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Abstract

In discrete manufacturing the variation in process parameters and duration is often large. Common data storage and analytics systems primarily
store data in univariate time series, and when analysing machine components of strongly varying lifetime and behaviour this causes a challenge.
This paper presents a data structure and an analysis method for outlier detection which intends to deal with this challenge, as an alternative to
predictive maintenance which often requires more data with higher quality than what is available. A case study in aluminium extrusion billet
manufacturing is used to demonstrate the approach, predominantly detecting anomalies at the end of a critical component's lifetime.

© 2021 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

Keywords: Anomaly Detection, Predictive Maintenance; Discrete Manufacturing; Big Data Analytics; Adaptive Self-learning Systems

1. Introduction

Today, production areas within a manufacturing company
may well continuously collect thousands of data variables from
a large variety of machines performing incoherent processes
where faults and breakdowns occur sporadically. The
availability of various sensors is increasing, and lifecycle
management of machinery is increasingly offered by
equipment suppliers [1]. Based on this level of data availability
predictive maintenance (PdM) has been a popular research field
for the last few decades with the goal to ensure machine
function and avoid breakdowns by making predictions of
features based on those variables [2]. However, such
predictions are difficult and require a large amount of precise
data, as well as an accurate model describing the relevant
process and possible failure modes which is often laborious to
obtain. The same is valid for estimations of remaining useful
life for an asset or component [3]. For certain applications and
machinery, like continuously running pumps with stable load
and other boundary conditions, typically found in process
manufacturing, such approaches are indeed viable. In addition
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to boundary condition stability, the number of possible failure
modes and mechanisms should be low, a high amount of
historical sensor data should be available with adequate quality,
along plenty of failure logs well documented by detailed
predefined forms [4, 5]. For more complex processes, however,
typically involving discrete manufacturing and where perhaps
none of the previously mentioned requirements are met, PAM
is not likely to be the best way to ensure machine function and
avoid failure. The multitude of relevant physical interactions of
a complex manufacturing process is too big and predominantly
unknown Therefore, based on the amount of data available in a
given use case, it may not be possible to obtain an overview of
possible failure modes and mechanisms necessary to define
relevant features to predict. Furthermore, it may even not be
feasible or possible to measure additional variables that those
features would need to be based on. Similarly, simulation
models coupled with the actual system, as a digital twin, can be
a viable approach [6], but also this is difficult to achieve in
many cases and should have a high threshold for application.
On the other hand, a discrete manufacturing process which
seems incompatible with PAM could well be supervised by the
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application of anomaly or outlier detection in available data. In
this paper we present a method based on outlier detection that
can be automated and applied across a variety of discrete
manufacturing processes to avoid loss of function, unwanted
behaviour, and breakdowns, without ad-hoc modelling and a
minimum of adaption. The method is based on univariate
statistics and a data-driven description of normal behaviour, as
opposed to model-based methods. The main compromise with
such a supervision method is the absence of causality
interpretation. The main benefits, however, are applicability
without detailed historical logs or process-specific models or
adaption, and transferability between a variety of processes.
The method described in this paper is intended to be applied
on discrete manufacturing processes where:
o all possible failure modes and their various failure
mechanisms are not fully mapped
o which specific features that can be used to predict these
failure mechanisms are unknown.
o complete and detailed logs describing incidents or failures
based on predefined forms are not available

1.1. State of the art

Typically, maintenance management strategies are grouped
into the following three categories with various complexity [7].

Run-to-Failure (R2F) maintenance is characterized by only
performing maintenance when a loss of function or failure is
detected. Typically, but depending on the manufacturing
processes and set-up, the cost of interventions and associated
downtime after failure are usually higher with R2F than with
the two following categories.

Preventive Maintenance (PvM) means performing
maintenance according to a planned schedule based on time or
number of process iterations. This is also referred to as
scheduled maintenance. With PvM machine failures are
sometimes prevented, but also unnecessary maintenance is
performed.

Predictive Maintenance (PdM), also referred to as
Condition-Based Maintenance [8], uses predictions or
estimates of process features that can be linked to the health
status of a piece of equipment [2, 9]. PAM systems enable
detection of failures or loss of function ahead in time. Similarly,
to PvM, this can also lead to unnecessary maintenance.
Prediction tools in PdM use historical data together with ad hoc
defined health models, maps of possible failure modes and
mechanisms, statistical inference methods, and engineering
approaches. Usually, large amounts of accurate data
accompanied with detailed metadata and logs of earlier
incidents are required to successfully implement PdM, and this
is a limiting factor for its application.

Direct usage of anomaly or outlier detection systems,
without connection to specific failure modes, is typically not
regarded as part of any of the three maintenance strategies
above. Anomaly detection in manufacturing systems has been
a popular research field in the past decade, similarly to PdM,
especially regarding usage of machine learning techniques [1,
10-13]. There seems to be a focus on applying such techniques
in order to detect complex patterns on one side, as well as to

cope with high dimensionality and insignificant variables. This
article serves as a simpler alternative to such approaches.

2. Theory — outliers and anomalies

This article is related to detecting anomalies in
manufacturing data in the form of simple statistical outliers.

Frank E. Grubbs [14] described a statistical outlier as an
observation that "appears to deviate markedly from other
members of the sample in which it occurs". In this perspective,
it is of interest to define such observations as either "an extreme
manifestation of the random variability inherent in the data", in
which case the observation can be regarded as valid, or as "a
result of gross deviation from prescribed experimental
procedure or an error in calculating or recording the numerical
value", in which case the observation should be disregarded
since it does not represent a correct measurement of the
investigated statistic.

Similarly, according to Charu C. Aggarwal [15], we can
distinguish between outliers as either noise or as a "special kind
of outlier that is of interest to an analyst". In the following, an
outlier is regarded as a data point deviating statistically from
the rest of the dataset seen as a statistical population of
independent measurements. In this perspective, any attribute of
the data point is not considered, such as its order or time stamp.
An anomaly, on the other hand, is regarded as a data point
deviating from an expectation based on a certain model of the
dependency of one or more attributes of the data point, such as
its time stamp.

The described differentiation between outliers and
anomalies is visualised by an example in Fig. 1, showing a
small data set generated by the authors for this purpose. Here,
each data point represents a measured value that has an attribute
value x (which could for instance be a time stamp.) In this
sense, the marked anomalous data point is not an outlier as
measured, but it can become an outlier in a specific context,
i.e., when an expected mean from a model (in this example sin
27x) based on the attribute x is subtracted from the dataset. The
red lines show the mean and +3 standard deviations to the
mean.

Measured variable f(x)

anomaly
21 s W 4 e 2
o® ? S " $
.‘;’o!“.o ¢ b"gl &. ‘~
0 * “1 Lo ‘.0 o" ° oy "‘Ao & 0
° 30 .& ‘. « ' o‘.
riid -"..". . -
-2 ° N -2
00 05 10 15 20 25 3. 0 20 40 60
f(x) — sin(2mnx)
L]
2 ‘outlier > ‘
J
( .
a .o~ . “..'. J:.‘: ::
0 1? Senyg, o d%‘."', 0
o. c‘. ‘{’. ..‘ .‘} R 4 .
% °
-2 r r r r r — —24 " "
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 20 40 60

Fig. 1. An example of an anomaly in the form of a significant deviation from a
model-based expectation (top left) and an outlier in the form of a statistically
deviating data point with zero dimensionality (bottom right).
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3. Method

The proposed method is based on converting process cycle
timeseries into a feature table where one row represents a single
completed process cycle, and the columns contain a set of
features describing each cycle independently of its duration.
This reorientation is commonly referenced to as feature
extraction [16]. Furthermore, feature selection is applied in
order to detect anomalies among the described process cycles
as statistical outliers. The method is meant for processes or
equipment where a given critical component is subject to an
R2F or PvM repair or replacement strategy, and data quality is
not sufficient to successfully implement PdM, by linking
process cycles with the age of that critical component. In this
perspective, the goal of the anomaly detection is to alert the
manufacturing operations team to evaluate the process in more
detail and decide if an early maintenance intervention should
be carried out. The method is based on the assumption that a
statistics-based description in the process cycle domain via
features will yield more accurate predictions than similar
models formed in the time domain.

3.1. Data integrity

The input to a feature extraction pre-processing as described
above is raw data in the form of a time series. There are
typically three causes of anomalies in such raw data, whereas
only one of them is of interest:

e Human interaction or intervention of the production
process

e Data logging system failure

e Actual process discrepancies

Naturally, only the latter type is of interest for process
analysis. In order to make actual anomalies prominent, it is
important to ensure integrity of the data. The best way to do this
in the case of discrete manufacturing processes is to avoid
univariate continuous time series of logged sensor or run-time
variables [17]. Oppositely, ensuring a column-based and
process cycle-ordered formatting will ensure that logged
process parameter values, metadata and measured process
variables are aligned with each other, and therefore unwanted
anomalies due to actions such as aborted process cycles are
much easier to detect. In addition to ensuring integrity, this also
greatly reduces the needed time for data cleaning and pre-
processing. As a minimum, a cycle counter or process
parameter indicating active process should be part of the
dataset, so that data stemming from active process can be
correctly filtered out.

An example of raw data as a continuous time series is shown
in Fig. 2, taken from the industrial use case described in section
4. The example shows data covering two process cycles, but
also the time in between cycles. The largest signal values are in
sequence state 1, where the process is idle, and therefore
presumably irrelevant to the function of the component. When
only data from active process is interesting for analysis, the
presence of this process sequence parameter in the dataset is
crucial for a correct pre-processing of the data.

Whether or not a laborious effort is necessary to obtain data
where anomalies can be expected to be due to actual process
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Fig. 2. An example of discrete manufacturing process data in the form of a
measured variable and a process sequence parameter which reflects the
sequential states of the process as an integer value.

discrepancies, the following description of the method assumes
that such a set of raw data is available, constituting separate (or
separable) process cycles. Additionally, replacement or
maintenance actions on the critical component must be visible
in the data, but the reason for the replacement or maintenance
can be unknown.

3.2. Feature extraction

Extracting features from raw data and preparing the dataset
for the proposed method can be summarized by the following
steps:

o For each relevant variable or parameter in the dataset,
define a list of numerical features that together would
describe that variable's time series for a given process
cycle. Typical features would be statistical descriptors of
the values within the entire cycle or separate process
sequences (if each cycle is constituted of a number of
separate process sequences), analysis results based on a
simple regression method over the cycle, and descriptors
based on sliding windows within one or more sequences or
the entire cycle.

o Be sure to align the set of variables and features with
available domain knowledge, understanding of process
quality, and avoid strongly interdependent features and
statistical deficits such as homoscedasticity,
autocorrelation, and multicollinearity.

e Now iterating through separate process cycles, and then
trough relevant variables and parameters, calculate each of
the defined features and store the results in a table with
columns according to the list of features and one row per
production cycle.

e For each process cycle, calculate the following three
additional features:

O The counter C € N equal to the number of completed
process cycles since the critical component was
replaced or maintained.

O The maximum value Cnax of C for the relevant
component lifetime.

O The relative component age ¢ = C/Cpax.

This way process cycles are intended to be compared based

on the age ¢ of the critical component, as opposed to e.g.,

temporal proximity.
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3.3. Statistical description of normal behaviour

The proposed method for detecting anomalies in the
acquired feature table is based on defining normal behaviour by
fitting feature values to a univariate probability distribution.
Specifically, rows where 0.1 < ¢ < 0.95 are regarded as
examples of normal behaviour. For each feature, all values
from this sub-set are taken as independent measurements and
fitted to a selected type of probability distribution (e.g., the
Gaussian distribution). The relative component age thresholds
of 0.1 and 0.95 for normal behaviour are meant to rule out
slightly abnormal behaviour in the first period after
replacement or maintenance of the critical component, and to
rule out feature values that may change due to significant
deterioration, respectively.

3.4. Feature selection and anomaly detection

Given the set of univariate probability distributions and a
corresponding significance level describing expected or normal
behaviour of each feature, the proposed method is to define
criteria for automatic feature selection. Then, based on a
selected sub-set of features, anomaly detection can be applied
in the form of statistical outlier detection based on said
significance level. Two types of such criteria are suggested,
where features are selected
e such that the feature sub-set covers detected outliers in

component lifetimes that ended in a failure, corresponding

to a supervised (or semi-supervised) approach.

e based on ordering all features by the proportion of detected
outliers to normal process cycles at the end of the
component lifetime (e.g., where ¢ > 0.95), corresponding
to an unsupervised approach.

Both approaches of feature selection enable automatic
adaption of the proposed method to new datasets. In the case of
labelled data, the significance level can be determined e.g. by
maximizing the Fg-score of the yielded prediction [18, 19].
When applied on unlabelled data, however, the significance
level must be set based on relevance to process control system,
domain knowledge, or simply tuned according to a desired
frequency of anomalies in the dataset.

4. Results and analysis
4.1. Method applied in industrial use case

The method described has been applied on a real dataset
from an aluminium extrusion billet casting process. The studied
critical component, maintained using a PvM policy, is a
rotating component that is part of a machine through which the
liquid metal flows. The studied process and dataset are well
suited for the proposed anomaly detection approach as it shows
complex mechanisms and relations, has high noise intensity,
and lacks a detailed log of incidents. The approach was also
preferred in this industrial use case due to its transferability to
other processes.

The starting point for analysis was raw data in form of
continuous univariate time series split timewise in durations of
one month. Based on domain knowledge, one measured

variable and two process parameters were chosen for the
analysis, namely measured torque, an hour counter for the
critical component (indicating replacements) and a process
sequence parameter (integer). The data was combined by a full
outer join and forward fill, and due to the data format and
missing process cycle ordering, manual work was then
conducted to extract valid time series of data corresponding to
actual process cycles. Finally, series of process cycles were
extracted according to replacement of the critical component.
Incident logs were made available for the case study, but they
were inconsistent and mostly uninformative being based on
free text entry. The result was a semi-labelled dataset consisting
of 74 maintenance cycles, of which 2 ended with a known
component failure, and covering a total of 15 317 process
cycles. It is known that more than the two mentioned
maintenance cycles ended with component failure, but due to
insufficient log consistency and quality it is not known which
of the other 72 cycles it was.

A set of 140 descriptive features were defined based on
simple statistical analysis, such as minimum, maximum, mean
and variance, and linear regression results like slope and
regression error, based on 10 discrete windows within each
sequence. Feature extraction was conducted and the three
features ¢, C and Cmax described in section 3.2 were added to
the table. Normal behaviour was defined as described in section
3.3 by use of Gaussian distributions. Supervised feature
selection was done by selecting features containing outliers
within the two specific component lifetimes with known
failure. This process is visualized in Fig. 3 for one of those two
lifetimes. This resulted in a subset of 10 features. Furthermore,
the threshold for outlier detection was set simply according to
the resulting number of outliers detected based on the selected
features. As a result of low normality of the data a threshold of
six standard deviations was chosen, resulting in a total of 69
anomalies among the mentioned total of 15 317 process cycles.
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Fig. 3. A component lifetime of Cax = 131 process cycles where 10 features

f; indicate one or more outlying cycles. The mean y; and standard deviation o;

of feature i were based on occurrences where 0.1 <¢ <0.95.

4.2. Detected anomalies

Outlying feature values were detected across the entire
dataset, and the originating rows were then classified as
anomalous process cycles. Due to the partial labelling of the
dataset, descriptors like accuracy, precision or recall cannot be
computed. However, the results can be evaluated in terms of
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frequency of detected anomalies as a function of component
lifetime. Specifically, 36 out of 802 process cycles (4.5%) with
¢ > 95% were classified as anomalous. These anomalies can be
argued to be reasonable since a component replacement would
reduce the component lifetime by less than 5% and potentially
avoid failure. At the same time, 33 out of 14 515 process cycles
(0.2%) with ¢ < 95% were classified as anomalous. These can
be regarded as false positives occurring amid the component
lifetime. A histogram showing the frequency of the 69 detected
anomalous process cycles as a function of ¢ is shown in Fig. 4.
These 69 process cycles cover 24 out of 74 maintenance cycles
(32%).

5. Discussion

The frequency of anomalies is approximately 20 times
higher for ¢ > 95% compared to ¢ < 95%. This shows that the
selected set of features to some extent contain information that
characterize the end of the critical component's lifetime. In
other words, the results above confirm that the given industrial
case and dataset are applicable to the proposed method, and that
it may serve as an alternative to PdM in cases where the quality
of data and incident logs are insufficient. An important
difference between the proposed approach and PdM would be
that in the former, it is not attempted to estimate or predict the
remaining useful life or health status of the component
repeatedly during a portion of its lifetime, but instead it is
evaluated whether each production cycle is anomalous as a
possible indication that the remaining useful life may be short,
and the cost of a maintenance intervention is low. By applying
anomaly detection in the process cycle domain, as opposed to
the domain of pure date and time, the relative age of a critical
component has been considered in a simple data driven
description of normal behaviour, and the resulting detected
anomalies are mainly occurring at the end of the critical
component's lifetime.
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Fig. 4. An overview of the 69 detected anomalous process cycles in intervals
of relative component age c.

6. Further work

Additional insight end experience with transferability of this
method to different industry cases would be valuable.
Specifically, the method should be tested on real datasets to see
if it would detect intentionally introduced anomalies. Also,
further work with the method itself would be of interest, such

as evaluating alternative feature selection approaches to the
ones described in section 3.4, as well as other possible methods
for setting the significance level described in the same section.
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