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Abstract
Model-based optimization of placement and trajectories of wells in petroleum reservoirs by the means of reservoir simulation
forecasts is computationally demanding due to the high number of simulations typically required to achieve a local optimum.
In this work, we develop an efficient flow-diagnostics proxy for net-present-value (NPV) with adjoint capabilities for
efficient computation of well control gradients and approximate sensitivities with respect to placement/trajectory parameters.
The suggested flow-diagnostic proxy consists of numerically solving a single pressure equation for the given scenario and
the solution of a few inter-well time-of-flight and steady-state tracer equations, typically achieved in a few seconds for a
reservoir model of medium size. Although the proxy may not be a particularly good approximation for the full reservoir
simulation response, we find that for the cases considered, the correlation is very good and hence the proxy is suitable for
use in an optimization loop. The adjoint simulation for the proxy model which provides control gradients and placement
sensitivities is of similar computational complexity as the forward proxy model (a few seconds). We employ a version
of the generalized reduced gradient for handling individual well constraints (e.g., bottom-hole-pressures and rates). As a
result, the individual well constraints are enforced within the flow-diagnostics computations, and hence every parameter
update becomes feasible without sacrificing gradient information. We present two numerical experiments illustrating the
efficiency and performance of the approach for well placement problems involving trajectories and simulation models of
realistic complexity. The suggested placements are evaluated using full simulations. We conclude by discussing limitations
and possible enhancements of the methodology.

Keywords Flow diagnostics · Well placement optimization · Reservoir simulation · MRST

1 Introduction

Optimizing the placement and trajectories of petroleum
reservoir wells is a computationally demanding and time-
consuming task due to the high number of simulations
typically required to achieve a local optimum. A second
challenge is the discrete nature of typical reservoir
simulation well models, which poses a challenge in
employing efficient gradient-based optimization methods.
For this reason, the majority of research in model-based
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optimization of well placement has used gradient-free
methods (see e.g., [5] and references therein). Exceptions do
exist, however. Within an adjoint framework, these include,
but are not limited to, approximating well placements with
smooth Gaussians [14] and the use of pseudo-wells [1, 23].
More recently, [21] suggested a more flexible approach in
which certain partial derivatives appearing in the adjoint
equations are approximated by numerical perturbations. We
apply the same approach herein.

Flow diagnostics provide a way to quantify and visually
inspect displacement processes in a fraction of the time
it would take to carry out a full physics simulation. The
prerequisite is a set of representative fluxes, from which we
can obtain travel times and passive tracer concentrations.
Derived quantities include connection strength among
injectors and producers, measures of dynamic heterogeneity
(i.e., the distribution of flow path lengths) and simple
proxies for recovery and sweep efficiency. Such flow
diagnostics quantities have traditionally been associated
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with streamline simulation [3, 16, 20], but it has recently
been shown that they can be computed equally well using
standard finite-volume methods [12, 15].

In this paper, we develop an adjoint model for a set
of flow diagnostics equations, and demonstrate the use of
a simple proxy to efficiently optimize well controls and
positions employing the technique of [21]. The diagnostics
proxy is designed to correlate with net-present-value (NPV),
and can accordingly be used to quickly optimize a field’s
well configuration.

2 Flow diagnostics proxies for field
performance

We briefly introduce the concept of flow diagnostics. For
a more detailed introduction, the reader can resort to the
textbook [11, Chapter 13] or one of the original articles that
introduced these methods in a finite-volume setting [12, 15].

2.1 Time-of-flight and influence regions

A flow diagnostics measure or proxy, as used here,
consists of: 1) solving a pressure equation to obtain a
flux field; 2) using this flux field to compute time-of-
flight and influence regions (numerical tracers); and 3)
based on these, compute a scalar measure (objective).
If the proxy is to correlate with or approximate, e.g.,
the long-term displacement performance of a field, the
flux field should represent a long-term average (omitting
transient effects). Accordingly, we neglect gravitation and
capillary effects. In addition, we evaluate phase densities
and viscosities at a fixed reference pressure pref and all
relative permeability functions for a fixed saturation field s0.
In effect, these choices result in an incompressible system,
and further assuming immiscible flow, the pressure equation
becomes

∇ ·
(∑

α

vα

)
=

∑
α

qα, vα = −λαK∇p, (1)

where p is the reservoir pressure, vα is the Darcy velocity
of phase α and qα is the volumetric phase source term. The
phase mobility is given by λα = krα(s0)/μα(pref), where
krα(s0) is the phase relative permeability at saturation s0
and μα(pref) is the phase viscosity at reference pressure.
Finally, K is the (absolute) permeability tensor. If the
boundary conditions are given by well rates at surface
conditions qs

α , we use the relation qα = qs
α/bα(pref),

where bα is the inverse formation volume factor of
phase α. The resulting pressure equation hence becomes
linear.

Once the pressure equation is solved, we obtain a total
flux field v = ∑

α vα , for which we state the time-of-flight
(TOF) and steady state tracer equations (see e.g., [11]):

v · ∇τ = cφφ, τ |inflow = 0,

v · ∇C = 0, C|inflow = 1. (2)

In the first equation of (2), we solve for the time-of-
flight variable τ , i.e, τ(x) is the time it takes for a passive
particle to travel from the inflow boundary (e.g., an injector)
to location x. Moreover, φ is the porosity and cφ is a model-
dependent factor that we have included to represent the
tractability of the pore volume to flow. For single phase
flow, cφ = 1 everywhere, whereas for two-phase flow, as
considered here, the choice of cφ should be a function of
initial saturation and relative permeability relations. This is
similar to the retardation factors used in reactive transport
[2] and recently proposed for naturally fractured reservoirs
[19]. Our particular choice of cφ is further discussed in
the next subsection and in the numerical experiments. In
the second equation of (2), we solve for the tracer variable
C(x) which in the continuous setting is just C(x) = 1
if x is reachable from the inflow boundary, and undefined
otherwise. In the discrete setting, a grid cell may be
partially flooded and hence obtain any tracer value between
zero and one. For the numerical tracer computations,
we typically subdivide the inflow boundary (or source
terms) into multiple parts and solve a separate tracer
equation for each of them, e.g., to get influence regions
associated with each well or well segment. Analogously
to Eq. 2, we may define equations for backward time-
of-flight and stationary tracer distributions associated with
producers simply by reversing the velocity field and setting
boundary conditions at the outflow (see e.g., [11]). After
discretizing (2), we get a family of linear systems that
all contain the same system matrix, and hence multiple
equations of the form Eq. 2 can be solved simultaneously
with multiple right-hand-sides. Since we use upstream
weighting, the linear systems of the backward equations get
system matrices that are transposes of those of the forward
systems.

Typical heterogeneity measures derived from the for-
ward and backward time-of-flight and tracer equations,
include the Lorenz coefficient and (phase-weighted) sweep
efficiency. These have shown good correlation with field
performance measures such as recovery [22].

2.2 A diagnostics proxy for net-present-value

For the numerical tests performed herein, we utilize an
extended version of the net-present-value (NPV) proxy
suggested by [12], which is based on discounting reservoir
phase volumes by their travel-time to a producer, i.e.,
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backward time-of-flight (τb). We express the diagnostics
NPV (DNPV) at time T as follows:

DNPV(T ) =
∫ T

t=0
bwrwiq

+
w,tot(1 + d)−t dt

+
∫

Ω

φ1τb≤T (bwrwpww + borowo)(1 + d)−τb dx

+
∫

Ω

bwrwpq+
w

∫ T

min(τb,T )

(1 + d)−t dt dx + rl l. (3)

The first term is simply the total discounted cost of
water injection, which we calculate analytically since we
have constant rates. Here q+

w,tot is the total rate (at reservoir
conditions) of injected water (where q+ ≡ max(q, 0)), bw

is the inverse water formation factor, which in this setting is
constant, rwi is the expected cost for injecting a unit volume
of water, and d is the (time-unit) discount rate.

The second term attempts to estimate the revenue of the
produced oil volumes and the cost of produced in situ water.
This can be expressed as an integral over the domain Ω

(reservoir), where bo is the inverse oil formation factor, ro is
the expected (volume-unit) oil production revenue, and rwp

is the expected water production cost. The indicator function
1τb≤T equals one for the region where τb ≤ T and zero
otherwise. When gradients are required (in an optimization
setting), it is necessary to approximate 1τb≤T by a smooth
transition from one to zero. For the numerical experiments,
this was done by the approximation

1τb≤T (x) ≈ T − τb(x)

2
(
β2T 2 + (T − τb(x))2

) 1
2

+ 1

2
, (4)

where we used β = 0.05. This value for β was
chosen based on trial and error observing that a too small
value could lead to extreme gradient entries due to the
steep transition. Approximations based on the exponential
function were also considered, but would require some
additional updates to the automatic differential library to
prevent overflow/rounding error issues. We also note that
for cases with relatively high discount, using a smooth cut-
off as Eq. 4 has limited impact on the computed gradient and
hence on the resulting optimization performance.. Finally,
ww and wo are weights to reflect the mobile pore-volume
fraction of water and oil. For a unit mobility displacement, a
natural choice is to set these weights equal to the saturations,
but in general, as with cφ in Eq. 2, a good choice will depend
on the relative permeability functions and mobility ratio. For
the two-phase oil/water cases considered herein, we set

wo = so
s̄w − sw,con

1 − sw,con

, ww = sw − sw,con, (5)

where so and sw are initial oil and water saturations, sw,con

is the connate water saturation, and s̄w is the average
water saturation of the corresponding 1D Buckley–Leverett

profile over the 1D flooded section. Since the profile is
self similar, this average is a constant and can equally be
defined through the relative speed vf of the displacement
front by s̄w = 1/vf + sw,con. Accordingly, in a 1D problem
with initial connate water saturation, wo will be the average
amount of displaced oil at water breakthrough.We could use
other weights, of course, but for the examples considered
herein, we found that (5) results in good correlations with
two-phase simulations. For the numerical experiments, we
also include the weights ww and wo in the time-of-flight (2)
by setting cφ = ww + wo. For the selection (5), this means
that τ will be approximating the travel time of particles
following the displacing water front. The resulting mobile
volumes are finally discounted according to their travel time
to a producer.

The third term represents the cost of producing injected
water that breaks through in a producer. Here, q+

w represents
positive water sources over the domain, from which the
breakthrough time to a producer is estimated by τb. If this
value is less than T , we calculate the discounted cost of
producing the corresponding water volume from time τb to
T . In the discrete setting, this term amounts to summing
over all grid-cells connected to a water injector for which
τb < T . Finally, the fourth term represents the cost of
drilling and completing the wells, where l is simply the total
length of well-trajectories considered and rl is the length
unit cost of drilling (assumed constant). The total cost is
here actuated at time zero.

We now set cφ = ww + wo. It then follows from
conservation of mass in the continuous setting that∫

Ω

1τb≤T φcφ dx = T q+
w,tot −

∫
Ω

q+
w (T − τb)

+ dx. (6)

In the discrete finite-volume setting, however, the time-
of-flight in each cell is computed as a weighted mean of all
upstream cells, which can introduce large errors because of
averaging (smearing) for highly heterogeneous cases. As a
result, the numerical approximations of both the integrals in
Eq. 6will suffer fromabias towards under-estimation.Acon-
sequence of this is that the expression (3) might give a poor
approximation of the simulated NPV. However, our claim
here is that the diagnostics proxy correlates with the full
simulation version, and this is sufficient for optimization.
When introducing absolute costs in the objective as, e.g.,well
costs, it nonetheless becomes also important that the proxy
is sufficiently close to the simulated objective. For this
reason, we introduce scaling factors for the approximation
of these integrals in our final example and observe both
good correlations and approximations.

We finally note that the observed volume mismatch just
discussed can be remedied by computing residence-time-
distributions (RTDs) instead as in, e.g., [8], but as observed
by [22], this does not necessarily improve correlation with
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full simulations enough to justify the extra computational
cost. The objective (3) could equally well be approximated
using streamlines, but herein we focus on a finite-volume
based, simple and fast proxy with readily available adjoint
formulations for gradient computations, as discussed next.

3 Obtaining gradients for well controls and
well trajectories

We employ an adjoint implementation of the flow-
diagnostics methodology just described to obtain gradients
for well controls and positions. In general, a flow-
diagnostics measure (or proxy) will be a function of n

forward and m backward diagnostics variables such that

J
(
d1
f , . . . , dn

f , d1
b , . . . , dm

b , u
)

→ R, (7)

where di
f is a basic diagnostic quantity (time-of-flight or

tracer fields) computed from Eq. 2, d
j
b is an analogous

backward quantity computed with the reverse flow field, and
u represents control inputs and/or parameters. Let Ep, Ei

f

and E
j
b denote the discretized pressure equation, forward

diagnostics equation i, and backward diagnostics equation
j , respectively. Hence, to compute objective J , we first need
to solve

Ep(p, u) = 0, Ei
f

(
p, di

f

)
= 0, E

j
b

(
p, d

j
b

)
= 0, (8)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m. In the above,
we have assumed that controls and parameters u only
explicitly affect the pressure equation. Let Ju denote the
gradient vector of J with respect to u, i.e., J T

u = dJ/du.
Analogously to [12] we may now compute Ju by an adjoint
procedure as

Ju =
(

∂Ep

∂u

)T

λp +
(

∂J

∂u

)T

, (9)

where λp are the Lagrange multipliers resulting from
solving the following set of adjoint linear systems(

∂Ef

∂df

)T

λi
f = −

(
∂J

∂di
f

)T

,

(
∂Eb

∂db

)T

λ
j
b = −

(
∂J

∂d
j
b

)T

, (10)

for i = 1, 2, . . . , n and j = 1, 2, . . . , m, and finally

(
∂Ep

∂p

)T

λp = −
n∑

i=1

(
∂Ei

f

∂p

)T

λi
f −

m∑
j=1

(
∂E

j
b

∂p

)T

λ
j
b . (11)

Note that in Eq. 10 we have deliberately skipped the i, j

indices in the partial derivatives of Ef and Eb to point
out that these are the same for all i = 1, . . . , n and

j = 1, . . . , m, respectively. Accordingly, as in the forward
systems, both the forward and backward adjoint diagnostics
Eq. 10 may be solved as single linear systems with multiple
right-hand-sides.

3.1Well controls

In a reservoir simulator, each well is typically assigned mul-
tiple potential control modes (e.g., bottom-hole-pressure,
component rate, etc.) and corresponding control values. A
potential control value serves either as a target value if
the control is/becomes active, or as a limit otherwise. For
example, a producer may be assigned an oil rate target
or upper limit and a bottom-hole-pressure (BHP) target or
lower limit. The simulator will always select the control
mode for which all other potential control modes stay within
their limits. If no such mode exist (e.g., well pressure above
reservoir pressure), the well is shut in. In essence, this con-
trol strategy can be viewed as a local optimization problem:
maximize production within the given limits. We can only
calculate the gradient (e.g., by adjoints) with respect to a
particular control mode while that control is active. How-
ever, prior to a simulation, we can generally not know what
control modes a well will operate under. One approach to
deal with this situation is to extend the control vector to
the full set of potential well controls as suggested by [7]
and used for ensemble optimization in [9]. This methodol-
ogy is based on the Generalized Reduced Gradient (GRG)
method as described in e.g., [10]. In this way, a well that
switches from, e.g., bottom-hole-pressure (BHP) control to
rate control will contribute to both the corresponding entries
in the gradient vector and ultimately lead to updates for
both entries in the schedule (control policy). A possible
concern with this approach is that some potential controls
never become active, and hence result in a zero entry in
the gradient vector. For a Newton-method this would be
detrimental since it would result in a singular Hessian. For
a quasi-Newton method, however, the inverse Hessian is
typically approximated by low rank updates that ensure
non-singularity.

In the approach considered herein, we solve just a
single pressure Eq. 1 that attempts to represent the average
flow over the full time horizon considered. Accordingly,
controlling or limiting individual component rates does not
make sense, since these are very dynamic in time (and
our pressure equation is in essence single phase). For this
reason, our potential well controls are total rate (at reservoir
conditions) and bottom-hole pressure. Although the BHP-
values from Eq. 1 are not necessarily directly transferable
to a full reservoir simulation, it is important to impose
BHP-limits to, e.g., avoid placing wells in infeasible low-
permeability regions. In this way, our control vector will
have one rate and one BHP entry per well. Since each well
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only can have a single control mode, this means that for
a single model scenario the corresponding gradient vector
will have zeros corresponding to nonactive controls. In
Section 5.1 we consider optimization of mean NPV over an
ensemble of models. In such a setting, different models may
result in different control modes and hence result in a fuller
gradient vector.

To implement the gradient Eq. 9 and the adjoint Eqs. 10–
11, we used the automatic differentiation capabilities of
MRST [11] to obtain all the Jacobians/partial derivatives
of Eqs. 10–11. Some extra effort was nonetheless required
to assemble the adjoint equations to enable an efficient
sequential solution strategy and allow for multiple right-
hand sides. We validated our implementation of the
approach just described by comparing the adjoint-based
gradients to approximate gradients obtained by numerical
perturbations.

3.2 Trajectory parameterization

For computing the gradient with respect to trajectory
parameters, the adjoint Eqs. 10–11 remain the same as
for the well control case. For the gradient expression (9),
however, partial derivatives with respect to the parameters
are required, and this constitutes a challenge for parameters
that do not enter the pressure equations explicitly. Well
positions, in particular, only appear in a discrete sense in
a reservoir simulator, as a list of connected grid cells with
corresponding well connection transmissibility factors (well
indices). A clever way to overcome this difficulty, whilst
still maintaining the efficiency of the adjoint approach,
was suggested by [21]. Rather than perturbing positions
to obtain approximate gradients, they suggested to perturb
positions to obtain approximate partial derivatives ∂Ep/∂u

in Eq. 9. This makes a huge difference, since rather
than solving the equations for each perturbed position,
one just has to evaluate the equation residuals for each
perturbed position. Accordingly, the extra effort required
to compute an (approximate) adjoint-based gradient for
position parameters compared to well controls, boils down

to a few extra evaluations of the equation residuals. In this
work, we follow the approach of [21].

We parametrize a well trajectory by a set of 3D
coordinates and obtain a continuous curve by employing a
smooth interpolation between the points (see Fig. 1). Here,
we use a spline interpolation, but any technique could be
applied for this purpose. By using a triangulation of the grid
cell-faces, we compute all trajectory-grid intersections and
end up with a list of traversed grid cells and corresponding
3D line segments (vectors from entry to exit points).
For a traversed grid cell with segment lengths (lx, ly, lz),
we compute the corresponding connection transmissibility
factor as

WI =
√ ∑

d=x,y,z

(ld/Ld)2WI2d , (12)

where WId is the Peaceman well index [13] for a well
parallel to the d-axis and Ld is the corresponding grid
cell dimension along the d-axis. Since (12) considers
projections of the trajectory segment along the coordinate
directions, this approach is referred to as the projection
well index [17]. Figure 1 depicts the interpolation point
perturbation approach taken herein. The two end-points
are assigned three perturbation directions each, one
tangential to the trajectory and two orthogonal. For interior
points, however, we skip the tangential direction, since
this (at least infinitesimally) will have zero effect. For
objectives that include trajectory length, we also need length
derivatives with respect to the perturbation directions.
We obtain these approximately, by only considering the
tangential perturbation directions of the end-points. For
curved trajectories, also the length derivative with respect
to other perturbations/directions will be non-zero, but
these are neglected for simplicity. This simplification
is in part supported by the fact that the trajectory
curvatures (dogleg) have quite strict upper limits. As
in [21], we use a two-sided perturbation, such that the
directional partial derivative of the pressure equation with

Fig. 1 Left plot shows well
trajectory with intersected cells.
Right plot depicts the same
trajectory (black) and perturbed
trajectories (gray) for one of the
four interpolation points
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respect to a point c along direction v is approximated
by

∂Ep

∂c
· v ≈ Ep(c + εv) − Ep(c − εv)

2ε
. (13)

Here, we have omitted other input to the pressure
equation for brevity. As noted by [21], the quality of the
obtained gradients depends largely on the perturbation size.
For a well centered in a vertical grid column, for instance,
a perturbation smaller than half a grid cell will have no
effect and produce a zero gradient. As an example, in
Fig. 2 we consider perturbation of the top-point of PROD1
along the unit direction (2, 1, 0)/

√
5. The DNPV as a

function of perturbation size (sampled at a resolution of 1
meter) results in the black curve ( right plot). We clearly
observe a flat objective response around zero. The grid-cell
dimensions for this case are 8m in the x- and y-directions
and 4m in the z-direction, and the flat region corresponds
to the perturbations that are sufficiently small for the well
trajectory to be confined within the original grid cells
(absolute perturbation of the top-point less than 2

√
5m ≈

4.47m). Using the adjoint approach, we next compute
directional derivatives along (2, 1, 0)/

√
5 at the point of

zero perturbation, hence approximating the slope of the
black curve around zero. For the adjoint computations, we
consider several perturbation sizes εv for the approximation
of partial derivatives (13). For instance, the blue curve
of Fig. 2 is the slope corresponding to the adjoint-based
gradient using ±6m for the x- and y-perturbations, and
±3m for the z-perturbation. We observe that the gradients
resulting from perturbations corresponding to one and two
grid-cells match quite nicely with the average slope of the
black curve. We note that through this adjoint approach we
are attempting to calculate the gradient at a specific point, so

using larger increments in the partial derivative estimation
does not necessarily result in any further averaging of the
gradient. This is illustrated by Fig. 2, where we observe that
even for the (24m, 24m, 12m)-perturbation, our gradient
approximation does not see the downward trend in the
objective for perturbations larger than 10 meters. We note
that the selection of perturbation size for the approximation
of partial derivatives is further examined in [21].

4 Optimization approach and constraint
handling

Having developed a parametrized optimization problem,
as in the previous sections, we could in theory feed
the objective function and its derivative to any gradient-
based optimizer. In our initial tests, however, we observed
that running the problem in an external optimizer was
not very efficient and resulted in a large number of
iterations. One reason for this might be that the position
gradient approximation does not very well predict the
objective change for very small perturbations as just
discussed. Accordingly, we resort to a simple gradient-
search approach, in which the gradient is projected in
every step onto the imposed constraints. We note, however,
that [21] successfully utilized a Sequential Quadratic
Programming (SQP) solver for the well placement problem
in which they also provided derivatives for the placement
constraints considered. Here we simply consider a gradient
projection approach for the gradient entries corresponding
to trajectory parameters (entries corresponding to well
controls remain unchanged through this projection step).
Consider a vector of parameters and controls u with
corresponding gradient vector Ju. We obtain a new
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Fig. 2 The left plot depicts the grid and wells for the Egg ensemble
problem, where INJECTi and PRODj are the ith injector and jth pro-
ducer. Producer PROD1 is depicted with several perturbations of its
top point in direction (2, 1, 0)/

√
5. Objective values along this direc-

tion sampled at a resolution of 1 meter is shown by the black curve

in the right plot. Colored lines (right plot) show directional derivatives
obtained from adjoint computations where the legend indicates coor-
dinate perturbation magnitudes in meters used in the approximation of
the reservoir equation partial derivatives
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candidate vector of controls/parameters u + d = u + ΠJu

where d is a projection of the gradient vector Ju. The
projectionΠ consists of the following steps (initially setting
d ← Ju):

– We clip the magnitude of d according to a maximal
allowed update in each coordinate direction. The
maximal allowed update is a global setting selected
initially.

– For each internal (if any) trajectory interpolation point
resulting from the updated parameters u + d , we check
if a constraint on well trajectory curvature (dogleg) is
violated. For each violating point, we shift the point
towards the straight line between its neighbors until the
curvature/dogleg constraint is fulfilled. This procedure
is performed in sequence from a well’s heel to toe.

– Let uc and dc denote the control/parameter vector and
update vector, respectively, restricted to a trajectory
interpolation point c. The feasible region for each
interpolation point is defined by the boundary of a set
of grid cells. Since such a set might not be simply
connected (due to inactive cells or layers), we consider
all boundary intersections along the parametrized line
uc+sdc. Let smax represent the largest s-value for which
there is an intersection. If smax ≥ 1, then uc + dc

is feasible and we leave dc unchanged. Otherwise, we
locate the closest boundary point to uc +dc, say cγ , and
update dc ← cγ − uc. In this way, interpolation points
are allowed to move across separated layers but also
on the outside of concave boundaries. The procedure
nonetheless ensures that the updated uc+dc will always
stay within the convex hull of the boundary.

– To prevent the updated well trajectories from pointing
upwards, we next enforce monotonicity for the z-values
for the interpolation points. This is performed simply
by updating a point’s z-value (depth) to the maximal of
its current value and nearest interpolation point in the
direction of the heel.

– Finally, we assure that trajectories do not collapse into
a single point. This situation may very well indicate
that the well is not profitable, but we ensure that the
length remains above a minimal value in order not to
loose gradient information. In particular, if u+d results
in a trajectory of length less than the minimal value,
we simply stretch the well trajectory along its heel-
to-toe direction so its heel-to-toe distance matches the
minimal length, and update d accordingly.

Each of these bullet points represents on its own a
projection of the gradient vector Ju. The combination of all
the projections in sequence, however, does not necessarily
do so (e.g., enforcing a feasible region may lead to
violation on curvature etc.). Here, we resort to a fixed-
point procedure and iterate these steps until the update

vector does not change between iterations. It is important
that the resulting projected gradient d = ΠJu indeed
is an increasing direction, i.e., that J T

u d > 0. We do
not claim that the procedure just described ensures this,
but merely remark that it seems difficult to construct a
counterexample.

Since we are using a gradient-search approach, it is
important to scale the problem properly. Herein, we scale
the problem in such a way that all controls are between
zero and one; for well controls, zero and one correspond to
lower and upper limits, respectively, whereas for positions,
zero and one correspond to the boundaries of the bounding
box of the feasible regions. This does not, of course,
completely prevent scaling issues, and we do observe a quite
slow convergence of the combined well control/position
optimization compared to the only well control case for
which a BFGS-algorithm is utilized to produce approximate
Hessians.

5 Numerical experiments

Next, we present two numerical experiments to validate our
new flow-diagnostics methodology.

5.1 The egg ensemble

In this numerical experiment we consider optimization of
expected (mean) NPV over the 100 realizations of the Egg
ensemble [6]. The ensemble is a synthetic model of a
channelized oil reservoir produced under water flooding.
The model has eight injectors and four producers and each
model realization consists of 18 553 grid cells (see Fig. 2).
The ensemble realizations only differ in permeability, i.e.,
the locations of the high permeable channels. All injectors
are injecting water at a rate of 79.5 m3/day with a BHP
upper limit of 420 bar. Producers are set to produce at
395 bar (no limits on rates). To calculate net-present-value
(NPV) we assume an oil revenue of 50 $/stb, water injection
cost 5 $/stb, and water production cost 3 $/stb. The yearly
discount rate is set to 10%. With these settings, all the 100
ensemble members reach their maximal NPV before 2.5
years. For our optimizations, we seek to optimize NPV at
3 years of production. Simulation of a single realization
from this ensemble takes roughly 90 seconds on a laptop
using MRST [18], while the evaluation of the proxy and it’s
adjoint takes about one second.

To select the phase-weights ww and wo in the diagnostics
proxy (3), we consider the two-phase Buckley–Leverett
solution for the given oil/water properties. In particular, we
set wo = 1/2.7 (i.e., the inverse of the frontal speed),
whereas ww = 0, since the model is initially everywhere
at connate water saturation. In this example, we do not use
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Fig. 3 The left plot shows simulated (solid line) and diagnostics
(dashed line) evolution of NPV for realizations 60, 5, and 4 of the
Egg ensemble. The right plot shows cross-correlation of simulation

and diagnostics evaluations of NPV at 3 years for all 100 realizations
where the linear trend (dashed line) is obtained by a least-squares fit

additional scaling of the proxy, and hence use cφ = wo in
Eq. 2.

We initially compute the proxy NPV and run full
simulations for the entire ensemble. Figure 3 (right plot)
compares the diagnostic and simulation values. Cross-
correlation for the base case is 0.89, which we consider quite
good, especially taking into account that the NPV-spread
is quite modest (the standard deviation is approximately
3.25% of the mean). In Fig. 3 (left plot), we have plotted
the NPV-evolution with time for the worst, median, and
best performing realization with respect to the proxy
NPV.

We next consider three optimization problems:

1. Optimize all well controls only (keep well placements
fixed).

2. Optimize well placements of the producers (keep well
controls fixed).

3. Optimize both well placements of producers and all
well controls.

We only consider straight line well trajectories, so the
trajectory of each producer is parameterized with two
coordinates (six parameters). The eight injectors have two
potential well controls each (rate and bhp), while the
four producers all have a single well control each (bhp).
Accordingly, the three optimization problems contain 2 ×
8 + 4 = 20, 4 × 6 = 24, and 20 + 24 = 44
parameters, respectively. The well placement optimization
uses a simple line-search logic along the projected gradient,
reducing the step length whenever encountering a non-
increasing control vector. The optimization halts after five
consecutive step reductions. After each optimization, we
fed the resulting optimized well controls/positions into a
reservoir simulator for evaluations over the entire ensemble.
Figure 4 shows cross-correlation of simulated NPV versus
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Fig. 4 Cross-correlation of simulation and diagnostics evaluations of
NPV at 3 years after optimization for all 100 realizations of the Egg
ensemble. The three cases are well control optimization only (left),
well position optimization only (middle), and combined control and

position optimization (right). Linear trends (dashed lines) are obtained
by least-squares fits. For comparison, realizations 60, 5 and 4 are
highlighted as in the base-case plot (Fig. 3)
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the diagnostics NPV after well controls/well placements
have been optimized. Compared to the base-case shown
in Fig. 3, we observe a deterioration in correlation for
the well control only case (left plot) and combined
control/placement case (right plot) mainly due to a few
outliers. Figure 5 reports the NPV-histograms (simulated
NPV) for the base case and the three optimized cases. The
improvement in mean NPV over the base case is 4.7%,
3.2%, and 9.5% for the control, position, and combined
optimizations, respectively. As expected, the improvement
achieved by optimizing both control and position is greater
than the sum of the individual improvements of the other
two approaches. We also observe that the spread of the
ensemble is reduced substantially, from 3.25% in the base
case to 1.15% in the combined optimization case.

Figure 6 reports producer positions resulting from
the placement only optimization (left) and the combined
optimization of position and control (right). When only
optimizing placement, the deviations from the original
positions are quite modest. For the combined optimization,
however, the producer positions have changed drastically.
Also, three injectors and producer PROD1 are operating
at minimal rates and are hence suggested shut down. The
resulting sweep pattern for this case is almost entirely from
left to right, as seen in Fig. 6.

5.2 The olympus ensemble

Next, we take a more detailed look at the performance of
the suggested methodology for well-trajectory optimization

Fig. 5 Histograms and ensemble mean values (dashed lines) for sim-
ulated NPV at 3 years over the 100 realizations of the Egg ensemble.
The four plots show the base case (top left), optimized controls

only (top right), optimized positions only (bottom left) and combined
optimization of controls and positions (bottom right)
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Fig. 6 Well placements for the Egg ensemble resulting from placement
optimization only (left) and combined control and placement optimiza-
tion (right). Transparent vertical lines show location of producers for

base case, while blue lines show injector locations (these were not
optimized). Wells with a cross operate at minimal rate, and hence are
suggested removed

by optimizing the trajectory of a single producer (PROD-
1) of the Olympus benchmark ensemble [4]. This ensemble
contains 50 realizations, and each model realization consists
of 192 750 grid cells. Permeability, porosity and fluid
regions vary across the ensemble realizations. Simulation
of a single realization from this ensemble takes about
30 minutes in MRST, while the evaluation of the proxy
and it’s adjoint takes about 10 seconds with the current
implementation. Rather than optimizing over the mean (as
in the previous experiment), we here treat each realization
individually to gain some performance statistics. We study
realization 1 in detail, and repeat the experiment for
the remaining 49 realizations. Figure 7 shows the first
realization. The upper layers of the model show apparent
channelized features and high permeability contrasts. The
initial oil zone encapsulates the region where the wells
are situated, while the remaining part of the model below
this cap contains water. Furthermore, the model contains
four saturation regions with distinctly different relative
permeability functions. Hence, in the selection of the
oil/water weights (5) for the proxy, these both depend on
initial saturation and saturation regions. Table 1 reports the

resulting approximate values for these weights, as computed
from the Buckley–Leverett profiles of the corresponding
relative permeability functions. We note the distinct values
for the fourth region due to a very narrow band of saturations
for which both the water and oil are mobile.

In the original setup of the Olympus ensemble [4],
producers are set to operate at a target oil rate of 900 m3/day
and injectors at a water rate of 1600 m3/day. The well BHP-
limits are set to 150 bar for producers and 235 bar for
injectors. Nearly all BHP-limits are active during the first
part of the simulations but switch to rate control as the water
starts to flood the oil cap. To make the comparison with
the proxy more clear, we introduce constant liquid rates
for all injectors corresponding to the average simulation
rate for the base case. Producers are set to operate at 150
bar. An oil price of 45 $/bbl, cost of produced water 6
$/bbl, cost of injected water 2 $/bbl, and a discount rate of
8% per year, gives the simulated NPV-function depicted in
Fig. 9 for ensemble realization number one. Due to the high
degree of heterogeneity of this model, the approximation
of the integrals in Eq. 3 suffers from smearing/averaging
of the time-of-flight solution, which results in a delayed

Fig. 7 Horizontal permeability
and wells for realization 1 of the
Olympus ensemble. Colors
indicating low permeability in
blue and high permeability in
yellow
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Table 1 Oil/water weights used in the NPV proxy for the Olympus benchmark case

Region 1 Region 2 Region 3 Region 4

ww sw − 0.14 sw − 0.22 sw − 0.08 sw − 0.57

wo 0.45 so 0.43 so 0.46 so 0.15 so

peak of the NPV-proxy. To achieve a closer match with
the NPV-function, we here use a manual tuning of cφ in
Eq. 2 and in the lower limit in the integral approximating
the production of injected water. In particular, we found
that setting cφ = (ww + wo)/1.3 gave a quite good match
between the simulation-based and diagnostics-based NPVs,
as can be observed in Fig. 9. We note that this tuning
was performed only for the first realization, but gave nice
results for all of the 50 ensemble members. The left plot of
Fig. 8 shows diagnostics versus simulation NPV at 10 years
using the base-case setup for all the 50 realizations. The
correlation for this plot is 0.96.

We next consider well-trajectory optimization for PROD-
1, keeping injection rates fixed and setting all producers at
150 bar. Our objective is NPV at 10 years. The base case
trajectory is shown in Fig. 9 (blue trajectory), whereas a
vertical cross-section is shown in Fig. 10. Since the model
does not provide well trajectories, the shown base-trajectory
is based on fitting a quadratic curve to the centers of
the connected cells. Hence the base trajectory used here
produces slightly different results than the connected cell-
list provided by the model. We parametrize the trajectory by
using four equally distributed interpolation-points. For the

first ensemble realization, we considered two optimization
cases; the first with zero well cost, and the second with
cost 10 000 $/m. The resulting (local) optimal trajectories
are shown in Figs. 9 and 10. Both trajectories have
approximately the same location, whereas the zero-cost
trajectory is significantly longer than the other. Figure 10
also shows that whereas the base trajectory only penetrates
the lower layers, both the optimized trajectories cross the
inactive (sealing) layer to achieve better drainage. We also
note that the S-shape of the resulting trajectories would
probably not make a driller happy, although both were
confined with a dogleg constraint of 1/3 ◦/m.

Finally, we repeat the well-trajectory optimization for
the remaining 49 ensemble members, setting the well cost
to 10 000 $/m. Figure 11 reports the NPV improvements
resulting from trajectory optimization of well PROD-1.
The predicted improvements from the NPV proxy agree
quite well with those observed in simulations, although the
diagnostic predictions are a bit more optimistic on average.
The correlation between the NPVs from diagnostics and
simulation remains good also for the optimized placement
cases, as can be observed in Fig. 8 (right plot). The
correlation coefficient for this case is 0.97.

Fig. 8 NPV proxy versus
simulated NPV at 10 years for
all 50 realizations of the
Olympus ensemble. The left plot
shows results for the base case,
whereas the right plot is after
optimizing the placement of
well PROD-1. Dashed lines
show linear trends obtained by
least-squares fits

1 1.2 1.4 1.6 1.8 2

Diagnostics NPV [$] 109

1

1.2

1.4

1.6

1.8

2

S
im

ul
at

io
n 

N
P

V
 [$

]

109

1 1.2 1.4 1.6 1.8 2

Diagnostics NPV [$] 109

1

1.2

1.4

1.6

1.8

2

S
im

ul
at

io
n 

N
P

V
 [$

]

109



Comput Geosci

0 5 10 15
Time [years]

0

2

4

6

8

10

12

14

N
PV

 [$
]

108

Simulation base
Simulation opt. 0 $/m
Simulation opt. 1e4 $/m
Diagnostics base
Diagnostics opt. 0 $/m
Diagnostics opt. 1e4 $/m

Fig. 9 Left figure shows estimated net-present-values for the first
realization of the Olympus ensemble. Estimates are based on simu-
lations (solid lines) and diagnostics (dashed lines) for base case, and

optimized placement of PROD-1 for the cases with zero well cost and
a well cost of 10000 $/m. Right figure shows top view of the resulting
trajectories within a section of the model grid
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Fig. 10 Perforated section of well trajectories for producer PROD-1 from Fig. 9 shown along vertical grid sections colored by horizontal
permeability for the first realization of the Olympus ensemble. Low permeability shown in blue, while high permeability is shown in bright yellow
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Fig. 11 Relative improvements in proxy NPV/simulated NPV resulting from placement optimization of producer PROD-1 for each of the 50
realizations of the Olympus ensemble. For comparison, also the improvement in maximal (over time horizon) simulated NPV is included
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6 Concluding remarks and future work

In this work, we develop and test a methodology for
well control and well-trajectory optimization using a
proxy based on flow diagnostics with gradients obtained
by adjoints. Using full reservoir simulations for model-
based optimization of well trajectories is computationally
intensive, and hence the number of work-flow iterations
one can afford to run on problem setup, optimization, and
analysis of results will typically be limited. Rougher, but
much faster estimates of well performance for different
placements and controls can speed up this loop and enable
trying out a much larger number of scenarios before a
few are selected for more thorough analysis with full
simulations. For the well placement problem in particular, it
is advantageous that the proxy operates on the original grid.
Hence, model reduction and upscaling techniques are not
necessarily suited for this application.

For the two model ensembles considered in this work,
we observed good correlations between diagnostics-based
and simulation-based NPVs. For the Olympus ensemble,
however, good correlation and approximation properties
relied on manual tuning/scaling of a few terms in the proxy.
In particular, we introduced scaling of the pore volumes
in the time-of-flight equation, phase weighting functions
in the diagnostics proxy, and scaling of the time-of-flight
values for arrival times of the injected water. Herein, we
scaled these factors manually by comparing results to the
full simulation output of the first realization. The same
scaling was used for all realizations, however. Automation
of this tuning process is a natural next development step
for our new methodology. That is, we should optimize the
scaling factors by applying the already implemented adjoint
formulation to calibrate the proxy to reservoir simulator
results.

One current shortcoming of the proposed approach is that
an optimal approach as proposed by a diagnostics proxy
will have constant rates or BHPs over the full time horizon.
Enabling dynamic controls does not necessarily lead to a
significant improvement in objective, but we expect that
shutting in wells may, for instance, impair the correlation
with the current proxy. Future efforts will be made to further
investigate the application of diagnostics proxies to more
complex schedules such as reactive strategies. In particular,
we will look into different proxy parametrizations to better
represent and hopefully approximate such situations.
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