
BIT Numerical Mathematics
https://doi.org/10.1007/s10543-022-00909-z

Order theory for discrete gradient methods

Sølve Eidnes1,2

Received: 20 August 2021 / Accepted: 17 January 2022
© The Author(s) 2022

Abstract
The discrete gradient methods are integrators designed to preserve invariants of ordi-
nary differential equations. From a formal series expansion of a subclass of these
methods, we derive conditions for arbitrarily high order. We derive specific results for
the average vector field discrete gradient, from which we get P-series methods in the
general case, and B-series methods for canonical Hamiltonian systems. Higher order
schemes are presented, and their applications are demonstrated on the Hénon–Heiles
system and a Lotka–Volterra system, and on both the training and integration of a
pendulum system learned from data by a neural network.
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1 Energy preservation and discrete gradient methods

For an ordinary differential equation (ODE)

ẋ = f (x), x ∈ R
d , f : Rd → R

d , (1)

a first integral, or invariant, is a function H : Rd → R such that H(x(t)) = H(x(t0))
along the solution curves of (1). If we can write
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S. Eidnes

f (x) = S(x)∇H(x), (2)

where S(x) : Rd×d → R
d is a skew-symmetric matrix, then (1) preserves H : this

follows from the skew-symmetry of S(x), which yields

d

dt
H(x) = ∇H(x)T ẋ = ∇H(x)T S(x)∇H(x) = 0. (3)

The converse is also true: McLachlan et al. showed in [30] that, whenever (1) has
a first integral H , there exists a skew-symmetric matrix S(x), bounded near every
non-degenerate critical point of H , such that (1) can be written on what is called the
skew-gradient form:

ẋ = S(x)∇H(x). (4)

The proof provided in [30] for this is based on presenting a general form of one such
S(x), the so-called default formula

S(x) = f (x)∇H(x)T − ∇H(x) f (x)T

∇H(x)T∇H(x)
. (5)

Unless d = 2, this is generally not a unique choice of S(x), as e.g.

S(x) = f (x)g(x)T − g(x) f (x)T

g(x)T∇H(x)

will satisfy (2) for any non-vanishing function g : Rd → R
d . Many ODEs with first

integrals have a well-known skew-gradient form (4). This includes Poisson systems,
and the important class consisting of canonical Hamiltonian ODEs. For the latter, S
will be constant, so that we may write

ẋ = S∇H(x). (6)

A numerical integrator preserving a first integral H exactly is called an integral-
preserving, or energy-preserving, method. Starting in the late 1970s, a few energy-
preserving methods were proposed which relied on some discrete analogue of the
property (3), see e.g. [9, 23, 25, 26]. Most prominent among these is the class of
methods called discrete gradient methods, defined formally by Gonzalez in [18] and
given their current name in [30].

Given the first integral H , a discrete gradient ∇H : Rd × R
d → R

d is a function
satisfying the conditions

∇H(x, y)T(y − x) = H(y) − H(x), (7)

∇H(x, x) = ∇H(x), (8)

for all x, y ∈ R
d . Introducing also the discrete approximation S(x, y, h) to S(x),

skew-symmetric and satisfying S(x, x, 0) = S(x), the corresponding discrete gradient
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method is given by
x̂ − x

h
= S(x, x̂, h)∇H(x, x̂). (9)

This scheme satisfies a discrete analogue to (3):

H(x̂) − H(x) = h∇H(x, x̂)T S(x, x̂, h)∇H(x, x̂) = 0.

We say that (9) is consistent to the skew-gradient system (4), since S(x, x̂, h) is a
consistent approximation of S(x) and ∇H(x, x̂) is a consistent approximation of
∇H(x).

If d ≥ 2, there are in general infinitely many functions satisfying (7)–(8). Many
explicit definitions of concrete discrete gradients have been suggested, and we will
discuss themost prominent among them in Sect. 2.1. One of these is the average vector
field (AVF) discrete gradient, first introduced in [22] and sometimes called the mean
value discrete gradient [30]. For a given H , it is given by the average of ∇H on the
segment [x, y]:

∇AVFH(x, y) =
∫ 1

0
∇H((1 − ξ)x + ξ y) dξ. (10)

When applied to the constant S system (6), the discrete gradient method with
S(x, y, h) = S and ∇H = ∇AVFH coincides with the scheme

x̂ − x

h
=

∫ 1

0
f ((1 − ξ)x + ξ x̂) dξ. (11)

This is sometimes viewed as a method by itself, applicable to any system (1), in which
case it is called the average vector field (AVF) method [37]. This was shown in [6] to
be a B-series method.

As pointed out in [30], the discrete gradient is restricted by its definition to be at
best a second order approximation to point values of ∇H . In much of the literature on
discrete gradient methods, see e.g. [18, 21], the approximation S is defined as being
independent of h. In that case, the discrete gradient scheme (9) can at best guarantee
second order convergence towards the exact solution. Over the last two decades, there
have been published some notable papers on higher order discrete gradient methods.
McLaren and Quispel were first out with their bootstrapping technique derived in
[31, 32]. Given any discrete gradient ∇H and an approximation to S(x) given by
S(x, y, h), they compare the Taylor expansion of the corresponding discrete gradient
scheme to that of the exact solution, and thus find a new approximation S̃(x, y, h) to
S(x) which yields higher order. This quickly becomes a very involved procedure, but
by using a symmetric discrete gradient, they derive fourth order methods. A downside
of this method is that the schemes of order higher than two require the calculation of
tensors of order three or higher at every time step.

A fourth order generalization of the AVF method is proposed by the same authors
in [37]. This can be viewed as a fourth-order discrete gradient method for all skew-
gradient systems where S is constant. Also worth mentioning in this setting is the
collocation-like method introduced by Hairer [20] and then generalized to Poisson
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systems by Cohen and Hairer [10]. This is a multi-stage extension of the AVF discrete
gradient method. To get higher than second order, more than one stage is required. In
that case themethod is not a discrete gradientmethod, although it is energy-preserving.

Norton et al. show in [35] that linear projection methods can be viewed as a class
of discrete gradient methods for skew-gradient systems with S(x) given by the default
formula (5). In connection to this, Norton and Quispel suggest in [36] the class of
approximations to (5) given by

S(x, y, h) = f̃ (x, y, h)g̃(x, y, h)T − g̃(x, y, h) f̃ (x, y, h)T

ĝ(x, y, h)T ğ(x, y, h)
, (12)

where f̃ (x, y, h) is a consistent approximation to f (x), and g̃(x, y, h), ĝ(x, y, h) and
ğ(x, y, h) are all consistent approximations to ∇H(x). The corresponding discrete
gradient method then inherits the order of the method x̂ = x + h f̃ (x, x̂, h).

The use of the discrete gradientmethod expands beyond the numerical integration of
ODEs. It can be applied to the time-integration of partial differential equations (PDEs)
which has constants of motion, guaranteeing preservation of a discrete approximation
of an integral [5, 14, 16]. Higher-order methods have been studied in this context,
but then only schemes that are expanding on the AVF method [3, 24]. Furthermore,
building on the recently introduced Hamiltonian neural networks [8, 19], Matsubara et
al. have shown how discrete gradients can be used to learn energy-preserving systems
from data [27]. Since the energy is given by a neural network, none of the higher-order
methods reviewed above are applicable in that case, and the authors suggest to use
multi-step methods to get higher than second order.

To the best of our knowledge, no one has so far suggested higher than fourth order
discrete gradient methods for a general skew-gradient system (4). Furthermore, for
this general case, all discrete gradient methods suggested of higher than second order
involve tensors of order three or higher. In this paper we present general theory for
achievingmethods of arbitrary order, using any discrete gradient and not depending on
tensors of order higher than two. Largely inspired by the above mentioned references,
especially [31, 32, 37], we present here a general form giving a class of approximations
S(x, y, h) to any S(x) in (4), with corresponding conditions for achieving an arbitrary
order of the discrete gradient method (9). We do this step by step. In the next section,
we derive some useful properties of a general discrete gradient and discuss the most
common specific discrete gradients. Then we consider the AVF method and use order
theory for B-series methods to obtain a generalization of this, with corresponding
order conditions. In Sect. 4, we build on this to develop higher order discrete gradient
methods for a general skew-gradient system, using the AVF discrete gradient. Then,
in Sect. 5, we generalize this further to allow for a free choice of the discrete gradient,
thus arriving at the general form S(x, y, h) mentioned above, and a formal series
expansion of the corresponding discrete gradient methods. Throughout the paper,
we present several examples of higher order schemes for the different cases. In the
final section, we apply some of these schemes to numerical examples: the Hénon–
Heiles system with a constant S, a Lotka–Volterra system with a non-constant S, and
a pendulum system learned by a neural network.
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2 A preliminary analysis of discrete gradients

To simplify notation in the following derivations, we define g := ∇H . Furthermore,
we suppress the first argument of ∇H and define ḡ(y) := ∇H(x, y). We use Einstein
summation convention, with a comma in the subscript to differentiate between compo-

nents of covectors and derivatives. That is, wewrite ḡ(y)i, j := ∂ ḡ(y)i

∂ y j , ḡ(y)i, j := ∂ ḡ(y)i
∂ y j

and so forth. Taylor expanding ḡ(y) around x , we get

ḡ(y)i = ḡ(x)i + ḡ(x)i, j (y
j − x j ) + 1

2
ḡ(x)i, jk(y

j − x j )(yk − xk)

+ 1

6
ḡ(x)i, jkl(y

j − x j )(yk − xk)(yl − xl) + O(|y − x |4),
(13)

or

ḡ(y) =
∞∑

κ=0

1

κ! ḡ
(κ)(x)(y − x)κ . (14)

By the consistency criterion (8), we have ḡ(x) = g(x). However, if we require the
discrete gradient to be a differentiable function in its second argument, (8) follows
directly from (7). To see this, we write (7) as

H(y) − H(x) = ḡ(y)i (y
i − xi ). (15)

Differentiating this with respect to y j , we get

g(y) j = H(y), j = ḡ(y)i, j (y
i − xi ) + ḡ(y) j , (16)

The case y = x immediately gives g(x) j = ḡ(x) j , or (8). Assuming further that
∇H ∈ C2(Rd × R

d ,Rd), we can differentiate once more to get

g(y) j,k = H(y), jk = ḡ(y)i, jk(y
i − xi ) + ḡ(y) j,k + ḡ(y)k, j , (17)

which means that
g(x) j,k = H(x), jk = ḡ(x) j,k + ḡ(x)k, j ,

or
D2H(x) = D2∇H(x, x) + (D2∇H(x, x))T, (18)

where D2H := D∇H denotes the Hessian of H , and D2∇H denotes the Jacobian of
∇H with respect to its second argument.

Lemma 1 If the discrete gradient ∇H is symmetric, i.e. ∇H(x, y) = ∇H(y, x) for
all x, y ∈ R

d , then

D2∇H(x, x) = 1

2
D2H(x). (19)
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Proof Disclosing the suppressed argument x in (16), we have

g(y) j = ∂

∂ y j
(ḡ(x, y)i )(y

i − xi ) + ḡ(x, y) j ,

which we can differentiate by xk to get

0 = ∂2

∂xk∂ y j
(ḡ(x, y)i )(y

i − xi ) − ∂

∂ y j
ḡ(x, y)k + ∂

∂xk
ḡ(x, y) j .

If ∇H is symmetric,

∂

∂xk
ḡ(x, y) j = ∂

∂xk
ḡ(y, x) j .

Thus, for y = x we get ḡ(x)k, j = ḡ(x) j,k , or (D2∇H(x, x))T = D2∇H(x, x).
Inserting that in (18), we obtain (19).

Definition 1 Given a discrete gradient∇H ∈ C1(Rd×R
d ,Rd), we define the function

Q : Rd × R
d → R

d×d by

Q(x, y) := 1

2

(
(D2∇H(x, y))T − D2∇H(x, y)

)
. (20)

Note that Q(x, y) is a skew-symmetric matrix. From (18), we see that Q(x, x) =
1
2D

2H(x) − D2∇H(x, x). The following result is crucial for the the main result of
this paper: the development of a general theory for higher order discrete gradient
methods.

Lemma 2 For a discrete gradient ∇H ∈ C p(Rd × R
d ,R) and the corresponding Q

given by (20),

Dκ
2∇H(x, x)vκ = 1

κ + 1
Dκ∇H(x)vκ

− 2κ

κ + 1
Dκ−1
2 Q(x, x)vκ for any κ ∈ [1, p], v ∈ R

d .

Proof Differentiating (17) κ − 1 times by y and setting y = x , we find that the κth
derivatives of g(x) can be expressed by the κth derivatives of ḡ(x) through the relation

g(x) j,I = ḡ(x) j,I +
κ∑

m=1

ḡ(x)im ,{ j,Im }, for all j, I , κ, (21)

where I = {i1, i2, . . . , iκ } is an ordered set of κ indices, and

Im = I \ {im} = {i1, i2, . . . im−1, im+1, . . . , iκ } ,
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i.e. I with the mth element excluded. Similarly, by continued differentiation of (20),
we obtain

(Dκ−1
2 Q(x, x)) j,I = 1

2
ḡ(x)i1,{ j,I1} − 1

2
ḡ(x) j,I .

Thus

(Dκ−1
2 Q(x, x)vκ) j = (Dκ−1

2 Q(x, x)) j,I v
I = 1

2
ḡ(x)i1,{ j,I1}v{ j,I1} − 1

2
ḡ(x) j,I v

I

= 1

2κ

κ∑
m=1

ḡ(x)im ,{ j,Im }v{ j,Im } + 1

2κ
ḡ(x) j,I v

I − 1

2κ
ḡ(x) j,I v

I − 1

2
ḡ(x) j,I v

I

= 1

2κ
g(x) j,I v

I − (
1

2κ
+ 1

2
)ḡ(x) j,I v

I = 1

2κ
g(x) j,I v

I − κ + 1

2κ
ḡ(x) j,I v

I .

2.1 Properties of different discrete gradients

While introducing the discrete gradient methods in [18], Gonzalez also gave an exam-
ple of a discrete gradient satisfying (7)–(8): the midpoint discrete gradient is given
by

∇MH(x, y) := ∇H

(
x + y

2

)
+ H(y) − H(x) − ∇H

( x+y
2

)T
(y − x)

(y − x)T (y − x)
(y − x) .

Even when H is analytic, this discrete gradient is often not; the second order partial
derivatives are in general singular in y = x . For that reason, it is not suited for achieving
higher order methods by the techniques we consider in this paper.

The Itoh–Abe discrete gradient method, introduced in [23], notably does not require
evaluation of the gradient. The corresponding discrete gradient, which has also been
called the coordinate increment discrete gradient [30], is defined by

∇IAH(x, y) :=
d∑
j=1

α j e j , (22)

where e j is the j th canonical unit vector and

α j =
⎧⎨
⎩
H(w j ) − H(w j−1)

y j − x j
if y j �= x j ,

∂H
∂x j (w j−1) if y j = x j ,

w j =
∑ j

i=1
yi ei +

∑n

i= j+1
xi ei .

While the other discrete gradients we consider in this paper are symmetric and thus
second order approximations to ∇H , the Itoh–Abe discrete gradient is only of first
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order. However, a second order discrete gradient, which we call the symmetrized Itoh–
Abe (SIA) discrete gradient, is given by

∇SIAH(x, y) := 1

2

(∇IAH(x, y) + ∇IAH(y, x)
)
. (23)

Furihata presented the discrete variational derivative method for a class of PDEs in
[16], a method which has been developed further by Furihata, Matsuo and co-authors
in a series of papers, e.g. [29, 38], as well as the monograph [17]. As shown in [14],
these schemes can also be obtained by semi-discretizing the PDE in space and then
applying a discrete gradient method on the resulting system of ODEs. We give here
the definition of the specific discrete gradient that gives the schemes of Furihata and
co-author, defined for a class of invariants that includes all polynomial functions:

Definition 2 Assume that we can write the first integral as

H(x) =
∑
l

cl

d∏
j=1

f lj (x
j ), (24)

for functions f lj : R → R. The Furihata discrete gradient ∇FH(x, y) is defined by

∇FH(x, y) :=
d∑
j=1

α j e j , (25)

where e j is the j th canonical unit vector and

α j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
l

cl
2

f lj (y
j )− f lj (x

j )

y j−x j

(
j−1∏
k=1

f lk (x
k) +

j−1∏
k=1

f lk (y
k)

)
d∏

k= j+1

f lk (x
k )+ f lk (y

k )

2 if y j �= x j ,

∑
l

cl
2
d f lj (x

j )

dx j

(
j−1∏
k=1

f lk (x
k) +

j−1∏
k=1

f lk (y
k)

)
d∏

k= j+1

f lk (x
k )+ f lk (y

k )

2 if y j = x j .

The discrete gradient introduced by Matsubara and co-authors in [27] shares some
relation to the Furihata discrete gradient, in that they are both relying on a discrete
analogue to the product rule for derivatives. But the former discrete gradient, obtained
by what the authors call the automatic discrete differentiation algorithm, more impor-
tantly depends on an analogue to the chain rule. By using this algorithm instead of
standard automatic differentiation in a neural network that learns a dynamical sys-
tem from data, the discrete gradient is obtained together with the preserved energy.
Thus the learned system can be integrated in an energy-preserving manner, which
distinguishes the approach of Matsubara et al. from comparable studies [8, 19, 39].

Lastly we consider the AVF discrete gradient (10), which has several noteworthy
characteristics.

Lemma 3 The Q(x, y) corresponding to the AVF discrete gradient is the zero matrix,
since (D2∇AVFH(x, y))T = D2∇AVFH(x, y).
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Proof For ḡ(y) := ∇AVFH(x, y), we have

ḡ(y)i, j = ∂

∂ y j

∫ 1

0
g((1 − ξ)x + ξ y)i dξ =

∫ 1

0

∂

∂ y j
g((1 − ξ)x + ξ y)i dξ

=
∫ 1

0
ξg((1 − ξ)x + ξ y)i, j dξ =

∫ 1

0
ξg((1 − ξ)x + ξ y) j,i dξ = ḡ(y) j,i .

From the Integrability Lemma (see e.g. [21,LemmaVI.2.7]) and the above, we have
that the AVF discrete gradient defines a gradient vector field:

Corollary 1 The AVF discrete gradient is the gradient with respect to the second argu-
ment of a function H̃(x, y). That is,

∇AVFH(x, y) = ∇2 H̃(x, y),

for some H̃ : Rd × R
d → R and all x, y ∈ R

d .

Any other discrete gradient will have these properties only for functions H for
which it coincides with the AVF discrete gradient:

Proposition 1 The AVF discrete gradient is the unique discrete gradient satisfying
(D2∇H(x, y))T = D2∇H(x, y) for all H, x and y, and it has the formal expansion

∇AVFH(x, y) =
∞∑

κ=0

1

(κ + 1)!D
κ∇H(x)(y − x)κ . (26)

Proof Assume that ∇H is an analytic function. As in the proof of Lemma 2, let
I = {i1, i2, . . . , iκ } be an ordered set of κ indices, and let Im be I with the mth

element excluded. If ḡ(y)i, j = ḡ(y) j,i for all i, j , then also

ḡ(y)i,I = ḡ(y)im ,{i,Im } for all i, I ,m. (27)

Inserting (27) in (21) we get g(κ)(x) = (1+ κ)ḡ(κ)(x). Then inserting this for ḡ(κ)(x)
in (14), we get (26), which uniquely defines the AVF discrete gradient.

A consequence of the above result is that the AVF discrete gradient is the unique
discrete gradient for which the scheme (9) with S(x, x̂, h) = S is a B-series method
when applied to the system (6).

As we see from the above definitions and discussion, each of the discrete gradients
have their advantages and disadvantages. Gonzalez’ midpoint discrete gradient is eas-
ily calculated from the energy H and the gradient ∇H , but it is in general only once
differentiable. The Itoh–Abe and Furihata discrete gradient methods do not require
knowledge of the gradient, but the former is only a first order method and the latter is
only defined for H of the form (24). The AVF discrete gradient is the unique discrete
gradient whose series expansion is given by the differentials of the gradient. It does
however require an integral to be calculated. The discrete gradient of Matsubara and
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co-authors has a different area of use than the others: it is only defined when H is
a neural network. In that case neither Gonzelez’ midpoint, the AVF or the Furihata
discrete gradients can be obtained.

In the next section we consider the specific case where the AVF discrete gradient
is chosen and S is constant, so that we can build on established results for B-series
methods to develop new theory.

3 A generalization of the AVFmethod

Let us recall the concept of B-series. Referring to the definitions in [21,Section III.1],
we let T be the set of rooted trees, built recursively from starting with τ = and letting
τ = [τ1, . . . , τm] be the tree obtained by grafting the roots of the trees τ1, . . . , τm to
a new root. Furthermore, F(τ ) is the elementary differential associated with the tree
τ , defined by F( )(x) = f (x) and

F(τ )(x) = f (m)(x)
(
F(τ1)(x), . . . , F(τm)(x)

)
,

and σ(τ) is the symmetry coefficient for τ , defined by σ( ) = 1 and

σ(τ) = σ(τ1) · · · σ(τm) · μ1! μ2! · · · , (28)

where the integers μ1, μ2, . . . count equal trees among τ1, . . . , τm . Then, if φ : T ∪
{∅} → R is an arbitrary map, a B-series is a formal series

B(φ, x) = φ(∅)x +
∑
τ∈T

h|τ |

σ(τ)
φ(τ)F(τ )(x). (29)

The exact solution of (1) can be written as the B-series B( 1
γ
, x), where the coefficient

γ satisfies γ (∅) = γ ( ) = 1 and

γ (τ) = |τ | γ (τ1) · · · γ (τm) for τ = [τ1, . . . , τm], (30)

where |τ | is the order, i.e. the number of nodes, of τ .

Definition 3 The generalized AVF method is given by

x̂ − x

h
=

(
I +

p−1∑
n=2

hn
∑
j

bnj

( n∏
k=1

f ′(znjk) + (−1)n
n∏

k=1

f ′(znj(n−k+1))

))

·
∫ 1

0
f ((1 − ξ)x + ξ x̂) dξ, (31)

where each znjk := znjk(x, x̂, h) = B(φnjk, x) can be written as a B-series with
φ(∅) = 1.
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Theorem 1 When applied to (1) with f (x) = S∇H(x), where S is a constant skew-
symmetric matrix, the scheme (31) preserves H, in that H(x̂) = H(x).

Proof With f (x) = S∇H(x), (31) becomes

x̂ − x

h
= S(x, x̂, h)∇AVFH(x, x̂),

with

S(x, x̂, h) = S +
p−1∑
n=2

hn
∑
j

bnj

(
n∏

k=1

SD2H(znjk) + (−1)n
n∏

k=1

SD2H(znj(n−k+1))

)
S.

We have

(
n∏

k=1

SD2H(znjk) · S + (−1)n
n∏

k=1

SD2H(znj(n−k+1)) · S
)T

= ST
n∏

k=1

(
D2H(znj(n−k+1))

T ST
) + (−1)n ST

n∏
k=1

(
D2H(znjk)

T ST
)

= (−1)i+1S
n∏

k=1

D2H(znj(n−k+1))S − S
n∏

k=1

D2H(znjk)S

= −
(

n∏
k=1

SD2H(znjk) · S + (−1)n
n∏

k=1

SD2H(znj(n−k+1)) · S
)

,

and thus S(x, x̂, h) is a skew-symmetric matrix.

Before considering the order conditions of the generalizedAVFmethod, let us recall
a couple of results from the literature on B-series.

Lemma 4 ([21,Lemma III.1.9]) Let B(a, x) be a B-series with a(∅) = 1. Then
h f (B(a, x)) = B(a′, x) is also a B-series, with a′(∅) = 0, a′( ) = 1 and other-
wise

a′(τ ) = a(τ1) · · · a(τm) for τ = [τ1, . . . , τm].

Lemma 5 ([34,Theorem 2.2]) Let B(a, x) and B(b, x) be two B-series with a(∅) =
1 and b(∅) = 0. Then h f ′(B(a, x))B(b, x) = B(a × b, x), i.e. a B-series, with
(a × b)(∅) = (a × b)( ) = 0 and otherwise

(a × b)(τ ) =
m∑
i=1

m∏
j=1, j �=i

a(τ j )b(τi ) for τ = [τ1, . . . , τm].
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Proposition 1 in [6] states that the standard AVF method is a B-series method. We
build on the proof of that proposition to prove the following result.

Proposition 2 The generalized AVF method (31) is a B-series method.

Proof First we define ê : T ∪{∅} → R by ê(∅) = 1 and ê(τ ) = 0 for all τ �= ∅. Then,
assuming that the solution x̂ of (31) can be written as the B-series x̂ = B(
, x), we
find the B-series

h
∫ 1

0
f
(
(1 − ξ)x + ξ x̂

)
dξ = h

∫ 1

0
f
(
B((1 − ξ)ê + ξ
, x)

)
dξ

=
∫ 1

0
B

(
((1 − ξ)ê + ξ
)′, x

)
dξ

= B
( ∫ 1

0
((1 − ξ)ê + ξ
)′ dξ, x

)
.

Setting θ := ∫ 1
0 ((1−ξ)ê+ξ
)′ dξ = ∫ 1

0 ((1−ξ)ê)′ dξ +∫ 1
0 (ξ
)′ dξ = ∫ 1

0 (ξ
)′ dξ ,
we get

θ(∅) = 0, θ( ) = 1, θ([τ1, . . . , τm]) = 1

m + 1

(τ1) · · · 
(τm). (32)

Then we may rewrite (31) as

x̂ = x +
⎛
⎝I +

p−1∑
n=2

hn
∑
j

bnj

(
n∏

k=1

f ′(B(φnjk , x)) + (−1)n
n∏

k=1

f ′(B(φnj(n−k+1), x))

)⎞
⎠ B(θ, x)

= x + B(θ, x)

+
p−1∑
n=2

∑
j

bnj
(
B(φnj1 × · · · × φnjn × θ, x) + (−1)n B(φnjn × · · · × φnj1 × θ, x)

)

= B(
, x),

with


 = ê + θ +
p−1∑
n=2

∑
j

bnj
(
φnj1 × · · · × φnjn × θ + (−1)n φnjn × · · · × φnj1 × θ

)
.

(33)

Comparing the B-series of the exact solution and the B-series of the solution of
(31), and noting that the elementary differentials are independent, we immediately get
the following result.

Theorem 2 The generalized AVF method (31) is of order p if and only if


(τ) = 1

γ (τ)
for |τ | ≤ p, (34)
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Table 1 Elementary differentials and their coefficients in the B-series of the solution of (31), up to fourth
order

|τ | F(τ )i τ σ (τ) γ (τ) 
(τ)

1 f i 1 1 1

2 f ij f
j 1 2 1

2

3 f ijk f
j f k 2 3 1

3

f ij f
j
k f k 1 6 1

4 + 2
∑

j b2 j

4 f ijkl f
j f k f l 6 4 1

4

f ijk f
j f kl f l 1 8 1

6 + ∑
j,k b2 jφ2 jk ( )

f ij f
j
kl f

k f l 2 12 1
6 + 2

∑
j,k b2 jφ2 jk ( )

f ij f
j
k f kl f l 1 24 1

8 + 2
∑

j b2 j

where 
 is given by (33) and γ is given by (30).

The terms 
(τ) can be found from (33) by applying Lemma 5 recursively, as
illustrated by the following example.

Example 1 Consider τ = , and assume we have found 
 for all trees up to and
including order four already, as given in Table 1. We have

θ( ) = 1

3

( )
( ) = 1

3
(
1

4
+ 2

∑
j

b2 j ) = 1

12
+ 2

3

∑
j

b2 j .

Then we calculate

(φ2 j1 × φ2 j2 × θ)( ) = φ2 j1( )(φ2 j2 × θ)( ) + φ2 j1( )(φ2 j2 × θ)( )

= φ2 j1( )(φ2 j2 × θ)( ) = φ2 j1( )φ2 j2(∅)θ( ) = 1

2
φ2 j1( ),

where we have used in the second equality that (φ2 j2 × θ)( ) = φ2 j2(∅)θ(∅) = 0.

Similarly we find (φ2 j2 × φ2 j1 × θ)( ) = 1
2φ2 j2( ). Furthermore,

(φ3 j1 × φ3 j2 × φ3 j3 × θ)( ) = φ3 j1( )(φ3 j2 × φ3 j3 × θ)( )

= φ3 j1( )φ3 j2(∅)(φ3 j3 × θ)( )

= φ3 j1( )φ3 j3(∅)θ( ) = φ3 j1( ),
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and (φ3 j3 × φ3 j2 × φ3 j1 × θ)( ) = φ3 j3( ). Hence,


( ) = 1

12
+ 2

3

∑
j

b2 j + 1

2

∑
j

b2 j (φ2 j1( ) + φ2 j2( ))

+
∑
j

b3 j (φ3 j1( ) − φ3 j3( )).

Now, if we assume the order condition (34) to be satisfied for all trees up to and
including order four, we can replace

∑
j b2 j = − 1

24 and
∑

j b2 j (φ2 j1( )+φ2 j2( )) =

− 1
24 in the above expression, use that γ ( ) = 30, and get that (34) is satisfied for

if and only if ∑
j

b3 j (φ3 j1( ) − φ3 j3( )) = − 1

720
. (35)

3.1 Construction of higher order schemes

As the size of the trees grows, finding
(τ) from (33) can become quite a cumbersome
operation. Furthermore, we observe from Table 1 that there are some equivalent order
conditions for different trees.Before presentingmore convenient techniques for finding
order conditions for the generalized AVF method, let us define some more concepts
related to B-series and trees.

First, recall that the Butcher product of two trees u = [u1, . . . , um] and v =
[v1, . . . , vn] is given by u ◦v = [u1, u2, . . . , um, v]. This operation is neither associa-
tive nor commutative, and in contrast to the practice in [21], we here take the product
of several factors without parentheses to mean evaluation from right to left:

u1 ◦ u2 ◦ · · · ◦ uk := u ◦ (u2 ◦ (· · · ◦ uk)).

Given a forest μ = (τ1, . . . , τm), the tree obtained by grafting the roots of every
tree in μ to a new root is denoted by [μ] = [τ1, . . . , τm]. Moreover, μ−1(τ ) denotes
the forest such that [μ−1(τ )] = τ . We extend the maps φ : T ∪ {∅} → R and
γ : T ∪{∅} → R to forests by the letting φ(μ) = ∏m

i=1 φ(τi ) and γ (μ) = ∏m
i=1 γ (τi )

for μ = (τ1, . . . , τm).
Consider now a tree τ consisting of |τ | nodes. We may number every tree from 1

to |τ |, starting at the root and going from left to right on the increasing levels above.
For a given node i ∈ {1, . . . , |τ |} on level n + 1, there exists a unique set of forests
τ̂ i = {μi

1, . . . , μ
i
n+1} such that

τ = [μi
1] ◦ [μi

2] ◦ · · · ◦ [μi
n+1].
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That is, labeling node i ,

τ = i

μi
n+1

μi
2

μi
1

Proposition 3 The 
 of (34) can alternatively be found by


(τ) = ê(τ ) + θ(τ ) +
∑

i s.t. n≥2

�(τ̂ i ) (36)

where ê(∅) = 1 and ê(τ ) = 0 for all τ �= ∅, θ(∅) = 0, θ( ) = 1,

θ([τ1, . . . , τm]) = 1

m + 1

(τ1) · · · 
(τm),

and

�(τ̂ i ) = θ([μi
n+1])

∑
j

bnj
(
φnj1(μ

i
1) · · · φnjn(μ

i
n) + (−1)nφnjn(μ

i
1) · · · φnj1(μ

i
n)

)
.

(37)

Proof Define ni so that ni + 1 is the level of node i . Collect the children of node i in
the set Ci . We have

[μi
ni+1] = [μk

nk ] ◦ [μk
nk+1] for all k ∈ Ci ,

and thus
(a × b)([μi

ni+1]) =
∑
k∈Ci

a(μk
nk )b([μk

nk+1]).

Note also that μi
ni = μk

ni = μk
nk−1 if k ∈ Ci . Then we get

(φnj1 × · · · × φnjn × θ)(τ ) = (φnj1 × · · · × φnjn × θ)([μ1
1])

=
∑
i1∈C1

φnj1(μ
i1
1 )(φnj2 × · · · × φnjn × θ)([μi1

2 ])

=
∑
i1∈C1

φnj1(μ
i1
1 )

∑
i2∈Ci1

φnj2(μ
i2
2 )(φnj3 × · · · × φnjn × θ)([μi2

3 ])

=
∑
i1∈C1

∑
i2∈Ci1

φnj1(μ
i2
1 )φnj2(μ

i2
2 )(φnj3 × · · · × φnjn × θ)([μi2

3 ])

.

.

.

=
∑
i1∈C1

∑
i2∈Ci1

· · ·
∑

in∈Cin−1

φnj1(μ
in
1 ) · · ·φnjn(μ

in
n )θ([μin

n+1])
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=
∑

i on level n+1

φnj1(μ
i
1) · · ·φnjn(μ

i
n)θ([μi

n+1]).

Inserting this and the corresponding result for (φnjn × · · · × φnj1 × θ)(τ ) in (33), we
get (37).

In [7, 15], conditions are derived for aB-seriesmethod to be energy preservingwhen
applied to the system (6). In [37], while giving the AVF method as one such method,
Quispel andMcLaren present a general form ofwhat they call energy-preserving linear
combinations of rooted trees:

ω =

μn

μ2

μ1

+ (−1)n

μ1

μn−1

μn

Here we give their result as a lemma, which is proved later by the proof of the more
general Theorem 5.

Lemma 6 Let μ1, . . . , μn be n arbitrary forests. Then, if f (x) = S∇H(x) for some
skew-symmetric constant matrix S, we have that F(ω)(x) · ∇H(x) = 0 for

ω = [μ1] ◦ [μ2] ◦ · · · [μn] ◦ [∅] + (−1)n [μn] ◦ [μn−1] ◦ · · · [μ1] ◦ [∅]. (38)

There is a connection between (36) and Lemma 6 such that instead of order con-
ditions for every tree, we can calculate order conditions for every energy-preserving
linear combination. To see this we start by collecting the leaf nodes, i.e. nodes with
no children, of the tree τ in a set Il and the other nodes in the set In . If node i ∈ In ,
we may then use the relation

�({μi
1, . . . , μ

i
n, μ

i
n+1}) = θ([μi

n+1])�({μi
1, . . . , μ

i
n,∅})

to find �(τ̂ i ) from the previously calculated � for a smaller tree. Then if lower order
conditions are satisfied, we have numerical values for these �. The leaf nodes on the
other hand,with their corresponding τ̂ i = {μi

1, . . . , μ
i
n,∅}, gives an energy-preserving

linear combination (38) which τ belongs to. If i is on level two, this combination is
simply τ − τ = 0, and accordingly � is not calculated for these nodes in (36).
Moreover, leaves on the same level have identical τ̂ i . Thus, a tree with leaves on m
different levels above level two will belong to at most m non-zero energy-preserving
linear combinations (38). For each of these combinations there is a corresponding
order condition, with the left hand side given by (37). The right hand side can be
found by considering the individual trees.

If we assume the conditions for order < p to be satisfied, we may replace (34) by

∑
i∈Il

�(τ̂ i ) = 1

γ (τ)
− ê(τ ) −

∑
i∈In

�({μi
1, . . . , μ

i
n,∅})

(|μi
n+1| + 1)γ (μi

n+1)
, (39)
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where |μ| denotes the number of trees in the forestμ. Note that�({∅}) = 1 and hence
�(τ̂ 1) = θ(τ ). Then we can calculate the numerical value for the right hand side and,
if τ has leaves on only one level > 2, find an order condition for both τ and the other
tree in the combination (38). This warrants an example.

Example 2 Consider again the tree τ = , which is part of the energy-preserving

linear combination ω = − . Ignoring the two nodes on level 2, there are three
nodes to calculate � for: i = 1, i = 4 and i = 5. We find

�(τ̂ 1) = 1

(2 + 1)γ ( )γ ( )

= 1

3 · 1 · 6 = 1

18

�(τ̂ 4) = 1

(1 + 1)γ ( )
�({ ,∅,∅})

= 1

2γ ( )

(
1

γ ( )

− 1

3γ ( )γ ( )

)
= 1

2

(1
8

− 1

6

)
= − 1

48
,

�(τ̂ 5) = �({ ,∅,∅,∅}) =
∑
j

b3 j
(
φ3 j1( ) − φ3 j3( )

)
.

The right hand side of (39) becomes

1

γ (τ)
− 1

18
− (− 1

48
) = 1

30
− 1

18
+ 1

48
= − 1

720
,

and we have the order condition (35) for the linear combination − .

If there are leaves on r > 1 different levels above level two, things get slightly more
complicated. Then we get r different terms on the left hand side of (39) and we need
to consider the order condition for τ and the r trees it forms energy-preserving linear
combinationswith, so thatwe get an equation for every energy-preserving combination
of these trees, also those not including τ . This is illustrated by the following example.

Example 3 The tree forms energy-preserving combinations with both and .
Thus we have to calculate (39) for all three trees to find order conditions for the

corresponding linear combinations. Starting with τ = , which has three nodes
above level two, two leaves and one non-leaf, we get

�(τ̂ 4) = �({ , ,∅}) =
∑
j

b2 j
(
φ2 j1( )φ2 j2( ) + φ2 j2( )φ2 j1( )

)
,

�(τ̂ 5) = 1

(1 + 1)γ ( )
�({ , ,∅}) = 1

2γ ( )

1

2

(
1

γ ( )

− 1

3γ ( )γ ( )

)

123



S. Eidnes

= 1

2

1

2

( 1

15
− 1

9

)
= − 1

90
,

�(τ̂ 6) = �({ , ,∅,∅}) =
∑
j

b3 j
(
φ3 j1( )φ3 j2( ) − φ3 j3( )φ3 j2( )

)

=
∑
j

b3 jφ3 j2( )(φ3 j1 − φ3 j3)( ).

For the right hand side of (39), we get

1

γ (τ)
− 1

(2 + 1)γ ( )γ ( )

− (− 1

90
) = 1

48
− 1

3 · 1 · 8 + 1

90
= − 7

720
,

and hence the order condition for is

∑
j

b2 j
(
φ2 j1( )φ2 j2( ) + φ2 j2( )φ2 j1( )

) +
∑
j

b3 jφ3 j2( )(φ3 j1 − φ3 j3)( ) = − 7

720
.

(40)

Similarly we calculate (39) for ,

∑
jk

b2 jφ2 jk( ) − 2
∑
j

b3 jφ3 j2( )(φ3 j1 − φ3 j3)( ) = − 1

120
, (41)

and for ,

∑
jk

b2 jφ2 jk( ) + 2
∑
j

b2 j
(
φ2 j1( )φ2 j2( ) + φ2 j2( )φ2 j1( )

) = − 1

36
. (42)

Combining (40), (41) and (42), we get the equivalent system of equations

∑
j

b3 jφ3 j2( )(φ3 j1( ) − φ3 j3( )) = 1

240
+ α, (43)

∑
j

b2 j (φ2 j1( )φ2 j2( ) + φ2 j1( )φ2 j2( )) = − 1

72
− α, (44)

∑
j,k

b2 jφ2 jk( ) = 2α, (45)

where the choice ofα ∈ R is arbitrary.Theorder conditions (43)–(45) canbe associated

to the linear combinations − , + and + , respectively.

123



Order theory for discrete gradient methods

Table 2 Energy-preserving linear combinations of elementary differentials, and their associated order
conditions for the scheme (31), up to sixth order. The coefficients α1, α2 ∈ R are arbitrary

|τ | ω Order condition

1 –

2 – –

3
∑

j b2 j = − 1
24

4 + ∑
j ,k b2 jφ2 jk ( ) = − 1

24

5 + ∑
j ,k b2 jφ2 jk ( )2 = − 1

40

∑
j b2 jφ2 j1( )φ2 j2( ) = − 1

90

− ∑
j b3 j (φ3 j1( ) − φ3 j3( )) = − 1

720

+ ∑
j ,k b2 jφ2 jk ( ) = − 1

60

∑
j b4 j = 1

240

6 + ∑
j ,k b2 jφ2 jk ( )3 = − 1

60

+ ∑
j b2 j (φ2 j1( )2φ2 j2( ) + φ2 j1( )φ2 j2( )2) = − 1

72

− ∑
j b3 j (φ3 j1( )2 − φ3 j3( )2) = − 1

720

+ ∑
j ,k b2 jφ2 jk ( )φ2 jk ( ) = − 1

96

− ∑
j b3 jφ3 j2( )(φ3 j1( ) − φ3 j3( )) = 1

240 + α1

+ ∑
j b4 j (φ4 j1( ) + φ4 j4( )) = 1

240

+ ∑
j b2 j (φ2 j1( )φ2 j2( ) + φ2 j1( )φ2 j2( )) = − 1

72 − α1

− ∑
j b3 j (φ3 j1( ) − φ3 j3( )) = − 1

180 − α2

+ ∑
j ,k b2 jφ2 jk ( ) = 2α1

+ ∑
j ,k b2 jφ2 jk ( ) = α2

+ ∑
j b4 j (φ4 j2( ) + φ4 j3( )) = − 1

1440 − α2
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By considering the order conditions in Table 2, we find a fifth order scheme of the
form (31) given by

x̂ − x

h
=

(
I − 5

136
h2

(
f ′(z2) f ′(z3) + f ′(z3) f ′(z2)

) − 1

102
h2 f ′(x) f ′(x)

+ 1

288
h3

(
f ′(x) f ′(x) f ′(z1) + f ′(z1) f ′(x) f ′(x)

)

+ 1

120
h4 f ′(x) f ′(x) f ′(x) f ′(x)

) ∫ 1

0
f ((1 − ξ)x + ξ x̂) dξ, (46)

where

z1 = x + 2

5
h f (x), z2 = x + 17 + √

17

30
h f (z1), z3 = x + 17 − √

17

30
h f (z1).

A symmetric sixth order scheme is given by

x̂ − x

h
=

(
I − 13

360
h2 f ′(x̄ +

√
13

26
h f (x̄ − 3

√
13

26
h f (x̄))

)
f ′(x̄ −

√
13

26
h f (x̄ + 3

√
13

26
h f (x̄))

)

− 13

360
h2 f ′(x̄ −

√
13

26
h f (x̄ + 3

√
13

26
h f (x̄))

)
f ′(x̄ +

√
13

26
h f (x̄ − 3

√
13

26
h f (x̄))

)

− 1

180
h2 f ′(x) f ′(x) − 1

180
h2 f ′(x̂) f ′(x̂)

+ 1

720
h3 f ′(x̄ − 1

2
h f (x̄)) f ′(x̄) f ′(x̄ + 1

2
h f (x̄))

− 1

720
h3 f ′(x̄ + 1

2
h f (x̄)) f ′(x̄) f ′(x̄ − 1

2
h f (x̄))

+ 1

120
h4 f ′(x̄) f ′(x̄) f ′(x̄) f ′(x̄)

) ∫ 1

0
f ((1 − ξ)x + ξ x̂) dξ, (47)

where x̄ = x+x̂
2 . If we wish to calculate the matrix in front of the integral explicitly,

we have a non-symmetric sixth order scheme given by

x̂ − x

h
=

(
I − 13

360
h2

(
f ′(z6) f ′(z7) + f ′(z7) f ′(z6)

)

− 1

180
h2

(
f ′(x) f ′(x) + f ′(z1) f ′(z1)

)

+ 1

720
h3

(
f ′(x) f ′(z2) f ′(z3) − f ′(z3) f ′(z2) f ′(x)

)

+ 1

120
h4 f ′(z2) f ′(z2) f ′(z2) f ′(z2)

)∫ 1

0
f ((1 − ξ)x + ξ x̂) dξ, (48)
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with

z1 = x + 1

4
h f (x) + 3

4
h f

(
x + 2

3
h f (x + 1

3
h f (x))

)
, z2 = x + 1

2
h f (x),

z3 = x + h f (z2), z4 = 1

2
(x + z3) − 3

√
13

26
h f (z2),

z5 = 1

2
(x + z3) + 3

√
13

26
h f (z2),

z6 = 1

2
(x + z1) +

√
13

26
h f (z4), z7 = 1

2
(x + z1) −

√
13

26
h f (z5).

4 AVF discrete gradient methods for general skew-gradient systems

We will now build on the results of the previous section by generalizing the results to
the situation where S(x) in the skew-gradient system (4) is not necessarily constant.
Consider therefore now an ODE of the form (4), and set again g := ∇H . By Taylor
expansion of x around t = t0 we get

x(t0 + h) = x + hSg + h2

2
(S′gSg + Sg′Sg) + h3

6
(S′′g(Sg, Sg) + 2S′g′(Sg, Sg)

+ Sg′′(Sg, Sg) + S′gS′gSg + S′gSg′Sg
+ Sg′S′gSg + Sg′Sg′Sg) + O(h4),

where x := x(t0), and S, g and their derivatives are evaluated in x . Introducing the
notation f ◦ := S′g and f • := Sg′, we can write this in the abbreviated form

x(t0 + h) = x + h f + h2

2
( f ◦ f + f • f ) + h3

6
( f ◦◦( f , f ) + 2 f ◦•( f , f ) + f ••( f , f )

+ f ◦ f ◦ f + f ◦ f • f + f • f ◦ f + f • f • f ) + O(h4). (49)

4.1 Skew-gradient systems and P-series

A P-series is given by

P(φ, (x, y)) =
(

φ(∅)x + ∑
τ∈T P

h|τ |
σ(τ)

φ(τ )F(τ )(x, y)

φ(∅)y + ∑
τ∈T P

h|τ |
σ(τ)

φ(τ )F(τ )(x, y)

)
, (50)

where T P is the set of rooted bi-colored trees and T P and T P are the subsets of T P
whose roots are black and white, respectively [21,Section III.2]. The bi-colored trees
are built recursively; starting with and , we let τ = [τ1, . . . , τm] be the tree you get
by grafting the roots of τ1, . . . , τm to a black root and τ = [τ1, . . . , τm] the tree you
get by grafting τ1, . . . , τm to a white root. No subscript, i.e. τ = [τ1, . . . , τm], means
grafting to a black root.
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The exact solution of a partitioned system

ẋ = f (x, y), x(t0) = x0,

ẏ = g(x, y), y(t0) = y0,
(51)

can be written as (x(t0 + h), y(t0 + h)) = P(1/γ, (x0, y0)), where the coeffi-
cient γ is given by γ (∅) = γ ( ) = γ ( ) = 1 and (30). As noted in [10], setting
f (x, y) := S(y)∇H(x), the skew-gradient system (4) can be written as (51) with
g = f . When g = f , all coefficients and the elementary differentials F(τ ) in (50)
are given independently of the color of the root. Thus for the system (4), it suffices to
consider

P(φ, x) = φ(∅)x +
∑

τ∈T P

h|τ |

σ(τ)
φ(τ)F(τ )(x), (52)

and we have that the exact solution of (4) can be written as x(t0 + h) = P(1/γ, x0).
Breaking slightly with convention, we define a P-series to be the single row version
(52) in the remainder of this paper. Denoting black-rooted subtrees by τi and white-
rooted subtrees by τ̄i , the elementary differentials F(τ ) for the skew-gradient system
are given recursively by F( )(x) = F( )(x) = S(x)∇H(x), and

F(τ )(x) = S(l)Dm∇H(F(τ1)(x), . . . , F(τm)(x), F(τ̄1)(x), . . . , F(τ̄l)(x)) (53)

for both τ = [τ1, . . . , τm, τ̄1, . . . , τ̄l ] and τ = [τ1, . . . , τm, τ̄1, . . . , τ̄l ] . The bi-
colored trees in T P and their corresponding elementary differentials F are given up
to order three in Table 3. The number of trees grows very quickly with the order; see
https://oeis.org/A000151.

The following lemma is Lemma III.2.2 in [21] amended to fit our setting.

Lemma 7 Let P(a, x) and P(b, x) be two P-series with a(∅) = b(∅) = 1. Then

hS(P(a, x))∇H(P(b, x)) = P(a ∨ b, x),

where (a ∨ b)(∅) = 0, (a ∨ b)( ) = 1, and

(a ∨ b)(τ ) = a(τ1) · · · a(τm)b(τ̄1) · · · b(τ̄l) for τ = [τ1, . . . , τm, τ̄1, . . . , τ̄l ] .

Proposition 4 The AVF discrete gradient scheme

x̂ − x

h
= S

(
x + x̂

2

)∫ 1

0
∇H((1 − ξ)x + ξ x̂) dξ (54)

is a second order P-series method.
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Table 3 Bi-colored trees and their elementary differentials up to third order

|τ | F(τ )i F(τ ) τ α(τ) γ (τ) σ (τ)

1 Sij g
j f 1 1 1

2 Sijk g
j Skl g

l f ◦ f 1 2 1

Sij g
j
k S

k
l g

l f • f 1 2 1

3 Sijkmg j Skl g
l Smn gn f ◦◦( f , f ) 1 3 2

Sijk g
j
m Skl g

l Smn gn f ◦•( f , f ) 2 3 1

Sij g
j
km Skl g

l Smn gn f ••( f , f ) 1 3 2

Sijk g
j Sklmgl Smn gn f ◦ f ◦ f 1 6 1

Sij g
j
k S

k
lmgl Smn gn f • f ◦ f 1 6 1

Sijk g
j Skl g

l
m Smn gn f ◦ f • f 1 6 1

Sij g
j
k S

k
l g

l
m Smn gn f • f • f 1 6 1

Proof As in the proof of Proposition 2, we define ê by ê(∅) = 1 and ê(τ ) = 0 for
all τ �= ∅. Now, assume that the solution x̂ of (54) can be written as the P-series
x̂ = P(
, x). Then, using Lemma 7, we find the P-series

h S

(
x + x̂

2

) ∫ 1

0
∇H((1 − ξ)x + ξ x̂) dξ

= h S
(
P

( 1
2
ê + 1

2

, x

)) ∫ 1

0
∇H

(
P((1 − ξ)ê + ξ
, x)

)
dξ

=
∫ 1

0
h S

(
P

( 1
2
ê + 1

2

, x

))∇H
(
P((1 − ξ)ê + ξ
, x)

)
dξ

= P

( ∫ 1

0

(( 1
2
ê + 1

2



) ∨ (
(1 − ξ)ê + ξ


))
dξ, x

)
.

Thuswe get
 = ê+∫ 1
0

(( 1
2 ê+ 1

2

)∨(

(1−ξ)ê+ξ

))
dξ = ê+∫ 1

0

(( 1
2


)∨(
ξ


))
dξ .

That is, 
(∅) = 1,
( ) = 1, and


([τ1, . . . , τm, τ̄1, . . . , τ̄l ]) = 1

(m + 1)2l

(τ1) · · · 
(τm)
(τ̄1) · · · 
(τ̄l).

Writing out the first few terms of the series, we have

x̂ = x + h f + h2

2
( f ◦ f + f • f ) + h3(

1

8
f ◦◦( f , f ) + 1

4
f ◦•( f , f ) + 1

6
f ••( f , f )

+ 1

4
f ◦ f ◦ f + 1

4
f ◦ f • f + 1

4
f • f ◦ f + 1

4
f • f • f ) + O(h4),

which, after comparing with the expanded exact solution (49), we see is of order two.
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The following lemma is obtained in a manner similar to Lemma 5, i.e. Theorem
2.2 in [34], and hence we present it without its proof.

Lemma 8 Let P(a, x), P(b, x) and P(c, x) be three P-series with a(∅) = b(∅) = 1
and c(∅) = 0. Then

h S(P(a, x))D2H(P(b, x))P(c, x) = P((a, b) × c, x)

with ((a, b) × c)(∅) = ((a, b) × c)( ) = 0 and otherwise

((a, b) × c)(τ ) =
m∑
i=1

m∏
j=1, j �=i

l∏
k=1

a(τ̄k)b(τ j )c(τi ) for τ = [τ1, . . . , τm, τ̄1, . . . , τ̄l ].

(55)

Note that {∅} counts as both a black-rooted and a white-rooted tree. Hence we have
e.g.

((a, b) × c)( ) = a( )b(∅)c( ) = a( )c( ),

where we also use that a( ) = a( ).
We now present a subclass of the AVF discrete gradient method, for which we

will find order conditions using Lemma 7 and Lemma 8. This subclass is every AVF
discrete gradient method for which the approximation of S(x) can be written in the
form

S(x, x̂, h) =
p−1∑
n=0

hn
∑
j

bnj

( n∏
k=1

S(z̄n jk)D
2H(znjk) · S(z̄n j(n+1))

+ (−1)n S(z̄n j(n+1))

n∏
k=1

D2H(znj(n−k+1))S(z̄n j(n−k+1))

)
,

(56)

where, if x̂ is the solution of

x̂ − x

h
= S(x, x̂, h)∇AVFH(x, x̂),

each znjk := znjk(x, x̂, h) = P(φnjk, x) and each z̄n jk := z̄n jk(x, x̂, h) = P(ψnjk, x)
can be written as a P-series with φnjk(∅) = ψnjk(∅) = 1 for all n, j, k. We require
that

∑
j b0 j = 1

2 , which ensures that (56) is a consistent approximation of S(x).

Theorem 3 The discrete gradient scheme (9) with the AVF discrete gradient (10) and
the approximation of S(x) given by (56) is a P-series method.

Proof Generalizing the argument in the proof of Proposition 4, we find the P-series

h S
(
P(a, x)

) ∫ 1

0
∇H((1 − ξ)x + ξ x̂) dξ = P

( ∫ 1
0

(
a ∨ (

(1 − ξ)ê + ξ

))
dξ, x

)
,
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where θ̄ (a) := ∫ 1
0

(
a ∨ (

(1 − ξ)ê + ξ

))
dξ = ∫ 1

0

(
a ∨ ξ


))
dξ , so that θ̄ (a)(∅) =

0, θ̄ (a)( ) = 1, and

θ̄ (a)([τ1, . . . , τm, τ̄1, . . . , τ̄l ]) = 1

m + 1

(τ1) · · · 
(τm)a(τ̄1) · · · a(τ̄l). (57)

Thus we may write the solution x̂ found from applying the scheme (9) with the AVF
discrete gradient (10) and S(x, x̂, h) given by (56) as

x̂ = x +
p−1∑
n=0

hn
∑
j

bnj

(
n∏

k=1

S(P(ψnjk , x))D
2H(P(φnjk , x)) · P(θ̄(ψnj(n+1)), x)

+(−1)n
n∏

k=1

S(P(ψnj(n−k+2), x))D
2H(P(φnj(n−k+1), x)) · P(θ̄(ψnj1), x)

)

= x +
p−1∑
n=0

∑
j

bnj
(
P((ψnj1, φnj1) × (ψnj2, φnj2) × · · · × (ψnjn, φnjn) × θ̄ (ψnj(n+1)), x)

+(−1)n P((ψnj(n+1), φnjn) × (ψnjn, φnj(n−1)) × · · · × (ψnj2, φnj1) × θ̄ (ψnj1), x)
)

= P(
, x),

(58)

with


 = ê +
p−1∑
n=0

∑
j

bnj
(
(ψnj1, φnj1) × · · · × (ψnjn, φnjn) × θ̄ (ψnj(n+1))

+ (−1)n (ψnj(n+1), φnjn) × · · · × (ψnj2, φnj1) × θ̄ (ψnj1)
)
.

(59)

Theorem 4 The AVF discrete gradient method with S given by (56) is of order p if
and only if


(τ) = 1

γ (τ)
for |τ | ≤ p. (60)

The values 
(τ) can be found from (59) using (55) recursively and then (57).
However, a more convenient approach is derived in the next subsection.

4.2 Order conditions

This subsection is devoted to generalizations of the results in Sect. 3.1 to the cases
where S(x) is not necessarily constant. To that end, for a tree τ ∈ T P , we cut off all
branches between black and white nodes and denote the mono-colored tree we are left
with by τ b. We number the nodes in that tree as before, from 1 to |τ b|, and reattach
the cut-off parts to the tree to get τ again. Let μ denote a forest of black-rooted trees
and η a forest of white-rooted trees. Then, for a given node i ∈ [1, . . . , |τ b|] on level
n+ 1, there exists a unique set of forests τ̂ i = {(μi

1, η
i
1), . . . , (μ

i
n+1, η

i
n+1)} such that

τ = [(μi
1, η

i
1)] ◦ [(μi

2, η
i
2)] ◦ · · · ◦ [(μi

n+1, η
i
n+1)].
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That is,

τ = i

ηin+1μi
n+1

ηi2μi
2

ηi1μi
1

Now we can generalize Proposition 3 as follows.

Proposition 5 The 
 of (59) can be found by


(τ) = ê(τ ) +
|τ b|∑
i=1

�(τ̂ i ) (61)

where ê(∅) = 1 and ê(τ ) = 0 for all τ �= ∅, and

�(τ̂ i ) = θ([μi
n+1])

∑
j

bnj

(
ψnj1(η

i
1)φnj1(μ

i
1) · · · ψnjn(η

i
n)φnjn(μ

i
n)ψnj(n+1)(η

i
n+1)

+ (−1)nψnj(n+1)(η
i
1)φnjn(μ

i
1)ψnjn(η

i
2) · · · φnj1(μ

i
n)ψnj1(η

i
n+1)

)
,

(62)
with

θ([τ1, . . . , τm]) = 1

m + 1

(τ1) · · · 
(τm).

Proof Defining ni and Ci as in the proof of Proposition 3, we have

[(μi
ni+1, η

i
ni+1)] = [(μk

nk , η
k
nk )] ◦ [(μk

nk+1, η
k
nk+1)] for all k ∈ Ci ,

((a, b) × c)([(μi
ni+1, η

i
ni+1)]) =

∑
k∈Ci

a(ηknk )b(μ
k
nk )c([μk

nk+1, η
k
nk+1]).

Observe that θ̄ (a)([μ, η]) = a(η)θ([μ]). For n = 0 we have

θ̄ (ψ0 j1)(τ ) = θ̄ (ψ0 j1)([μ1
1, η

1
1]) = ψ0 j1(η

1
1)θ([μ1

1]),

and for n > 0 we get

((ψnj1, φnj1) × · · · × (ψnjn, φnjn) × θ̄ (ψnj(n+1)))(τ )

= ((ψnj1, φnj1) × · · · × (ψnjn, φnjn) × θ̄ (ψnj(n+1)))([μ1
1, η

1
1])

=
∑
i1∈C1

ψnj1(η
i1
1 )φnj1(μ

i1
1 )((ψnj2, φnj2)

× · · · × (ψnjn, φnjn) × θ̄ (ψnj(n+1)))([μi1
2 , η

i1
2 ])

.

.

.

123



Order theory for discrete gradient methods

=
∑
i1∈C1

· · ·
∑

in∈Cin−1

ψnj1(η
in
1 )φnj1(μ

in
1 ) · · ·ψnjn(η

in
n )φnjn(μ

in
n )θ̄(ψnj(n+1))([μin

n+1, η
in
n+1])

=
∑

i on level n+1

ψnj1(η
i
1)φnj1(μ

i
1) · · ·ψnjn(η

i
n)φnjn(μ

i
n)ψnj(n+1)(η

i
n+1)θ([μi

n+1]).

Inserting this and the corresponding result for ((ψnj(n+1), φnjn)×· · ·×(ψnj2, φnj1)×
θ̄ (ψnj1))(τ ) in (59), we get (62).

Note that if τ only has black nodes, we have �(τ̂ 1) = θ(τ )
∑

j b0 j (ψ0 j1(∅) +
ψ0 j1(∅)) = θ(τ ), and also �(τ̂ i ) = 0 for all nodes i on level 2. Thus (61) simplifies
to (36).

Like for the constant S case, the order conditions can be given for energy-preserving
linear combinations of elementary differentials instead for each elementary differen-
tial. In the following generalization of Lemma 6, we state that the energy-preserving
linear combinations of bi-colored rooted trees are given by

ω =

ηn+1

ηnμn

η2μ2

η1μ1

+ (−1)n

η1

η2μ1

ηnμn−1

ηn+1μn

Theorem 5 Let μ1, μ2, . . . , μn be arbitrary forests of black-rooted trees and η1, η2,

. . . , ηn+1 arbitrary forests of white-rooted trees. Given f (x) = S(x)∇H(x), where
S(x) is a skew-symmetric matrix, and elementary differentials defined by (53), the
linear combinations of trees given by

ω = [(μ1, η1)] ◦ · · · ◦ [(μn, ηn)] ◦ [ηn+1]+ (−1)n [(μn, ηn+1)] ◦ · · · ◦ [(μ1, η2)] ◦ [η1]
(63)

are energy-preserving in the sense that F(ω)(x) · ∇H(x) = 0.

Proof For any forest of black-rooted trees μ j , we have F([μ j ] ◦ [∅]) = SB j S∇H
for some symmetric matrix Bj , suppressing the argument x . Similarly, for a forest of
white-rooted trees η j , we have F([η j ]) = Wj∇H for some skew-symmetric matrix
Wj . Note that the empty forest is considered both a black-rooted and a white-rooted
forest, and accordingly we have F([∅] ◦ [∅]) = F( ) = S(D2H)S∇H and F([∅]) =
F( ) = S∇H . For these matrices Bj and Wj corresponding to the forests μ j and η j ,
we get

F
([(μ1, η1)] ◦ · · · ◦ [(μn, ηn)] ◦ [ηn+1]

) = W1B1W2B2 · · · BnWn+1∇H .

We have

(W1B1W2B2 · · · BnWn+1)
T =

{
−Wn+1BnWnBn−1 · · · B1W1 if n even,

Wn+1BnWnBn−1 · · · B1W1 if n odd.
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Thus F(ω)(x) is a skew-symmetric matrix times ∇H(x), and the statement in the
above theorem follows directly.

For bi-colored trees, we define a node on the tree τ to be a leaf if it is a leaf on the
corresponding cut tree τ b by the definition of leaves given in the previous section. We
let Il be the set of leaves and In the set of non-leaf nodes which are also in τ b, so that
Il ∪ In = [1, . . . , |τ b|]. In contrast to the case withmono-colored trees, a leaf i on level
one or two of a bi-colored tree may give rise to a non-zero energy-preserving linear
combination; it does so if and only if ηik �= ∅ for any k = 1, 2. Accordingly, �(τ̂ i ) is
calculated in (61) also when n = 0, 1. Furthermore, two leaves i and j on the same
level will belong to two different energy-preserving combinations if ηin+1 �= η

j
n+1.

Therefore we now simply state that a tree with r leaves, also including the lower two
levels, belong to at most r non-zero linear combinations. We thus get r terms on the
left hand side of

∑
i∈Il

�(τ̂ i ) = 1

γ (τ)
− ê(τ ) −

∑
i∈In

�({(μi
1, η

i
1), . . . , (μ

i
n, η

i
n), (∅, ηin+1)})

(|μi
n+1| + 1)γ (μi

n+1)
, (64)

which is equivalent to (60) if we assume the conditions for lower order to be satisfied.

Example 4 Consider the tree τ = , which is part of the energy-preserving linear

combination − . Assume that the order conditions up to and including order
three are all satisfied. The cut tree τ b = has three nodes of which two are leaves.
Node number 2 is a leaf on level 2 with η21 = η22 = ∅, and thus gives �(τ̂ 2) = 0. We
find for the other two,

�(τ̂ 1) = �({(( , ),∅)}) = 1

(|μ1
1| + 1)γ (μ1

1)
�

({(∅,∅)}) = 1

(2 + 1)γ ( )γ ( )

1

γ ( )
= 1

6
,

�(τ̂ 3) = �({( ,∅), (∅, )}) =
∑
j

b1 j (φ1 j1( )ψ1 j2( ) − ψ1 j1( )φ1 j1( ))

=
∑
j

b1 jφ1 j1( )(ψ1 j2 − ψ1 j1)( ).

For the right hand side of (64) we get

1

γ (τ)
− �(τ̂ 1) = 1

8
− 1

6
= − 1

24
,

and thus the order condition

∑
j

b1 jφ1 j1( )(ψ1 j2 − ψ1 j1)( ) = − 1

24

for the energy-preserving linear combination − .
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Even though the number of black-rooted bi-colored trees grows very quickly, e.g.
to 26 for |τ | = 4 and 107 for |τ | = 5, finding and satisfying the order conditions
is not as daunting a task as it might first appear. First of all, it suffices to find order
conditions for the non-zero linear combinations given by (63). Moreover, a couple key
observations simplifies the process further:

• The large number of trees τ for which τ b = , i.e. trees with no black nodes on
level 2, are all energy-preserving. They can be written τ = [η11], and their order
condition is given by

2
∑
j

b0 jψ0 j1(η
1
1) = 1

γ (τ)
.

• For trees that are identical except for the colors of the descendants of white nodes,

it suffices to calculate one order condition. E.g. for we have the order condition
2b0 jψ0 j1( ) = 1

12 , where each of the gray nodes may be black or white. To
satisfy these conditions, it is natural to require that z̄0 j1 in (56) is a B-series up to
order p − 1.

From the order conditions displayed inTable 4wefind that one second order scheme
is given by (9) using the AVF discrete gradient (10) and an explicit skew-symmetric
approximation of S given by S(x, ·, h) = S(x + 1

2h f (x)). A third order scheme is
obtained if we instead use the skew-symmetric approximation of S explicitly given by

S(x, ·, h) = 1

4
S(x) + 3

4
S(z2) + 1

4
h

(
S(z1)D

2H(x)S(x) − S(x)D2H(x)S(z1)
)

− 1

12
h2 S(x)D2H(x)S(x)D2H(x)S(x),

(65)
where z1 = x + 1

3h f (x), z2 = x + 2
3h f (z1).

A symmetric fourth order scheme is given by (9) using the AVF discrete gradient
(10) and the skew-symmetric approximation of S

S(x, x̂, h) = 1

2
S
(
x̄ − 1√

12
h f

(
x̄ + 1√

12
h f (x̄)

))

+ 1

2
S
(
x̄ + 1√

12
h f

(
x̄ − 1√

12
h f (x̄)

))

+ 1

2
h S

(
x̄ + 1

12
h f (x̄)

)
D2H(x̄)S

(
x̄ − 1

12
h f (x̄)

)

− 1

2
h S

(
x̄ − 1

12
h f (x̄)

)
D2H(x̄)S

(
x̄ + 1

12
h f (x̄)

)

− 1

12
h2 S(x̄)D2H(x̄)S(x̄)D2H(x̄)S(x̄),

(66)
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Table 4 Linear combinations ω

of bi-colored black-rooted trees
corresponding to
energy-preserving elementary
differentials of
f (x) = S(x)∇H(x), where
S(x) is a skew-symmetric
matrix, as well as their
associated order conditions for
the discrete gradient method (9)
with the AVF discrete gradient
(10) and S(x, x̂, h) given by (56)

|τ | ω Order condition

1 2
∑

j b0 j = 1

2 2
∑

j b0 jψ0 j1( ) = 1
2

3 2
∑

j b0 jψ0 j1( )2 = 1
3

∑
j b2 j = − 1

24

2
∑

j b0 jψ0 j1( ) = 1
6

2
∑

j b0 jψ0 j1( ) = 1
6

− ∑
j b1 j (ψ1 j2 − ψ1 j1)( ) = − 1

12

4 2
∑

j b0 jψ0 j1( )3 = 1
4

2
∑

j b2 jψ2 j2( ) = − 1
24

2
∑

j b0 jψ0 j1( ) = 1
12

2
∑

j b0 jψ0 j1( ) = 1
12

2
∑

j b0 jψ0 j1( ) = 1
12

2
∑

j b0 jψ0 j1( )ψ0 j1( ) = 1
8

2
∑

j b0 jψ0 j1( )ψ0 j1( ) = 1
8

+ ∑
j b2 j (φ2 j1 + φ2 j2)( ) = − 1

24

− ∑
j b1 j (ψ1 j2( )2 − ψ1 j1( )2) = − 1

12

− ∑
j b1 jφ1 j1( )(ψ1 j1 − ψ1 j0)( ) = − 1

24

2
∑

j b0 jψ0 j1( ) = 1
24

2
∑

j b0 jψ0 j1( ) = 1
24

2
∑

j b0 jψ0 j1( ) = 1
24

2
∑

j b0 jψ0 j1( ) = 1
24

+ ∑
j b2 j (ψ2 j1 + ψ2 j3)( ) = − 1

24

− ∑
j b1 j (ψ1 j2 − ψ1 j1)( ) = − 1

24

− ∑
j b1 j (ψ1 j2 − ψ1 j1)( ) = − 1

24
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where x̄ = x+x̂
2 . Another fourth order scheme is obtained if we instead use the explicit

skew-symmetric approximation of S found by

S(x, ·, h) = 1

2
(S(z5 + z6) + S(z5 − z6))

+ 1

12
h

(
S(z2)D

2H(z1)S(x) − S(x)D2H(z1)S(z2)
)

− 1

12
h2 S(z1)D

2H(z1)S(z1)D
2H(z1)S(z1),

(67)

where

z1 = x + 1

2
h f (x), z3 = x + h f (z2), z5 = 1

3
(x + z1 + z2) + 1

12
(−z3 + z4),

z2 = x + h f (z1), z4 = x + h f (z3), z6 =
√
3

36
(7x − 2z1 − 4z2 + z3 − 2z4).

5 Order conditions for general discrete gradient methods

We will now generalize the results of the two previous sections to discrete gradient
methods with a general discrete gradient, as defined by (7)–(8). To that end, we intro-
duce two new series in the vein of B- and P-series, as well as related tree structures.

5.1 The constant S case

Consider mono-colored rooted trees whose nodes can have two different shapes: the
circle shape of the nodes in trees of B-series, but also a triangle shape. Let TG be the
set of such trees whose leaves are always circles. That is, from the first tree , every
tree τ ∈ TG can be built recursively through

[τ1, . . . , τm] , [τ1, . . . , τm] , τ1, . . . , τm ∈ TG,

which denotes the grafting of the trees τ1, . . . , τm to a root or , respectively. The
elementary differentials F(τ ) corresponding to a tree τ ∈ TG are likewise defined
recursively by F( )(x) = f (x) = S∇H(x) and

F(τ )(x) =
{
SDm∇H(x)(F(τ1)(x), . . . , F(τm)(x)) for τ = [τ1, . . . , τm] ,

SDm−1
2 Q(x, x)(F(τ1)(x), . . . , F(τm)(x)) for τ = [τ1, . . . , τm] .

We can then define a generalization of B-series which includes these elementary
differentials.

Definition 4 A G-series is a formal series of the form

G(φ, x) = φ(∅)x +
∑

τ∈TG

h|τ |

σ(τ)
φ(τ)F(τ )(x), (68)
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where φ : TG ∪ {∅} → R is an arbitrary mapping, and the symmetry coefficient σ is
given by (28).

The G-series of the exact solution is given by x(t0 + h) = G(ξ, x(t0)), with

ξ(τ ) =
{

1
γ (τ)

if τ ∈ T ,

0 otherwise.
(69)

For use in the remainder of this paper, we generalize the Butcher product by the
definition

u ◦ v = [u1, . . . , um, v] , for u = [u1, . . . , um] , ∈ { , }.

Furthermore, we let |τ | denote the total number of nodes in τ , and |τ | the number
of nodes of type . Let SG be the set of tall trees in TG; that is, the set of trees with
only one node on each level. For a tree τ ∈ TG, number every tree from 1 to |τ |, as
before. For any node i on level n + 1, we define the stem si ∈ SG to be the tall tree
consisting of the nodes connecting the root to node i , including the root and node i .
Denote the j th node of si by sij , so that si1 is the root and sin+1 = i . Then we have a

unique set of forests τ̂ i = {μi
1, . . . , μ

i
n+1} such that

τ = [μi
1]si1 ◦ [μi

2]si2 ◦ · · · ◦ [μi
n+1]sin+1

.

That is,

τ =

si1

si2

sin+1

μi
n+1

μi
2

μi
1

The following lemma is a generalization of Lemma 5 to G-series. Its proof is very
similar to the proof of [34,Theorem 2.2], and hence omitted.

Lemma 9 Let G(a, x) and G(b, x) be two G-series with a(∅) = 1 and b(∅) = 0.
Then the G-series hSD2H(G(a, x))G(b, x) = G(a × b, x) is given by (a × b)(∅) =
(a × b)( ) = 0 and otherwise

(a × b)(τ ) =
{∑m

i=1
∏m

j=1, j �=i a(τ j )b(τi ) for τ = [τ1, . . . , τm] ,

0 for τ = [τ1, . . . , τm] .

Moreover, hSQ(x,G(a, x))G(b, x) = G(a⊗b, x), with (a⊗b)(∅) = (a⊗b)( ) = 0
and otherwise

(a ⊗ b)(τ ) =
{
0 for τ = [τ1, . . . , τm] ,∑m

i=1
∏m

j=1, j �=i a(τ j )b(τi ) for τ = [τ1, . . . , τm] .
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To every stem s ∈ SG of height n+1 = |s|, we associate coefficients bs j and φs jk .
Letting sk be the kth node of s, we define the function

R(φs jk, x) :=
{
D2H(G(φs jk, x)) if sk = ,

Q(x,G(φs jk, x)) if sk = .

Thenwehave hSR(φs jk , x)G(b, x) = G(φs jk�b), with (φs jk�b)(∅) = (φs jk�b)( ) =
0 and

(φs jk � b)(τ ) =
{∑m

i=1
∏m

j=1, j �=i φs jk(τ j )b(τi ) for τ = [τ1, . . . , τm]sk ,
0 if root of τ �= sk .

Consider now the class of skew-symmetric and consistent approximations to S that
can be written in the form

S(x, x̂, h) =
∑
s∈SG

hn
∑
j

bs j

(
n∏

k=1

SR(φs jk , x) + (−1)|s| −1
n∏

k=1

SR(φs j(n−k+1), x)

)
S

(70)
whenever x̂ is the solution of

x̂ − x

h
= S(x, x̂, h)∇H(x, x̂),

with φs jk(∅) = 1 for every s, j, k, and with
∑

j b j = 1
2 .

Lemma 10 The discrete gradient method (9) with S(x, x̂, h) given by (70) and ∇H ∈
C∞(Rd × R

d ,Rd) is a G-series method when applied to a constant S skew-gradient
system (6).

Proof Assume that the solution x̂ of (9) with S(x, x̂, h) given by (70) can be written
as the G-series x̂ = G(
, x). Then, using Lemma 2 and ∇H(x, x) = ∇H(x),

hS∇H(x, x̂) = hS
∞∑

m=0

1

m!D
m
2 ∇H(x, x)(G(
, x) − x)m

= hS
∞∑

m=0

1

(m + 1)!D
m∇H(x)(G(
, x) − x)m

− hS
∞∑

m=1

2m

(m + 1)!D
m−1
2 Q(x, x)(G(
, x) − x)m .
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Arguing as in the proof of Lemma III.1.9 in [21], we get h S ∇H(x, x̂) = G(θ, x),
with θ(∅) = 0, θ( ) = 1, and

θ([τ1, . . . , τm] ) = 1

m + 1

(τ1) · · · 
(τm),

θ([τ1, . . . , τm] ) = −2m

m + 1

(τ1) · · · 
(τm).

(71)

Then we can write (9) with S(x, x̂, h) given by (70) as

x̂ = x +
∑
s∈SG

hn
∑
j

bs j

(
n∏

k=1

SR(φs jk , x) + (−1)|s| −1
n∏

k=1

SR(φs j(n−k+1), x)

)
G(θ, x)

= x + G(θ, x)

+
∑

s∈SG, n>0

∑
bsj

(
G(φs j1 � · · · � φs jn � θ, x)

+ (−1)|s| −1G(φs jn � · · · � φs j1 � θ, x)
)

= G(
, x),

with


 =ê + θ +
∑

s∈SG, n>0

∑
j

bs j
(
φs j1 � · · · � φs jn � θ + (−1)|s| −1φs jn � · · · � φs j1 � θ

)
.

(72)

Theorem 6 The discrete gradient method (9) with S(x, x̂, h) given by (70) and∇H ∈
C∞(Rd × R

d ,Rd) is of order p if and only if


(τ) = ξ(τ ) for |τ | ≤ p, (73)

where 
 is given by (72) and the ξ is given by (69).

We remark that ∇H ∈ C∞(Rd × R
d ,Rd) is a necessary condition for the method to

be a G-series method for all S and H , but not for its order;∇H ∈ C p−1(Rd ×R
d ,Rd)

is sufficient for the scheme to be of order p. The following proposition is presented
without its proof, which follows along the lines of the proof of Proposition 3.

Proposition 6 The 
 of (73) satisfies


(τ) = ê(τ ) + θ(τ ) +
∑

i s.t. n≥1

�(τ̂ i , si ) (74)

where ê(∅) = 1 and ê(τ ) = 0 for all τ �= ∅, θ is given by (71), and

�(τ̂ i , si ) = θ([μi
n+1]sin+1

)
( ∑

j

bsi jφsi j1(μ
i
1) · · · φsi jn(μ

i
n)

+ (−1)|si | −1
∑
j

bŝi jφŝi jn(μ
i
1) · · · φŝi j1(μ

i
n)

)
,

(75)
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with ŝi given by ŝik = sin−k+1 for k = 1, . . . , n, and ŝin+1 = sin+1.

As for theAVFmethod, one does not need to find the order conditions for every tree;
it suffices to find the order condition for each energy-preserving linear combination
of the form

ω = [μ1]s1 ◦ [μ2]s2 ◦ · · · [μn]sn ◦ [∅] + (−1)n [μn]sn ◦ [μn−1]sn−1 ◦ · · · [μ1]s1 ◦ [∅] .

(76)
The above does not give every energy-preserving linear combination of the elementary
differentials of G-series; it gives the combinations one gets in the scheme (9) with
S(x, x̂, h) given by (70). Now, let again Il and In denote the sets of leaf nodes and
non-leaf nodes, respectively. If we assume the conditions for order< p to be satisfied,
we have an equivalent order condition to (73) by

∑
i∈Il

�(τ̂ i , si ) = ξ(τ ) − ê(τ ) −
∑
i∈In

�(τ̂ i , si ), (77)

where we may use the relation

�({μi
1, . . . , μ

i
n, μ

i
n+1}, si ) = θ̂ ([μi

n+1]sin+1
)�({μi

1, . . . , μ
i
n,∅}, s̄i )

to calculate �(τ̂ i ) for i ∈ In . Here s̄i is si with sin+1 replaced by , and θ̂ (∅) =
0, θ̂ ( ) = 1, and

θ̂ ([τ1, . . . , τm] ) = 1

m + 1
ξ(τ1) · · · ξ(τm),

θ̂ ([τ1, . . . , τm] ) = −2m

m + 1
ξ(τ1) · · · ξ(τm).

(78)

Note that �(τ̂ 1, s1) = θ̂ (τ ).
From the order conditions in Table 5, we can find an S(x, x̂, h) so that (9) becomes

a fourth order scheme for any ∇H ∈ C3(Rd × R
d ,Rd). For instance, the stem s =

has the related order conditions
∑

j bs j = 1
2 and

∑
j,k bs jφs jk( ) = 2

3 , which sets the
requirements for the term

h2
∑
j

bs j (SQ(x, z1 j )SQ(x, z2 j ) + SQ(x, z2 j )SQ(x, z1 j ))S.
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Table 5 Energy-preserving
linear combinations of the form
(76) and their associated order
conditions for the discrete
gradient method (9) with
S(x, x̂, h) given by (70)

|τ | ω s Order condition

1
∑

j bs j = 1
2

2
∑

j bs j = 1
2

3
∑

j bs jφs j1( ) = 1
3

∑
j bs j = 1

2

− ∑
j bs j − ∑

j bs̄ j = 0

∑
j bs j = − 1

24

4
∑

j bs jφs j1( )2 = 1
4

∑
j bs jφs j1( ) = 0

∑
j bs jφs j1( ) = 1

6

+ ∑
j,k bs jφs jk ( ) = 2

3

− ∑
j bs jφs j2( ) − ∑

j bs̄ jφs̄ j1( ) = 0

− ∑
j bs jφs j2( ) − ∑

j bs̄ jφs̄ j1( ) = 0

+ ∑
j,k bs jφs jk ( ) = − 1

24

∑
j bs j = 1

2

− ∑
j bs j − ∑

j bs̄ j = 0

+ ∑
j bs j − ∑

j bs̄ j = 0

∑
j bs j = 0

Choosing bs1 = 1
2 and z11 = z21 = x + 2

3h f (x), we have fulfilled these conditions.
Likewise, finding terms that satisfy the other order conditions, we get e.g.

S(x, h) = S + hS
(8
9
Q(x, z3) + 1

9
Q(x, x)

)
S

+ h2S
(
Q(x, z2)SQ(x, z2) − 1

12
D2H(z1)SD

2H(z1)
)
S

+ h3S
(
Q(x, x)SQ(x, x)SQ(x, x)

− 1

12
D2H(x)SD2H(x)SQ(x, x) − 1

12
Q(x, x)SD2H(x)SD2H(x)

)
S,

(79)
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where

z1 = x + 1

2
h f (x), z2 = x + 2

3
h f (x), z3 = x + 3

4
h f (z1).

5.2 The general case

Allowing for S to be a function of the solution, we define now the set T V of bi-
colored trees whose nodes are either circles of triangles, and whose leaves on the cut
tree τ b, defined as the mono-colored tree left when all branches between black and
white nodes are cut off, are always circles. Denoting as before black-rooted subtrees
by τi and white-rooted subtrees by τ̄i , the elementary differentials of trees τ ∈ T V
are given by F( )(x) = F( )(x) = f (x) = S∇H(x) and

F(τ )(x) =
{
S(l)Dm∇H(x)(F(τ1)(x), . . . , F(τ̄l )(x)) for τ = [τ1, . . . , τm , τ̄1, . . . , τ̄l , ] ,

S(l)Dm−1
2 Q(x, x)(F(τ1)(x), . . . , F(τ̄l )(x)) for τ = [τ1, . . . , τm , τ̄1, . . . , τ̄l , ] ,

where can be either or and can be either or . Let T V denote the set of trees in
T V with black roots, either of the shape or .

Definition 5 A V-series is a formal series of the form

V (φ, x) = φ(∅)x +
∑

τ∈T V

h|τ |

σ(τ)
φ(τ)F(τ )(x), (80)

where φ : T V ∪ {∅} → R is an arbitrary mapping, and the symmetry coefficient σ is
given by (28).

Proofs of the theorems in this subsection can be obtained similarly to the proofs in
Sects. 4 and 5.1, and are therefore omitted.

We redefine

R(φs jk, x) :=
{
D2H(G(φs jk, x)) if sk = ,

Q(x, V , (φs jk, x)) if sk = .

and consider now approximations of S(x) that can be written as

S(x, x̂, h) =
∑
s∈SG

hn
∑
j

bs j

( n∏
k=1

S(V (ψs jk , x))R(φs jk , x) · S(V (ψs j(n+1), x))

+ (−1)|s| −1S(V (ψs j(n+1), x))
n∏

k=1

R(φs j(n−k+1), x)S(V (ψs j(n−k+1), x))

) (81)

whenever x̂ is the solution of

x̂ − x

h
= S(x, x̂, h)∇H(x, x̂),
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with φs jk(∅) = ψs jk(∅) = 1 for every s, j, k, and with
∑

j b j = 1
2 .

Theorem 7 The discrete gradient scheme (9) with the approximation of S(x) given by
(81)and∇H ∈ C∞(Rd×R

d ,Rd) is aV-seriesmethod. It can bewritten x̂ = V (
, x),
with


 = ê +
∑
s∈SG

∑
j

bs j
(
(ψs j1, φs j1) � · · · � (ψs jn, φs jn) � θ̂ (ψs j(n+1))

+ (−1)n (ψs j(n+1), φs jn) � · · · � (ψs j2, φs j1) � θ̂ (ψs j1)
)
.

(82)

where

θ̂ (a)([τ1, . . . , τm, τ̄1, . . . , τ̄l ] ) = 1

m + 1

(τ1) · · · 
(τm)a(τ̄1) · · · a(τ̄l),

θ̂ (a)([τ1, . . . , τm, τ̄1, . . . , τ̄l ] ) = −2m

m + 1

(τ1) · · · 
(τm)a(τ̄1) · · · a(τ̄l).

(83)

The scheme is of order p if and only if


(τ) = ξ(τ ) for |τ | ≤ p, (84)

where

ξ(τ ) =
{

1
γ (τ)

if τ ∈ T P,

0 otherwise.
(85)

As in Sect. 4.2, we cut the branches between black and white nodes, regardless of
the shape of the nodes, and denote this tree by τ b. Number the nodes and reattach the
cut-off parts. For the node i and the corresponding stem si , there exists a unique set
of forests τ̂ i = {(μi

1, η
i
1), . . . , (μ

i
n+1, η

i
n+1)} such that

τ = [(μi
1, η

i
1)]si1 ◦ · · · [(μi

n, η
i
n)]sin ◦ [(μi

n+1, η
i
n+1)]sin+1

Proposition 7 The 
 of (82) satisfies


(τ) = ê(τ ) +
|τ b|∑
i=1

�(τ̂ i , si ) (86)

where ê(∅) = 1 and ê(τ ) = 0 for all τ �= ∅, and

�(τ̂ i , si ) = θ([μi
n+1]sin+1

)
(∑

j

bsi jψsi j1(η
i
1)φsi j1(μ

i
1) · · · φsi jn(μ

i
n)ψsi j(n+1)(η

i
n+1)

+ (−1)|si | −1
∑
j

bŝi jψŝi j(n+1)(η
i
1)φŝi jn(μ

i
1) · · · φŝi j1(μ

i
n)ψŝi j1(η

i
n)

)
,

(87)
with θ given by (71) and ŝi given by ŝik = sin−k+1 for k = 1, . . . , n, and ŝin+1 = sin+1.
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The number of trees in T V grows very quickly. However, in our task of finding
higher order schemes we may use the lessons of the previous sections, and require that
the arguments of S, D2H and Q in (81) are B-series up to order p − 1. Then we only
need to find order conditions for energy-preserving linear combinations of the form

ω = [(μ1, η1)]s1 ◦ · · · ◦ [(μn, ηn)]sn ◦ [ηn+1]
+(−1)n [(μn, ηn+1)]sn ◦ · · · ◦ [(μ1, η2)]s1 ◦ [η1] , (88)

where μi and ηi are forests of trees in T P and T P respectively, for i = 1, . . . , n+1.
Thus we can disregard any tree with in it. Furthermore, we may color all nodes
of the trees in μi and ηi except the roots gray, and let the elementary differentials
corresponding to these trees be the same as the elementary differentials of B-trees.

We find the order conditions

∑
i∈Il

�(τ̂ i , si ) = ξ(τ ) − ê(τ ) −
∑
i∈In

�(τ̂ i , si ),

by using the relation

�({(μi
1, η

i
1), . . . , (μ

i
n+1, η

i
n+1)}, si )

= θ̂ ([μi
n+1]sin+1

)�({(μi
1, η

i
1), . . . , (∅, ηin+1)}, s̄i )

to calculate �(τ̂ i ) for i ∈ In . The θ̂ is given by (78), and s̄i is si with sin+1 replaced
by .

Example 5 Consider , which is part of the energy-preserving linear combination

+ . We have two black nodes, and calculate

�(τ̂ 1, s1) = �({( , )}, ) = θ̂ ( )�({(∅, )}, ) = −ξ( )ξ( ) = −1

6
,

�(τ̂ 2, s2) = �({(∅, ), (∅,∅)}, ) =
∑
j

bs2 jψs2 j1( ) +
∑
j

bs̄2 jψs̄2 j2( )

=
∑
j

bs2 j (ψs2 j1 + ψs2 j2)( ).

Hence the order condition associated to this linear combination is

∑
j

bs2 j (ψs2 j1 + ψs2 j2)( ) = 1

6
.
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An approximation of S(x) satisfying all the order conditions in Tables 5 and 6 is
given by

S(x, ·, h) =1

2
(S(z11 + z12) + S(z11 − z12))

+ 1

12
h

(
S(z6)D

2H(z2)S(x) − S(x)D2H(z2)S(z6)
)

+ 3

7
h
(
S(z3)Q(x, z5)S(z4) + S(z4)Q(x, z5)S(x, z3)

)

+ 8

105
hS(x)Q(x, z7)S(x) + 1

15
hS(x)Q(x, x)S(x)

+ h2 S(z2)Q(x, z5)S(z8)Q(x, z5)S(z2)

− 1

12
h2 S(z2)D

2H(z2)S(z2)D
2H(z2)S(z2)

+ 1

6
h2(S(z2) − S(x))D2H(x)S(x)Q(x, x)S(x)

− 1

6
h2S(x)Q(x, x)S(x)D2H(x)(S(z2) − S(x))

+ h3S(x)Q(x, x)S(x)Q(x, x)S(x)Q(x, x)

− 1

12
h3S(x)D2H(x)S(x)D2H(x)S(x)Q(x, x)S(x)

− 1

12
h3S(x)Q(x, x)S(x)D2H(x)S(x)D2H(x)S(x),

(89)

with

z1 = x + 1

3
h f (x), z2 = x + 1

2
h f (x), z3 = x + 7 − √

7

12
h f (z1),

z4 = x + 7 + √
7

12
h f (z1), z5 = x + 2

3
h f (z2), z6 = x + h f (z2),

z7 = x + 5

4
h f (z2), z8 = x + 4

3
h f (z2), z9 = x + h f (z6), z10 = x + h f (z9),

z11 = 1

3
(x + z2 + z6) + 1

12
(−z9 + z10), z12 =

√
3

36
(7x − 2z2 − 4z6 + z9 − 2z10),

andhence a discrete gradient schemewith this S(x, ·, h) and any∇ ∈ C3(Rd×R
d ,Rd)

will be of fourth order.
One advantage of choosing the AVF discrete gradient is that the resulting scheme

generally requires fewer computations at each time step. This is clearly evident in the
above example: if∇ = ∇AVF, then (89) collapses to (67). However, if the AVF discrete
gradient is difficult to calculate, there can also be much to gain in computational cost
by choosing a symmetric discrete gradient, like the symmetrized Itoh–Abe discrete
gradient (23) or the Furihata discrete gradient (25). Then one can ignore the order
condition for any combination (88) for which s j = and μ j = ∅ for some j ∈ [1, n],
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Table 6 The energy-preserving
linear combinations of the form
(88) not given in Table 5, up to
fourth order

|τ | ω s Order condition

2 2
∑

j bs jψs j1( ) = 1
2

3 2
∑

j bs jψs j1( )2 = 1
3

2
∑

j bs jψs j1( ) = 1
6

+ ∑
j bs j (ψs j1 + ψs j2)( ) = 1

2

− ∑
j bs j (ψs j2 − ψs j1)( ) = − 1

12

4 2
∑

j bs jψs j1( )3 = 1
4

2
∑

j bs jψs j1( )ψ0 j1( ) = 1
8

2
∑

j bs jψs j1( ) = 1
12

2
∑

j bs jψs j1( ) = 1
24

∑
j bs jφs j1( ) = 1

6

∑
j bs jψs j1( )ψs j2( ) = 1

8

+ ∑
j bs jφs j1( )(ψs j1 + ψs j2)( ) = 1

3

+ ∑
j bs j (ψs j1( )2 + ψs j2( )2) = 1

3

+ ∑
j bs j (ψs j1 + ψs j2)( ) = 1

6

− ∑
j bs jφs j1( )(ψs j2 − ψs j1)( ) = − 1

24

− ∑
j bs j (ψs j2( )2 − ψs j1( )2) = − 1

12

− ∑
j bs j (ψs j2 − ψs j1)( ) = − 1

24

∑
j bs jψs j2( ) = 2

3

+ ∑
j bs j (ψs j1 + ψs j3)( ) = 1

2

− ∑
j bs j (ψs j1 − ψs j3)( ) = 1

12

− ∑
j bs jψs j3( ) − ∑

j bs̄ jψs̄ j1( ) = 0

2
∑

j b2 jψ2 j1( ) = − 1
24

+ ∑
j bs j (ψs j1 + ψs j3)( ) = − 1

24
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since this corresponds to elementary differentials involving Q(x, x), which we recall
is zero when the discrete gradient is symmetric. If we consider the conditions for
fourth order presented in Tables 5 and 6, this eliminates 17 of the 22 conditions for
trees with in the stem. By considering the remaining order conditions we get that, if
∇H ∈ C3(Rd × R

d ,Rd) and ∇H(x, y) = ∇H(y, x), the discrete gradient scheme
(9) is of fourth order if

S(x, ·, h) =1

2
(S(z5 + z6) + S(z5 − z6))

+ 1

12
h

(
S(z2)D

2H(z1)S(x) − S(x)D2H(z1)S(z2)
)

+ 8

9
hS(z1)Q(x, z7)S(z1) − 1

12
h2 S(z1)D

2H(z1)S(z1)D
2H(z1)S(z1),

(90)
with

z1 = x + 1

2
h f (x), z2 = x + h f (z1), z3 = x + h f (z2),

z4 = x + h f (z3), z5 = 1

3
(x + z1 + z2) + 1

12
(−z3 + z4),

z6 =
√
3

36
(7x − 2z1 − 4z2 + z3 − 2z4), z7 = x + 3

4
h f (z1).

If S is constant, (90) simplifies to

S(x, ·, h) = S + 8

9
hSQ(x, z7)S − 1

12
h2 SD2H(z1)SD

2H(z1)S. (91)

6 Numerical experiments

For all the examples considered in the following, the resulting discrete gradient
schemes are nonlinearly implicit systems, which we here solve using Newton’s
method. Note that whenever S(x, x̂, h) is independent of x̂ , the Jacobian of

F(x̂) = x̂ − x − hS(x, x̂, h)∇H(x, x̂)

is given by
J (x̂) = I − hS(x, x̂, h)D2∇H(x, x̂), (92)

where D2∇H(x, x̂) may also be used for the calculation of Q(x, x̂). The extra com-
putational cost of using a higher-order scheme with an explicit S thus only lies in
the computation of this S once each time step. A scheme with an implicitly defined
S(x, x̂, h) can give a much more complicated Jacobian, but a quasi-Newton method
using the approximate Jacobian given by (92) may still be very efficient.
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Fig. 1 Error plots for the Hénon–Heiles system (93) solved by various discrete gradient methods:
AVFM2/4/5/6 are AVF discrete gradient methods of different orders; FDGM4 is a fourth order Furihata
discrete gradient method; IADGM4 is a fourth order Itoh–Abe discrete gradient method. RK4 is the classic
Runge–Kutta method and GL4 is the fourth order Gauss–Legendre method, included for comparison. The
black dashed lines in the order plot are reference lines of order two, four, five and six. The step size in the
right plot is h = 0.1

6.1 Hénon–Heiles system

The Hénon–Heiles system can be written in the form (6) with

S =
(

0 I
−I 0

)
, H(q, p) = 1

2
(q21 + q22 + p21 + p22) + q21q2 − 1

3
q32 , (93)

where I is the 2 × 2 identity matrix. We use here the same initial conditions used in
[37]: q1 = 1

10 , q2 = − 1
2 , p1 = p2 = 0. The order of some of the energy-preserving

methods proposed in this paper are confirmed by the left plot in Fig. 1. We compare
the performance of the fourth order discrete gradient methods obtained by using the
S given by (79) coupled with three different discrete gradients: the Itoh–Abe discrete
gradient (22), the Furihata discrete gradient (25), and the AVF discrete gradient (10)
(right plot of Fig. 1). The symmetrized Itoh–Abe discrete gradient (23) is for this H
identical to the Furihata discrete gradient. The AVF and Furihata discrete gradient
methods perform in this case very similarly, and thus the error from the Furihata
discrete gradient method is excluded from the right plot in Fig. 1. We observe that,
although it initially performs on par with the AVF method, the Itoh–Abe discrete
gradient method gives a lower global error than the other fourth order methods as time
goes on. Note however that this method requires the most computations at every time
step.

6.2 Lotka–Volterra

The methods should also be tested on a skew-gradient system with non-constant S.
We choose the Lotka–Volterra system also used for numerical experiments in [10]. It
is given by
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Fig. 2 Order or discrete gradient
methods applied to the
Lotka–Volterra system (94),
with different S:
S(x, x̂) = S( x+x̂

2 ) for DGM2,
(65) for DGM3, (67) for
DGM4-exp, (66) for
DGM4-imp. The dashed lines
are reference lines of order two,
three and four
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Fig. 3 Error in the solution and in the energy for discrete gradient methods with S given by S(x, x̂) =
S( x+x̂

2 ) for DGM2, (65) for DGM3, (67) for DGM4-exp and (66) for DGM4-imp, applied to the Lotka–
Volterra system, with step size h = 0.05. For comparison, errors from using the standard fourth order
Runge–Kutta (RK4) and Gauss–Legendre (GL4) methods are also included

S = 1

2

⎛
⎝ 0 −x1x2 x1x3

x1x2 0 −2x2x3
−x1x3 2x2x3 0

⎞
⎠ , H(x) = 2x1 + x2 + 2x3 + ln(x2) − 2 ln(x3),

(94)
and initial conditions x1 = 1, x2 = 19

10 , x3 = 1
2 . For this H , the Itoh–Abe, Furihata and

AVF discrete gradients are all equivalent. Order plots are given in Fig. 2. We consider
fourth order discrete gradient methods where ∇S is given either dependent on or
independent of x̂ ; that is, (66) or (67). The implicitly given (67) yields a significantly
lower error in the solution of the corresponding discrete gradient method, as can be
witnessed from the left plot in Fig. 3. In contrast to what we observed for the canonical
Hamiltonian system studied above, none of the discrete gradient methods give a global
error lower than that of the fourth order Gauss–Legendre method.
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6.3 Hamiltonian neural networks

We present here results on the pendulum problem also considered in [19, 27]. Training
data is first generated by adding noise to solutions of the system (6) with

S =
(

0 1
−1 0

)
, H(q, p) = 2mgl(1 − cos q) + l2

2m
p2,

with l = m = 1 and g = 3, for various times t ∈ [0, 20] and 50 randomly sampled
initial coordinates. Then a Hamiltonian neural network (HNN) is used to learn the
Hamiltonian. If the automatic discrete differentiation algorithm is used for the training,
the corresponding discrete gradient is learned simultaneously. To compute Q(x, y), we
require that the network also learns the Jacobian of the discrete gradient with respect
to the second argument. This necessitates a modification of the network developed by
Matsubara et al [27], which we have done using the autograd class of PyTorch. The
resulting Jacobian is in any case very useful for integrating the system by any discrete
gradient method, since we then can employ a root-finding algorithm that use (92), e.g.
Newton’s method.

We have tested second, third and fourth order discrete gradient methods both for
training the network and for integrating the obtained dynamical system. For the fourth
order scheme, we have used the S given by (91) and for the third order scheme we
have used

S(x, ·, h) = S + hSQ(x, z)S − 1

12
h2 SD2H(x)SD2H(x)S, (95)

where z = x+ 2
3hS∇H(x). Note that∇H and D2H can be obtained from the network

through the relations ∇H(x) = ∇H(x, x) and D2H(x) = 2D2∇H(x, x).
As is also noted in [27], energy preservation seems to be more important than high

order for the method used to train the system. In Fig. 4 we see an example of this:
the second order discrete gradient method outperforms the fourth order Runge–Kutta
method. Whether or not higher-order discrete gradient methods give an improved
performance that justifies the extra computational cost is not clear on this example.
A thorough investigation of this for more complex problems is a matter for future
studies.

For energy-preserving integration of the learned system, much can be gained in
accuracy by using a higher-order discrete gradient method, at the expense of not much
additional computational cost. The order plots in Fig. 5 are obtained by comparing to
a solution found by the fourth order discrete gradient method with a smaller step size.
Python code for the neural networks used to produce the plots in Figs. 4 and 5, and
additional results on a mass-spring system, is available at https://github.com/solveeid/
dgnet4.
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Fig. 4 The trajectories that goes
through (q, p) = (2, 0) for the
dynamical systems learned by an
HNN with the Euler method, the
classic Runge–Kutta method and
discrete gradient methods with S
given by S (DGM2), (95)
(DGM3) and (91) (DGM4). The
plots for DGM2 and DGM3 are
almost entirely hidden behind
the plot for DGM4. The step size
used in the training is h = 0.5

Fig. 5 Comparison of different integrators for the pendulum system found using an HNN with the second
order discrete gradient method. Left: Order plots for discrete gradient methods with S given by S (DGM2),
(95) (DGM3) and (91) (DGM4). The dashed lines are reference lines of order two, three and four. Right:
Energy errors for the same methods, and the fourth-order Runge–Kutta method. Step size h = 0.1

7 Conclusions and future work

The main purpose of this paper has been to develop order theory for discrete gradient
methods. Thiswas achieved through the introduction of the function Q, Lemma2 and a
generalizationofB- andP-series results. Propositions 3, 5, 6 and7present resultswhich
simplifies the derivation of the conditions from the general theory. The techniques
introduced in this paper for building on B- and P-series methods can possibly be used
on more methods than the discrete gradient methods. Future research may utilize this.

We have proposed some higher order schemes satisfying the derived order condi-
tions. The development of specific schemes has however not been the main focus of
this paper; analysis to find more optimal schemes is something we leave for the future.
After such an analysis is performed, the methods could be tested on more advanced
problems than those considered above, e.g. for the temporal discretization of Hamil-

123



Order theory for discrete gradient methods

tonian partial differential equations, and their performance as measured by accuracy
relative to computational cost could be compared to existing methods.

The use of neural networks to train dynamical systems with preservation proper-
ties is an emerging field of study where new developments are coming with a high
frequency. To our knowledge, the use of higher-order one-step energy-preserving inte-
grators in this setting has not previously been studied, and may not even have been
known to be possible until the novel results of this paper. The potential utility of the
methods remain largely unexplored and will be considered in future work. This will
include using methods of order higher than four and analysis of the methods com-
pared to and in connection with other recent developments, both in the training of
the network and for the integration of the resulting system. It would also be interest-
ing to investigate how the methods perform on more advanced examples, including
Hamiltonian PDEs, and for Lagrangian neural networks [1, 11].

The order theory presented in this paper can also be developed further in several
different directions. The schemes given with S independent of x̂ are linearly implicit
when H is quadratic; if the order theory is extended to the polarized discrete gradient
methods of [12, 13, 28], we could get higher order linearly implicit multi-step schemes
for systems with polynomial first integrals of any degree. Another avenue could be
to consider order conditions for the discrete Riemannian gradient methods presented
in [4]. Then the results in Sect. 5 are especially interesting, since the integral in the
AVF discrete Riemannian gradient can be challenging to compute analytically. Lastly,
building on [2], order conditions for the exponential AVF method is given in [33].
This could be extended to exponential integrators using any discrete gradient by the
theory presented in this paper.
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