 
direct shear tests, namely shear strength parameters, were 
considered in the calibration of the physical-based landslide 
prediction model, which can be a basis for a landslide early 
warning system (the “Data processing and early warning 
strategies” section).

Deployment of the devices in the field

The IoT-based hydrological monitoring systems were 
deployed at both locations with two monitoring points at 
each site. Due to the presence of the water channel down 
the hillside at both locations, the monitoring points were 
located on both sides of the channels at different elevations 
to catch possible variations in the hydrological responses 
along the side of the channel. The monitoring points are 
shown in Fig. 9b for Location 1 and in Fig. 11b for Loca-
tion 2. In addition to the two monitoring points, a weather 
station (Fig. 9d) was installed at Location 1 to monitor the 
weather conditions.

The VWC and suction sensor were placed within the top 
1 m of the soil as the deposits in Location 2 were observed 
to be locally thin, with the thickness being below 1 m. These 
sensors were implemented at three depths at both locations 

Fig. 8   Large scale direct shear test results for fluvial deposits (a, b, c) and moraine (d, e, f); shear stress data (a, d), vertical displacement data 
(b, e), and determination of shear strength parameters (c, f)
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to capture some of the nonlinearity of the infiltration pro-
cess. In Location 1, the fluvial deposits were found to be 
much thicker, and the piezometers were placed at deeper 
depths to monitor potential long-term groundwater table 
variations and pore water pressure buildup.

In Location 1, the IoT-based hydrological monitoring 
setup is the full setup including two piezometers, three suc-
tion sensors, and three VWC sensors (Fig. 9a). Piezometers 
were placed at 1.25 m and 2.0 m depths at monitoring points 
D1.1 and at 1.4 m and 2.2 m depths at monitoring points 
D1.2 (Fig. 9b). Sand was filled as a filtering medium around 
the piezometers. On top of the sand fill, 10–20 cm benton-
ite was placed to prevent any vertical water passage. The 
pairs of VWC and suction sensors were installed at approxi-
mately three depths: 0.3 m, 0.5 m, and 0.9 m. VWC sensors 
were installed carefully to the sidewall of the excavated pit 

until the needles are fully inside the original undisturbed 
soil (Fig. 10a). For the suction sensors, a small hole was 
created at the sidewall, and the soil around the sensor was 
moisturized to obtain good contact between the sensor and 
the soil. Then, the moisturized soil was packed around the 
entire sensor discs to ensure full contact (Fig. 10b), and it 
was placed back to the hole on the sidewall (Fig. 10c). After 
the placement of a pair of sensors, the excavated pit was 
backfilled to preserve the in situ bulk density of the soil 
using the excavated soil until the next level of sensors. The 
IoT Device was attached to a tree or a pole at approximately 
1 m above the ground surface near the monitoring point as 
shown in Fig. 9c. Finally, the sensor cables were connected 
to the IoT Device via cable trenches and a PVC pipe along 
the pole.

Fig. 9   Location 1: IoT-based hydrological monitoring system: a sensor column with soil stratigraphy, b aerial picture with Quaternary map, c 
monitoring point D1.2, and d weather station
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As shown in Fig. 11, the IoT-based hydrological monitor-
ing setup, in Location 2, is the reduced setup including three 
suction sensors, and three VWC sensors at each monitor-
ing point: D2.1 and D2.2. The abovementioned installation 
procedures have been followed during the installation of the 
VWC and suction sensors. At point D2.2 (Fig. 11b), the 
presence of the bedrock has been observed at approximately 
1 m depth.

Data acquisition and interpretation of collected 
data

The IoT-based hydrological monitoring system started col-
lecting data on VWC, matric suction, and pore water pres-
sure in August 2020. Apart from one occurrence of hardware 
failure immediately after deployment, which was solved by 
replacing the faulty hardware, and a few instances of a short-
term network outage, the system operated with no significant 
downtime. Additionally, it should be noted that the weather 
data could not be retrieved for February 2021 due to a loose 
cable connection. The missing weather data, such as precipi-
tation, air temperature, and atmospheric pressure have been 
collected from nearby weather stations. In this section, all 

monitored data are presented and interpreted in the follow-
ing paragraphs.

Figure 12 shows the air temperature and daily precipitation 
data from the weather station. In Fig. 12a, the ground temper-
ature data retrieved from the suction sensors at D1.2 (Fig. 9b) 
are also provided for comparison purposes. The sensors at 
other monitoring points provided similar ground temperature 
values compared to the suction sensors at D1.2. The average 
air temperature was approximately 6 ℃ over the monitoring 
period and varied in the range from −20 ℃ to +30 ℃. The air 
temperature was significantly below 0 ℃ in January and Feb-
ruary 2021 with an average of approximately −7 ℃. Then, the 
air temperature started to rise above 0 ℃ from March 2021. 
Figure 12a shows that the ground temperature was more stable 
on short temporal scales compared to the variations in the 
air temperature. It was observed that the ground temperature 
generally decreased with depth when the air temperature was 
above 0 ℃. This trend reversed in October 2020 as the air 
temperature started decreasing. In the cold season, from mid-
October to almost April, the ground temperature increased 
with depth. Similar trends in ground temperature with depth 
were reported in the study of Bordoni et al. (2021). For the 
1-year monitoring data starting from August 2020, the total 

Fig. 10   a Placement of VWC 
sensor, b packing moisturized 
soil around the discs of the suc-
tion sensor, and c placement of 
the suction sensor

Fig. 11   Location 2: IoT-based 
hydrological monitoring system: 
a sensor column with soil stra-
tigraphy (D2.2), b aerial picture 
with Quaternary map
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cumulative rainfall is 1138 mm which is consistent with the 
value of 1053 mm recorded at the nearby weather station for 
the same monitoring period. From Fig. 12b, it can be seen 
that there was less rainfall from mid-November 2020 to mid-
February 2021 in the winter period.

Figures 13 and 14 show the data retrieved from the VWC 
and suction sensors at all four monitoring points: D1.1 and 
D1.2 in Fig. 13 and D2.1 and D2.2 in Fig. 14. Both fig-
ures provide VWC data with the precipitation data from the 
weather station. The VWC sensor data were converted from 
sensor output in mV to the VWC by using the custom cali-
bration equations developed for moraine and fluvial depos-
its (the “Laboratory tests” section). The VWC values were 
compared to the precipitation measurements to demonstrate 
the effects of rainfall on the VWC profile. It was observed 
that the VWC sensors responded swiftly to rainfall events. 
That is, VWC increased following the rainfall events and 
decreased in periods with less or without precipitation. In 
the monitored period, the VWC values ranged between 0.04 
and 0.27 m3m−3 at D1.1, between 0.06 and 0.35 m3m−3 at 
D1.2, between 0.09 and 0.38 m3m−3 at D2.1, and between 
0.07 and 0.45 m3m−3 at D2.2. Distinct periods of wetting 
and drying were observed at each monitoring point. High 
values of VWC were obtained in the periods of September 
to December due to intense and frequent rainfall events and 

mid-February to mid-April due to a combination of rain-
fall events and snow melt. It can be seen that the variations 
in the VWC data were different at different depths. Higher 
variations in VWC values were observed at shallow sensors, 
at 0.3 m depth, compared to the sensors at deeper depths 
with the exception of monitoring point D2.2 (Fig. 14c). At 
D2.2, the VWC at 0.9 m depth showed the highest variation 
compared to the other sensors at shallower depths. Besides, 
the VWC value exceeding 0.4 m3m−3 was only observed at 
D2.2 at the deepest VWC sensor. Both high values of VWC 
and high variations at 0.9 m depth at D2.2 were attributed to 
the existence of an impermeable boundary at 1 m depth. The 
infiltrated water accumulated at the impermeable boundary 
and resulted in high VWC values. Additionally, the lateral 
flow might also have contributed to the VWC at the imper-
meable boundary. For all monitoring points, it was observed 
that the VWC sensors at 0.3 m depth reacted first to the 
rainfall events and deeper sensors started reacting with a 
time delay. Similar to the VWC sensors, the variations of 
the matric suction at three depths were different. The suc-
tion sensors at 0.3 m depth showed, in general, the highest 
variation in matric suction and reacted first to the rainfall 
events. In addition, the VWC sensors reacted faster to the 
rainfall events compared to the suction sensors at the same 
depths. In the literature, similar observations on the VWC 

Fig. 12   Weather station data: a air temperature with ground temperature measurements retrieved from suction sensors at D1.2, b precipitation 
data with cumulative precipitation (*Data obtained from nearby weather stations)
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and suction sensor response to rainfall events, including the 
variations in the monitored values, changes in the response 
times, and variations at different depths, were reported 
(Comegna et al. 2016; Crawford et al. 2019; Li et al. 2005; 
Smith et al. 2014).

An important observation that is commonly not found in 
similar studies relates to the impact of the seasonally cold 
climate in Norway on the VWC and suction sensor read-
ings. From both Figs. 13 and 14, it can be seen that the 
VWC values at 0.3 m depth dropped significantly at the 
beginning of January 2021 when the air temperature started 

decreasing below 0 ℃ (Fig. 12). In the same cold period, 
the matric suction values at 0.3 m depth showed a sudden 
increase at all monitoring points. The decrease in VWC and 
the increase in matric suction were attributed to the freez-
ing of the pore water at 0.3 m depth. The frozen ground at 
0.3 m depth remained frozen until mid-February 2021, when 
the air temperature started to increase (Fig. 12). With the 
increase in the air temperature, the ground started to thaw. 
This caused an increase in the VWC and a sharp decrease 
in matric suction.

Fig. 13   VWC and suction sensor data for the monitoring points at Location 1: D1.1 a VWC and b matric suction, D1.2 c VWC and d matric 
suction (*Data obtained from nearby weather stations)
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The matric suction values were mainly around the sen-
sor’s lower limit (9 kPa) in the periods of August to January 
and March to mid-May. In these periods, there were frequent 
rainfall events, and the VWC values were also high. Start-
ing from mid-April 2021, a drop in VWC readings can be 
observed. It was attributed to the increasing air temperatures, 
evapotranspiration, and less frequent and less intensive rain-
fall events. During this dry period, the matric suction also 
increased considerably. The deepest suction sensors at D1.1 
(Fig. 13b) and D2.2 (Fig. 14d) reached the sensor limit at 

the dry state beginning of August 2021. Similarly, high mat-
ric suction values and suction values exceeding the sensor 
limit during the dry periods were reported in the literature 
(Li et al. 2005; Nunes et al. 2021; Smith et al. 2014). After 
mid-August 2021, the air temperature started decreasing 
to a milder level and larger intensity and frequency rain-
fall events occurred. Therefore, an increase in VWC and a 
decrease in matric suction values were observed.

The collected data reveals the difference in the response 
of VWC and suction sensors in Location 1 at D1.1 and D1.2. 

Fig. 14   VWC and suction sensor data for the monitoring points at Location 2: D2.1 a VWC and b matric suction, D2.2 c VWC and d matric 
suction (*Data obtained from nearby weather stations)
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The data retrieved from the sensors at D1.2 (Fig. 13c, d) 
show that the sensors responded even to small size precipi-
tation events and showed higher variability at each depth. 
Compared to the data collected at D1.1, the VWC data at 
D1.2 have higher values exceeding 0.3 m3m−3 at the shal-
lowest depth. These local differences in the collected data 
at Location 1 were attributed to the difference in the vegeta-
tion cover. While the monitoring point D1.2 has less dense 
vegetation cover in the form of grass (Fig. 9c), the location 
of D1.1 is more densely vegetated with tall trees, which 
prevents small precipitation amounts in easily reaching the 
ground. At Location 2, the main difference in the collected 
data, at D2.1 and D2.2, arises from the abovementioned 
presence of the impermeable boundary at D2.2.

The piezometer sensor readings at monitoring points 
D1.1 and D1.2 were converted to the pore water pressure 
in kPa. It was observed that the piezometer sensors have 
only responded to the atmospheric pressure and were not 
affected by the precipitation or air temperature (Fig. 12). In 
general, it was concluded that the converted values were not 
representing the pore pressure conditions at the study area 
and were highly under the effect of atmospheric pressure. 
This is likely due to very low or no groundwater levels at the 
positions where the piezometers were installed.

Data processing and early warning 
strategies

The collected data can be used in combination with data-
driven or physical-based landslide prediction models to 
assess the landslide hazards in the study area. Assessment 
of landslide hazard is essential in implementing landslide 
risk management strategies based on monitoring and early 
warning solutions (Dai et al. 2002). This study features an 
implementation of the physical-based landside prediction 
model, TRIGRS (Baum et al. 2008), to evaluate potentially 
unstable areas in the study area. TRIGRS is a state-of-the-art 
physical-based model that couples hydrological infiltration 
and surface runoff models with the infinite slope stability 
model to evaluate landslide susceptibility to storm events on 
local to regional levels. TRIGRS features several geotechni-
cal and hydrological model parameters (e.g., soil strength 
parameters, diffusivity) that were calibrated based on the 
conducted laboratory and field tests and the inventory of 
historical landslide events in the area that were presented in 
earlier sections.

Landslide susceptibility assessment of the study area with 
TRIGRS is automated to provide predictions of potentially 
unstable areas for a period of 48 h based on the precipita-
tion predictions for the study area and the sensory readings. 
The precipitation predictions are downloaded automati-
cally for the study area from the weather services provided 

by the Norwegian Meteorological Institute (Yr 2021). The 
sensory readings are used to update the initial groundwater 
conditions for the TRIGRS model. The initial groundwater 
conditions are adjusted to correspond to the average VWC 
values measured by the sensors in the moraine and fluvial 
deposit regions, respectively. The suction values are used 
indirectly in the updating of initial groundwater conditions 
by calibrating Gardner’s SWCC equation in the unsaturated 
formulation of the TRIGRS model (Baum et al. 2008). The 
focus in the updating of initial groundwater conditions is on 
VWC sensory readings because they provide higher resolu-
tion on the part of the SWCC with low suction values. This 
is of high importance for wet periods of the year when most 
of the landslide events occur with the soil having relatively 
high saturation levels.

Figure 15 presents an example of the landslide suscepti-
bility assessment of the study area with the factor of safety 
values for t = 0 h, 24 h, and 48 h for the precipitation predic-
tion shown in Fig. 15d. A factor of safety value below one 
indicates a landslide susceptible area, while higher values 
indicate increasing levels of stability. Note that the colors 
in the legend are only for illustration purposes to differenti-
ate different levels of the factor of safety values and do not 
represent hazard or warning levels.

As seen in Fig. 15a, the slopes in the study area are stable 
with the majority of the factor of safety values being above 
2 and the remaining between 1 and 2. Following the infil-
tration of the precipitation within the first 24 h, an overall 
decrease in the values of factor of safety can be observed 
with some areas having a factor of safety below one, as 
shown in Fig. 15b. In the following 24 h, the values of the 
factor of safety somewhat increase due to lower amounts 
of rainfall with no potentially unstable areas. These results 
illustrate the potential of IoT-based hydrological monitoring 
systems to provide relevant information that can be used in 
various data-driven or physical-based models to estimate 
landslide hazards. The system implemented in this study will 
be tested and developed further to contribute to the imple-
mentation of an early warning system for a regional or catch-
ment scale and more advanced model updating strategies 
to integrate sensory measurements into landslide modeling.

Discussion

In the implementation of a hydrological monitoring sys-
tem, it is important to have prior knowledge of the land-
slide events and the local geological setting of the study 
area. Studying landslide inventory is essential to under-
stand the most frequent type of landslides with the cor-
responding initiation mechanism and triggering condi-
tions. Additionally, landslide inventories provide a basis 
to interpret the frequency of sliding, expected dimensions, 
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and the characteristics of initiation zones. Collecting and 
interpreting the geological information helps to identify 
the landslide-prone extent and to estimate the characteris-
tics such as soil thickness and layering, geotechnical and 
hydrological properties, and groundwater level and flow. 
A comprehensive investigation of the landslide inventory 
and the geology is essential in determining the optimal 
locations to install the monitoring system and monitoring 
the relevant triggering conditions. While analyzing various 
landslide inventories, such as Norwegian database, it is 
important to assess the quality of the registered landslide 
events in the study area. Additionally, completeness of a 
landslide inventory is important to decide on the extent of 
landslide susceptible zones and locations of monitoring 
points. Remote sensing methods with automated advanced 
image processing techniques (e.g., Lu et al. 2019) have 
proved to be useful in developing complete landslide 
inventories. In a landslide inventory, errors related to the 
landslide location, type, and time of occurrence should be 
detected and corrected through quality control. Although 
this step is sometimes found to be tedious due to the diffi-
culties in collecting additional information, it enhances the 
decision-making in designing and implementing a land-
slide monitoring system with improved and more reliable 
information.

The collected data on VWC and suction provided valu-
able insights into the hydrological response of the slopes 
to the seasonally cold climate in Norway. With the current 
sensory setup, the onset of ground freezing, and thawing 
were detected with the temperature sensors, while the effects 
of snow melting on hydrological conditions were measured 
with the VWC and suction sensors. One of the main findings 
through the monitoring system is the impact of ground freez-
ing and thawing. At all monitoring points, the VWC values 
at the shallowest depth of 0.3 m dropped sharply due to the 
freezing of the soil crust layer, and the matric suction val-
ues increased simultaneously. Then, opposite changes were 
observed due to the thawing following the increase in the air 
temperature. The VWC data revealed that the intense and 
frequent rainfall events and combination of rainfall and snow 
melting resulted in high values of VWC in the ground. The 
suction sensors showed very low matric suction values over 
the large part of the year showing that the ground mainly had 
a high degree of saturation. However, very high matric suc-
tion values were also observed in the case of ground freezing 
and the summer period with no substantial rainfall events.

The VWC sensors were calibrated for the soil types at the 
locations of deployment as the readings are affected by the 
surrounding soil type. The calibration is highly important to 
understand the response; otherwise, inaccurate VWC data 

Fig. 15   Landslide susceptibility assessment of the study area with the factor of safety values for a t = 0 h, b t = 24 h, c t = 48 h, and d precipita-
tion prediction within the considered 48 h period
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might be obtained. The overall performance of the VWC 
and suction sensors in responding to the rainfall events and 
snow melting was fulfilling. One shortcoming of the sensory 
setup was regarded as suction sensors not covering the suc-
tion range below 9 kPa. This would be important to reveal 
the soil–water characteristics at highly saturated conditions. 
Additionally, piezometer readings were mainly affected by 
the fluctuations in atmospheric pressure, and no data repre-
senting the pore pressure conditions could be obtained. This 
was attributed to installing piezometer sensors in unsaturated 
zones where there was no groundwater during the monitored 
period.

The collected data on VWC and matric suction provided 
valuable information that can be utilized to reduce landslide 
risks in the study area through the deployment of an early 
warning system. Early warning systems are often employed 
as a cost-efficient landslide risk management measure in 
comparison to alternatives such as costly engineering solu-
tions and restrictive areal planning measures (Calvello 2017; 
Dai et al. 2002). Monitoring the hydrological response of 
sloped terrain can be used in combination with physical-
based or data-driven landslide models to estimate hazard 
levels in the area (e.g., Song et al. 2021). The estimated haz-
ard levels can provide a basis for issuing timely warnings, 
for example, to evacuate people or close roads or railways 
to reduce the consequences. Integration of sensory data in 
landslide models is important to extrapolate the information 
on hydrological conditions from several monitoring loca-
tions to the study area spanning several hundreds of square 
kilometers. Such integration will be crucial to understand 
in situ conditions for an accurate prediction of landslide haz-
ards (Abraham et al. 2020). Long-term collection of sensory 
data is important for developing reliable physical-based and 
data-driven landslide models. Physical-based landslide mod-
els have the advantage of being based on physical laws that 
can often provide accurate landslide predictions given the 
known values of various model parameters. However, these 
parameters are often uncertain due to the costly and time-
consuming field and laboratory tests required to estimate 
them. Long-term data on hydrological conditions can be 
used to reduce uncertainties in the model parameters through 
the calibration of physical-based models. Similarly, long-
term data can be used to improve the reliability of data-
driven models by expanding the training dataset with more 
extreme events (e.g., rainfall with a 10-year return period).

The implemented IoT-based hydrological monitoring sys-
tem has some limitations. These are reflected mainly in the 
limited numbers of sensors, sensory locations, and sensor 
types. Additional sensory locations across the study area 
with more sensors per location would contribute to obtain-
ing better insight into the variations of various triggering 
parameters across the relatively large study area. Similarly, 
monitoring additional important parameters such as slope 

deformations and snow amounts would be of great impor-
tance for detecting the onset of slope failure and predicting 
the slope stability conditions during soil thawing and snow 
melting events. As indicated earlier, these events present 
some of the most critical triggering conditions for landslides 
in the study area.

Typical cost components for wireless communication 
are device costs, infrastructure costs, subscription costs, 
deployment costs, and maintenance costs. The connectivity 
expenses of an IoT system will thus vary depending on the 
selected communication technology and on the possibility 
of employing existing communication infrastructures. In this 
study, a 4G-based communication solution based on low 
power wide area networks proved to be cost-efficient with 
no infrastructure costs and low costs for devices, subscrip-
tions, deployment, and maintenance. Regarding deployment 
and operation of the 4G-based IoT Devices, this proved both 
effortless and reliable. During the system operation, some 
of the IoT Devices experienced minor periods of network 
outage, but nothing that reduced the quality of the data 
acquisition. If the IoT Devices were a part of an opera-
tional early warning system, such outages would however 
be more critical, particularly if they happen during periods 
of increased landslide risk. A major task for further devel-
opment and implementation hence is to provide robust and 
resilient elements throughout the whole system. Thus, an 
IoT ecosystem that addresses safety issues may require a 
more formal collaboration with the mobile network opera-
tors, to ensure reliable operation. Although the system per-
formance after 1 year seems promising, monitoring systems 
are often designed and developed for long-term monitoring 
over several years or decades. Similarly, the performance of 
the implemented system will be monitored in the years to 
come. Additionally, the authors expect that the continuous 
evolution and rapid development within IoT technology will 
allow for further optimizations of IoT-based hydrological 
monitoring systems in terms of efficiency and reliability.

Regarding the development of the IoT ecosystem, select-
ing a suitable communication solution will be a fundamen-
tal task that lays the foundation for several other activities 
throughout the lifespan of the system. As this study aimed 
at employing the public mobile network, its focus was 
exclusively on 4G-based solutions. Still, there is a need to 
make a decision on whether to support NB-IoT, LTE-M, 
or both. One would also need to ensure that the relevant 
mobile communication services are deployed in the field of 
interest and that the mobile network operators provide suit-
able subscriptions. If considering international deployments, 
one may also want to consider subscriptions with roaming 
agreements, thus lowering the cost and effort for entering 
a global market. While these questions, at first sight, may 
seem quite intelligible, they may however be affected by 
both the technological and commercial development in the 
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mobile network sector. As the global IoT market is expected 
to grow more than 20% annually over the next 5–10 years 
(Gartner 2019), one should be aware of the risk that network 
operators, and technology providers may focus on short-term 
benefits and strategic positioning, instead of long-term cus-
tomer benefit. Therefore, doing elaborate considerations on 
the long-term requirements of an IoT ecosystem may be ben-
eficial, to ensure settling for a communication solution that 
is as sustainable and future-proof as possible.

Summary

This study provided an overview of a case study on IoT-
based hydrological monitoring of water-induced landslides 
in central Norway and highlighted several important find-
ings on the implementation of IoT-based monitoring sys-
tems. The system utilized the state-of-the-art IoT technology 
that employs 4G public mobile networks. This provided an 
effortless monitoring operation with automated real-time 
data collection. The monitoring locations were decided 
through a detailed investigation of the study area in terms 
of geological setting and landslide inventory. The collected 
data on hydrological activities in terms of VWC and mat-
ric suction provided novel and valuable insights into the 
hydrological responses of slopes in seasonally cold climates. 
The effects of rainfall, snow melting, ground freezing, and 
ground thawing on the monitored parameters were observed. 
Very high values of volumetric water content were observed 
during the periods of snow melting or rainfall. The collected 
data and gained knowledge on the hydrological response of 
the slopes can be of high value to future efforts in reducing 
landslide risks through early warning system and supporting 
digital transformation in managing geohazards risks with 
IoT technologies. Besides, the current study provided an 
example of how the collected data could be used to obtain 
better hazard assessments for a regional scale early warning 
system.
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