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Abstract—In this paper, we consider a wireless sensor network
of nodes at the sea surface drifting due to wind and sea currents.
In our scenario an Unmanned Aerial Vehicle (UAV) will be used
to gather data from the sensor nodes. The goal is to find a
flyable path which is optimal in terms of sensor node energy
consumption, total channel throughput between the UAV and
sensor nodes, flight time for the UAV and frequency of the
node visits by the UAV. Finally, the path should also be optimal
concerning node position estimation uncertainty. A Kalman Filter
(KF) is used to estimate the nodes motions and Particle Swarm
Optimization (PSO) is the method used to calculate the UAV
path taking all of these objectives into account. The proposed
node tracking aware path planning solution is compared to two
other scenarios: One where the path planning is based on full
knowledge of the node positions at all times, and one where path
planning is based on the last known positions of the nodes.

I. INTRODUCTION

Wireless sensing nodes in this paper are assumed to
have limited battery capacity, i.e. they cannot harvest energy
from their surroundings. These nodes, however, can sense
and determine some environmental parameters such as the
spatial and temporal extent of water pollution, fields of toxic
algae, chlorophyll concentrations [1], salinity, turbidity, pH
[2], oxygen density or fish and mammal activity. In some
applications, it is necessary to establish a connected network
of nodes to provide full functionality, for example, in online
data collection, real-time data analysis and for triggered event
capability. Such networks will have a high energy consumption
to maintain a fully connected network, which consequently
leads to a shorter lifetime for the nodes and the network.

In other scenarios, distributed wireless sensor networks
are deployed to large areas because the measurements (for
instance of salinity or chemical components in sea water)
vary substantially between different locations. To make such
wide area networks with many sensors permanently connected,
will be costly in terms of energy consumption. For in-situ
sensor networks deployed in extreme or remote areas, both
the maintenance and data collection can be very challenging.

Unmanned Aerial Vehicle (UAV) technologies have spread
widely and become popular in various fields. The most no-
ticeable benefits compared with conventional manned vehicles
are low cost, improved safety for humans, and easy deploy-
ment. There are many applications in wireless communications
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networks that employ UAVs to extend the range of communi-
cations, facilitate broadband 5G network and extend cellular
mobile network assisted by a swarm of small UAVs [3], or to
collect data from a wide area network in remote areas or harsh
environment [4].

II. CONTRIBUTIONS AND CONSIDERED SCENARIOS

In the literature, see for instance [3], [5], [6] and [4] it has
commonly been considered that the wireless sensor nodes are
static or have limited mobility. In other words, the assumption
is that the node’s positions are static or known exactly and
can be used for path planning. If the nodes are deployed and
free to drift on the ocean surface, this assumption will no
longer be valid: It is typically too costly or impractical to
have permanent connections with the nodes to receive updates
on their positions as they drift with ocean currents. The main
objective is to relax the above mentioned assumptions. Our
main contribution is incorporating a KF in the path planning,
and where the KF is used to estimate and predict the nodes
positions. The nodes positions can be measured when the UAV
is within communication range. We will also investigate the
case where it is possible to receive additional measurements of
the ocean currents. To assess the approaches we will compare
the use of KF for estimating the nodes positions (Scenario
3) with two other scenarios. All three scenarios are described
below.

A. Scenario 1: Full sensor node position information

In this scenario, it is assumed that any information about
the nodes is available to the UAV for path planning at all
times. It means that the UAV will always get the most updated
information about the new positions of the nodes and it is
expected that it would be the ideal case which gives the best
result. However, due to the movement of the nodes this would
require the nodes to repeatedly communicate their position
to the UAV. This would be undesirable for two reasons:
The additional communication with the UAV will drain the
sensor nodes for energy, and the nodes would possibly need
additional equipment (satellite communication equipment) to
communicate over long distances. If the sensors and the UAV
are fully connected, the sensor nodes positions can be relayed
via other nodes to the UAV, but this would still decrease the
lifetime of the sensor nodes because of high path loss for
communications between the nodes.

B. Scenario 2: Range-limited position measurements

In this scenario the UAV has only information about the
new position of the nodes when it is within communication
range, and would therefore use the last known position of the
sensor nodes for planning. When the UAV can communicate
with the nodes, the flight path of the UAV can be updated. The
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drawback is that the nodes may have moved a long distance
from the previously known position, which means that the
UAV will have to spend more time gathering data from the
sensor network. In the worst case, a sensor node may even be
”lost”, as its new position brings it outside the communication
range of the UAV, given that it flies to the last known position
of the sensor node. In this case, the UAV can start to search
for the nodes, but this is considered outside the scope of this
paper.

C. Scenario 3: Estimation-based position information

In this scenario the UAV uses a KF to estimate and
predict the position of the sensor nodes. Using a model of
the environment based on wind and ocean current predictions,
the UAV can estimate the new positions of the sensor nodes,
based on the nodes’ previous location information and the new
measurements every time it can communicate with a sensor
node.

D. Comparison of scenarios

For a fair comparison regarding node energy consumption
in these scenarios, we consider the same radio communication
link for all of the cases. Only in the first scenario, an adjustable
transmitting power for the radio signal is applied to ensure that
the UAV can always communicate with sensor nodes when
needed. When the distance between the UAV and a sensor node
is larger than the maximal communication range (i.e. at the
initial transmission power), the transmission power is adjusted
to ensure the communications in this case. In the two other
cases, a communication link between the UAV and a sensor
node is established only when they are in range. This paper will
implement these scenarios and compare their performances.

III. MODELING

A. Motion model of sensor nodes

Consider n wireless sensor nodes. Out of simplicity, we
will assume that the position vector xi ∈ R2 of node i ∈
{1, 2, . . . , n} is given by the differential equation ẋi = θ+wi,
with initial conditions xi(0) ∈ R2, and where θ ∈ R2 is the
velocity vector of the environmental influences (sea-currents
and wind) in the East and North directions, and where wi ∈ R2

is a vector of random Gaussian white noise. We assume that the
environmental influences are described by θ̇ = wθ where wθ ∼
N (0, Qθ) with Qθ being the covariance. We also assume that
the nodes have the same velocity as they are deployed in the
same region with small variations in weather and currents. The
system of differential equations describing the motion of all
the sensor nodes and the constant velocity vector can therefore
be given by

ẋ = Ax+ w :=


02×2n I2×2
· · · · · ·

02×2n I2×2
02×2n 02×2

x+ w (1)

where x = (x>1 , x
>
2 , . . . , x

>
n , θ)

> and w =
(w>1 , w

>
2 , . . . , w

>
n , wθ)

>

B. Measurement models

We consider two different sensor models. In one case, the
sensing system gets some information about the speeds of
the wind and sea-currents affecting the sensor network, for
instance through weather forecasts or other sensing devices.
In the other case, we will assume that no such measurements
are available, but that the information to some extent can be
estimated based on the measured position of the sensors under
the assumption that environmental effects are slowly varying
or constant.

1) Measurement model without velocity vector measure-
ments: We will assume that the position of the nodes can
only be measured when the UAV are within communication
distance of the nodes. This is modelled as

yi(tk) = xi(tk) + vi(tk) if
∥∥p(tk)− xi(tk)

∥∥ ≤ Lmax (2)

where tk is a specific time instance, yi ∈ R2 is a measurement
of the position of node i ∈ {1, . . . , n} with some additive mul-
tivariate zero-mean normal distributed noise with covariance
Ri, that is vi ∼ N (0, Ri). Furthermore, p is the position of the
UAV and Lmax (which will be explained in details in Section
III-C) is the maximal communication distance for the system.
This Lmax is introduced purely for simplicity in simulating our
scenario. The sensors normally listen for a broadcast signal
from the UAV and periodically transmit its position along
with other sensing data when their actual distance at the
transmitting time is less than Lmax. Also out of simplicity, we
will assume that the sensors are equipped with a GPS, the same
type, and use the same data length each time they transmit.
We emphasize that it is possible to develop a more complex
network with different kinds of sensors using different data
lengths. Notice also that these are measurements that depend
on the relative distance between the UAV and the sensor nodes,
and are therefore asynchronous. The UAV will estimate the
nodes position which is implemented in a KF.

2) Measurement model with velocity vector measurements:
In this case, we will assume that we have the measurement
model (2), and in addition

yθ = θ + vθ (3)

so that yθ ∈ R2 is a measurement of the environmental effects
with some additive multivariate zero-mean normal distributed
noise with covariance Rθ, that is vθ ∼ N (0, Rθ). We can
assume that these measurements are only available when
the UAV is within communication distance of some weather
station or similar, just as in (2), or they are available at a certain
refresh rate.

C. Radio range and transmitting power

This section focuses on the maximal radio propagation
distance and an adjustable transmitting power in communi-
cations between the sensor nodes and the UAV. To implement
communications between sensor nodes and the UAV in the
three cases of Section II, there are only two different situations
regarding communication coverages. They are a) The nodes
always transmit at a fixed power level and communications
occurs within the maximal radio range (i.e. Scenarios 2 & 3)
and b) the nodes can adjust the transmission power to maintain
a continuous connection with the UAV (i.e. Scenario 1). The
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former might not ensure that the UAV always gets the node’s
location information and sensing data but it will use less of
the nodes’ energy. The latter secures communication links with
the UAV but it causes more energy consumption at the nodes.

1) Maximal radio coverage: First, the receiving radio sig-
nal strength Pr us between the UAV and a sensor s can be
found from:

Pr us = Pt0 +Gus − PLus (4)

where PLus is propagation path loss for the channel between
the UAV and the sensor node, Gus is for the total antenna
gain from both sensor node and the UAV, and Pt0 is the
fixed transmitting power by the nodes. Then, the maximal
radio range is obtained when the receiving signal power is
at its minimal requirement (that is, when information is still
decodable, and Pr us = Prmin). The channel propagation path
loss is at its maximum, that is PLus = PLmax, and is given by:

PLmax = Pt0 +Gus − Prmin (5)

where Prmin is the minimal allowed receiving signal power
in dBm. As the channel between the UAV and sensor nodes
is assumed to be Line-Of-Sight (LOS), the distance in meters
between the UAV and a sensor node Lus is related to the path
loss PLus by [7]

PLus = −147.55 + 20 log f + 20 logLus (6)

where f is the radio frequency in Hertz. The maximum
distance Lus, which we will denote Lmax, is found using
PLus = PLmax in (6) with PLmax from equations (5).

2) Adjustment of transmitting power for sensor nodes: To
establishing a continuous communication channel between a
sensor node and the UAV the transmitting power of the sensor
nodes will be adjusted. When the receiving signal strength is
higher than the mimimal required Prmin, there is no need for
transmission power adjustment. If it is lower the transmitting
power Pt must be adjusted to satisfy:

Pt = PLus + Prmin −Gus (7)

where PLus is the path loss from the equation (6) with the
actual distance Lus between the sensor node and the UAV. This
distance can be estimated by the nodes based on a broacasting
position message from the UAV.

D. Channel capacity and energy consumption

Considering the scenarios in this paper, the UAV and
sensor nodes are usually in LOS but a signal obstacle is often
occurring during data perception period for instance caused by
the airframe or other auxiliary components on the UAV. The
Packet-Error-Rate (PER), is therefore instantaneously changing
and dependent on actual Signal-to-Noise Ratio (SNR). To
estimate the data amount perceived by the UAV from a node,
the channel bandwidth and PER need to be calculated. The
average PER can be estimated as follows [8]:

PERγ = 1− e−
aN
γ Γ(1 +

bN
γ

) (8)

with

aN =
log10(Lpcm)

km
, bN =

1

km
(9)

where γ is the average SNR, Γ(.) is the standard gamma
distribution function, Lp is the packet length used in data
transmission protocol in bits, and cm and km are constants
depending on the modulation method applied for signal trans-
mission (for instance km = 1

2 and cm = 1
2 for Frequency

Shift Keying (FSK) modulation km = 2 and cm = 1 if the
modulation is Binary Phase Shift Keying (BPSK)). If Q is the
number of packet retransmissions due to erroneous bits, the
average PER for data received from sensor s at the UAV at a
time t becomes

PERu,s,t = 1− (1− PERγ)Q (10)

The average BER for the channel between the sensor s and
the UAV u at a time t with erroneous bits retransmission is
given by

BERu,s,t = 1− (1− PERu,s,t)
Lp/Q (11)

Because the channel between the UAV and sensor nodes is
fast varying in the time domain, the channel capacity can be
described, see [8], as

Cu,s,t = BW

∫ ∞
0

log(1 + t)
1

γ
e

−t
γ dt (12)

where BW is the data bandwith. If T is the time duration
where a sensor node s has data communication with the UAV
at a moment t, then the received data at the UAV can be written
as

Du,s,t,T =

∫ T

0

Cu,s,t(1− BERu,s,t)dt (13)

As the sensors might not be visited by the UAV very often,
we will assume that each sensor will use all of this period T
for transmitting sensing data during each visit. The total data
received by the UAV from all sensors in the network is

Dtotal =

n∑
i=1

Ni∑
j=1

Du,i,j,T (14)

where Ni is the number of sensors in the network and the
number of times that the UAV has data communications with
a sensor node i .

IV. PARTICLE SWARM OPTIMIZATION ALGORITHM

Particle Swarm Optimization (PSO) is a stochastic
population-based optimization method proposed in [9]. Com-
munications and networking is an area where PSO has been
applied widely to solve network performance optimization
problems [10] [11] [12]. PSO is also used for wireless sensor
networks to effectively create clusters of nodes where data
collection, energy consumptions and network lifetime is op-
timized, see [12] and [13]. It can also be used to provide a
path planning solution for one UAV in data collection from a
wide-area sensor network [4].

In this paper, PSO is used to find the best waypoints for
a flyable UAV path when the sensor nodes are drifting on the
ocean surface. In the PSO algorithm, the following objectives
are taken into account: a) Total energy consumption by sensor
network; b) total data received by the UAV from the sensor
nodes during its flight; c) total flight time for the UAV and d)
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the freshness of sensing data from sensor nodes. The waypoints
are chosen based on optimizing the objective function

f = α1fE + α2fD + α3fT + α4fF (15)

where α1, α2, α3 and α4 are positive scalar weighting con-
stants, and fE , fD, fT and fF are functions described in detail
in the following.

A. Total energy consumption on sensors, fE

This value for different scenarios are explained in the
following.

1) Scenarios 2 & 3: Each node will transmit its data at
constant transmitting power Pt0. Assuming that once a node
transmits data, it will occur in an entire period of T , hence,
the total energy consumption for sensor network is

EStotal =

NS∑
i=1

NiPt0 (16)

2) Scenario 1: Each node will transmit its data at a
transmitting power Ptu,s,t which depends on the distance to
the UAV (defined in (7)).

EStotal =

NS∑
i=1

Ni∑
j=1

TPtu,j,t (17)

B. Total data received, fD

Equation (14) represents the total amount of data received
by the UAV from the sensor nodes during its flight.

C. Flight time of the UAV, fT

This is the time required for the UAV to fly along its
trajectory with the calculated waypoints. The trajectory is
generated using a Dubins path through these waypoints, [14].
A Dubins path is composed of a sequence of three motions:
Straight, and Left or Right at the maximum steering angle
of the vehicle. The total flight time fT (15) is assumed
proportional to the length of the Dubins path and the UAV
has a constant ground speed in the entire simulation period.

D. The freshness of collected data, fF

In general, a sensor node will try to transmit sensing data
periodically and if the UAV is within its communication range
the UAV may receive some data from this node. Due to the
UAV’s mobility and other obstacles, the data can not always
be received correctly because of the fast time-varying channel
between the UAV and the node. In such cases, the node needs
to wait for the next visit by the UAV; and this node will have
a higher priority when a data communication possibility with
the UAV opens again. In the simulations, this priority is equal
to the waiting time of the node since from the last visited by
the UAV.

TABLE I. PARAMETERS FOR PSO, UAV AND DATA TRANSMISSION

Parameter Value Parameter Value
n 4 NWP 10
hu 120 m vu 10 m/s
Gi 10 dBi Gu 10 dBi
Gj 10 dBi lctr 20 bits
Pt0 5 mW f 5.8 GHz
B 5 MHz Prmin -90 dBm
x0 ±150 m y0 ±150 m
I0 -95 dBm Q 5
cm 1 km 2
Lp 20 bytes Lmax 355 m
T 10 s N Iterations 5000 times
E0 1000 Joule Simulations 10000 s
α1 5 α2 107

α3 10−2 α4 1

V. SIMULATION

Table I shows the list of parameters that are used in sim-
ulations for performance comparison between the scenarios.
Lctr is the number of control bits in data protocol; x0 and
y0 are the coordinate ranges where the sensor nodes’ initial
positions have a uniform distribution; hu, vu are the altitude
and ground-speed of the UAV. In the case of Scenario 3 where
the velocity vector is measured, the update period is assumed to
be the same as the position update, T . The actual SNR will be
calculated based on the difference between the actual receiving
signal strength and its minimal, allowed value (Prmin). For the
values of weighting constants (α1 to α4 ) in the fitness function
(15), these were selected such that the influence of each cost is
approximately normalized. The values given in Table I where
used in the simulations.

There are two main evaluations for each scenario. The first
one shows the trajectory of the UAV and the nodes’ movements
during the simulation period. For a sensor node, there are two
points that represent its actual position and estimated position.
In such plots, there are also lines connecting the UAV and a
sensor node when they are within communication range. The
other plot shows the measurement error for nodes positions in
Scenario 1, 2 and nodes position estimation error in Scenario
3.

A. Scenario 1: Full sensor node position information

In this case, the UAV can communicate and has the
node’s positions in every period T . As it may use a high
energy consumption on the sensor nodes, a plot for total
energy consumption per node will be shown and used for a
comparison with that in other cases that the nodes only transmit
at fixed transmitting power. Figure 1 shows that there is still
a small difference between actual node positions and their
measured values due to the period position transmission by
the sensor nodes in this case is T = 10s. This is visualized
in Figure 2 where the maximal difference is approximated at
50 meters. This variation will be reduced when reducing the
transmission period but it will consequently increase energy
consumption for the nodes. Regarding energy consumption,
with the transmission period of 10s as in Table I, Figure 3
shows that after nearly 3 hours flight simulation time, a node
needs to use an energy varies between 70 and 100 Joule, which
has an average value of 90 Joule per sensor. If reducing this
period for instance to 1s , then the energy amount consumed
per sensor node becomes approximated at 900 Joule in average.
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Fig. 1. Scenario 1: Position of sensor nodes and optimized UAV trajectory
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Fig. 2. Scenario 1: Difference between actual position of the sensor nodes,
and the last information about the postion which is used in the trajectory
planning for the UAV.

In that case, the node position error will be much minized and
it can say that the UAV has full information of the nodes. The
sensor nodes will however run out of battery just after a short
time of operation. This is a major constraint of implementing
this scenario for the network.

B. Scenario 2: Range-limited position information

Here, the nodes’ positions and sensor data will be trans-
mitted to the UAV only if a communication link is established
at intervals with period T . The trajectory of the UAV will
therefore depend on the last update on positions of the nodes.
Due to the nodes mobility, there might be a large deviation
between the actual nodes’ positions and the information used
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Fig. 3. Scenario 1: Energy consumption per sensor node when adapting
transmission power.

Fig. 4. Scenario 2: Position of sensor nodes and optimized UAV trajectory.
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Fig. 5. Scenario 2: Difference between actual position of the sensor nodes,
and the last information about the postion which is used in the trajectory
planning for the UAV.

for planning. This will affect the quality of data collected, both
in terms of the total data received and the freshness of the data
received from the network. Figure 4 shows the nodes’ motion
and the UAV trajectory for this scenario. Only for the first
15 minutes the UAV is able to receive position information
from all sensor nodes regularly. After this period, the error
between the actual nodes’ positions and the last updates starts
to increase sharply and the UAV starts to lose track of some
nodes. As the UAV only continues to fly over the last known
position errors continue to increase as shown in Figure 5. As
an example, after a simulation time of 1.5 hours, the nodes’
position errors can increase up to 10 km. The average energy
consumption for one node is approximately 0.9 (Joule), which
is around 100 times less than that for the first case.

C. Scenario 3: Estimation-based position information

To improve knowledge about the nodes’ position, while still
maintaining a low energy consumption, a KF is applied in this
scenario. Notice is that the UAV will still need to be within
communication range of a node for a measurement update of
the KF. This scenario will consider two measurement models,
that is, with and without the velocity vector measurements as
mentioned in Section III-B.

1) Without velocity vector measurement: The application
of KF has doubled the time period for the UAV to have good
information on the nodes movements compared to that in the
secenario 2 (See Figure 6 & 4). The errorness of node position
measurements is ten times smaller (See Figure 7 & 5) than that
in the scenario 2 but its unacurracy still gradually causes the
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Fig. 6. Scenario 3 - Case 1: Position of sensor nodes and optimized UAV
trajectory.
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Fig. 7. Scenario 3 - Case 1: Position estimation error using a KF without
velocity vector measurements.

UAV’s trajectory far from actual locations of the nodes (See
Figure 6). The UAV still loses the sensor nodes even though
this happens later than when it occurred in Scenario 2.

2) With velocity vector measurement: If there is a possi-
bility to update the velocity vector onboard the UAV, the KF
significantly improves the position estimation errors. Figure
9 shows that the maximal position error is quite similar to
what was achieved in Scenario 1 (compare with Figure 2). The
accurate estimation allows the UAV to continuously follow the
movements of the sensor nodes, see Figure 8.

VI. CONCLUSION

The application of a Kalman filter with velocity vector
measurements outperforms the other two scenarios both with

Fig. 8. Scenario 3 - Case 2: Position of sensor nodes and optimized UAV
trajectory.
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Fig. 9. Scenario 3 - Case 2: Position estimation error using a KF with velocity
vector measurements.

respect to energy consumption on the sensor nodes and to the
UAVs ability to follow the nodes’ movements. Specifically, this
scenario gives the same prediction for the nodes’ movement
as achieved with adaptive transmission power, but it leads to
significantly lower energy consumption on the nodes. One of
the main challenges of this approach might be to realize ve-
locity vector measurements. It is also unclear if a linear model
used in the Kalman filter can sufficiently well approximate the
nodes motion in a real world scenario. These are aspects that
will be investigated in future work. We will also consider the
use of multiple UAVs for data collection from a sensor network
with increased spatial distribution.

ACKNOWLEDGMENT

This work is sponsored by the Research Council of Norway
through the Centres of Excellence funding scheme, project
number 223254 - Centre for Autonomous Marine Operations
and Systems (NTNU-AMOS).

REFERENCES

[1] H. C. Bittig, T. Steinhoff, H. Claustre, B. Fiedler, N. L.
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