
Managing Dependencies in Large-Scale
Agile

Henrik Vedal1, Viktoria Stray1,2(B), Marthe Berntzen1, and Nils Brede Moe2

1 Department of Informatics, University of Oslo, Oslo, Norway
{henrikav,stray,marthenb}@ifi.uio.no
2 SINTEF Digital, Trondheim, Norway

{viktoria.stray,nils.b.moe}@sintef.no

Abstract. Delivering results iteratively and frequently in large-scale
agile requires efficient management of dependencies. We conducted semi-
structured interviews and virtual observations in a large-scale project
during the Covid-19 pandemic to better understand large-scale depen-
dency management. All employees in the case were working from home.
During our data collection and analysis, we identified 22 coordination
mechanisms. These mechanisms could be categorized as synchronization
activities, boundary-spanning activities and artifacts, and coordinator
roles. By using a dependency taxonomy, we analyzed how the mecha-
nisms managed five different types of dependencies. We discuss three
essential mechanisms for coordination in our case. First, setting Objec-
tives and Key Results (OKRs) in regular workshops increased trans-
parency and predictability across teams. Second, ad-hoc communication,
mainly happening on Slack because of the distributed setting, was essen-
tial in managing dependencies. Third, the Product Owner was a coordi-
nator role that managed both inter-team and intra-team dependencies.

Keywords: Product Owner · OKR · Slack · Distributed teamwork

1 Introduction

In large-scale agile software development, teams are surrounded by a larger devel-
opment context that is often characterized by a high number of dependencies
[1]. Teams, therefore, need to understand dependencies within their team as well
as to other teams, and to understand how to efficiently manage, or coordinate,
these dependencies [2]. A dependency occurs when the progress of one activity,
such as a development task, is dependent on the output of a previous activity
[3,4]. The more dependencies, the greater the coordination effort is required.
Additionally, agile development is the emergence of tasks and work structures
during the project [5], which implies that new dependencies will emerge during
the development process. Therefore, large-scale agile is characterized by a high
number of dependencies that is difficult to plan for up-front, and coordination
has been identified as a top challenge to successful large-scale agile [6,7].
c© The Author(s) 2021
P. Gregory and P. Kruchten (Eds.): XP 2021 Workshops, LNBIP 426, pp. 52–61, 2021.
https://doi.org/10.1007/978-3-030-88583-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-88583-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-88583-0_6


Managing Dependencies in Large-Scale Agile 53

Table 1. Table of coordination strategy components [8]

Distinct
component

Component Definition

Synchronization Synchronization
activity

Activities performed by all team members
simultaneously that promote a common
understanding of the task, process, and or expertise
of other team members

Synchronization
artefact

An artefact generated during synchronization
activities. The nature of the artefact may be visible
to the whole team at a glance or largely invisible but
available. An artefact can be physical or virtual,
temporary or permanent

Structure Proximity This is the physical closeness of individual team
members. Adjacent desks provide the highest level of
proximity

Availability Team members are continually present and able to
respond to requests for assistance or information

Substitutability Team members are able to perform the work of
another to maintain time schedules

Boundary
spanning

Boundary
spanning activity

Activities (team or individual) performed to elicit
assistance or information from some unit or
organization external to the project

Boundary
spanning artefact

An artefact produced to enable coordination beyond
the team and project boundaries. The nature of the
artefact may be visible to the whole team at a glance
or largely invisible but available. An artefact can be
physical or virtual, temporary or permanent

Coordinator role A role taken by a project team member specifically to
support interaction with people who are not part of
the project team but who provide resources or
information to the project

Research within large-scale has addressed coordination at the organizational,
project, inter-team and team level in both distributed and co-located settings
[1,8–10]. While research-based knowledge on coordination in large-scale agile
is expanding, there are still unresolved questions, such as which coordination
mechanisms used in large-scale agile are more effective. Guided by the need for
more knowledge on coordination in large-scale agile, we address the following
research question: How are dependencies managed in large-scale agile projects?
To address this question, we report on a case study conducted in a distributed
development team in a large-scale organization.

1.1 A Framework for Coordination in Agile Teams

In this study, we rely on a theory of coordination for agile teams developed by
Strode and colleagues [8]. The theory is relevant in large-scale contexts because
it takes into account that organizational structure, project complexity, and



54 H. Vedal et al.

uncertainty influence coordination [8]. We chose this theory as a lens for inves-
tigating large-scale coordination because it captures both explicit coordination
(e.g., an insight report) and implicit forms of coordination (such as knowledge
sharing) [1,8].

Coordination mechanisms are specific activities and artifacts aimed at
addressing dependencies of three types [3]: 1) Knowledge dependencies is when
a form of information is needed for a project to progress and consist of four
sub-categories: expertise, requirement, task allocation, and historical. 2) Process
dependencies are defined through two categories, activity and business process,
which entails when a task must be completed before another task can be initi-
ated. 3) Resource dependencies are composed of entity and technical, which is
when an object is needed for a project to progress. For example, entity depen-
dency is when a person is not available and this affects project progress [3].

The theoretical framework proposes three categories of coordination mecha-
nisms to manage these dependencies (see Table 1): Synchronization mechanism
such as daily stand-up meetings and product backlog; structure mechanisms
referring to the proximity, availability, and substitutability of team members;
and boundary spanning mechanisms that connect interdependent teams [3,8].

The theory further proposes that agile coordination mechanisms lead to coor-
dination effectiveness, where agile team members have a shared understanding
of their goals and priorities as well as how each team member’s tasks fit together,
as well as the necessary tools and artefacts available at the right time and place,
thereby being able to sufficiently manage their dependencies [8]. The original
framework included typical agile coordination mechanisms, such as daily stand-
up meetings and the product backlog [3,8]. However, in large-scale settings, it is
common to also use other project management mechanisms [1], including goal-
setting frameworks [10]. One such framework that we will focus on in this study
is the Objectives and Key results-framework, described next.

1.2 Objectives and Key Results

Objectives and key results (OKR) is a goal-setting framework to define a certain
set of objectives in an organization and measure its progress. Instead of spending
months setting long-term goals, OKR is designed to help organizations achieve
their business goals much quicker in a structured manner. It is defined as “a
critical thinking framework and ongoing discipline that seeks to ensure employees
work together, focusing their efforts to make measurable contributions that drive
the company forward” [11, p. 6]. An objective describes in short terms what the
team wants to achieve, while key results allow the team to measure their progress
and show when the objective has been reached.

The OKR-framework focuses on balancing business value and measureabil-
ity [11]. This may explain why large-scale agile companies choose to adopt it.
Another attractive feature of OKR that is compatible with agile is the emphasis
on broad participation and collaboration across organizational levels [11], right
down to the development teams.



Managing Dependencies in Large-Scale Agile 55

2 Research Method

We chose to conduct a case study because it is an empirical research method
for investigating contemporary phenomena and because it is particularly fit
when the boundaries between context and phenomenons are ambiguous or not
apparent [12]. Our case is an agency within a sizeable Norwegian municipal-
ity with approximately 50,000 employees distributed among 50 organizational
units. Established as a project in 2017, but later organized as an agency in early
2020, the case comprises six departments and seven product areas, consisting of
11 permanent and three temporary teams structured with people from multiple
departments (Fig. 1). These cross-functional agile teams deliver solutions such
as web solutions, mobile solutions, document-handling solutions, and business
systems. The work entails connecting existing systems in the municipality to
create a shared service platform for agencies and businesses. Considering the
amount of data the municipality holds, the objective is to facilitate the creation
of high-quality, valuable services for all citizens of the municipality.

Our primary data collection was from Team Alpha. Their goal was to create
a platform to facilitate easy access and sharing of data within agencies in the
municipality and ensure it is being put to use. This included making intuitive
and secure solutions, good documentation, and ultimately enabling the citizens
to have access to better solutions. The team had ten permanent members and one
part-time member (a UX designer). All permanent team members were inter-
viewed in December 2020. See Table 2 for a description of the different roles.
We interviewed one team lead, one tech lead, one UX designer, four back-end
developers, two front-end developers, and one data scientist. The video confer-
encing tool Zoom was utilized, allowing easy access to record the interviews with

Fig. 1. The large-scale set-up.



56 H. Vedal et al.

permission from the interviewee. The average interview length was 48 min, and
all interviews were transcribed.

We analysed the interview transcripts by systematically coding them in Nvivo
12. One analytical strategy proposed by Yin [12] is the reliance on a theoretical
proposition, and we chose to guide the data analysis by using the coordina-
tion framework outlined above [8]. Following this framework, the analysis was
organized and helped us point out relevant contextual conditions [12].

Table 2. Roles in team Alpha

Role Members Description

Team lead 1 Ensures that the team is moving in the right
direction, communicating company goals, and
facilitating a good flow of information

Tech lead 1 Also referred to as the architect, performs
development work, coordination, and provides
technical guidance for the team members

UX designer 2 Works with illustration, design, and collection of
data and insight from other teams and agencies

Back-end 4 Management and operation of the existing
systems, as well as the continuous
implementation of new server-side features

Front-end 2 Development of new client-side functionality,
creating a user interface and coordination with
designers

Data scientist 1 Acquires requirements, use cases, and proof of
concept for new features to be built

3 Results

We used the dependency framework [8] to categorize coordination mechanisms
and how they managed the different dependencies. Figure 2 gives an overview
of the identified coordination mechanisms and how they address relevant depen-
dencies. In addition to the components shown in the figure, we also identified
11 synchronization artifacts, such as Kanban boards showing the status of the
different tasks, and Github pages for documentation. In the following, we report
on three coordination mechanisms that addressed the most dependencies (five or
more) since these indicate to be the most important. These were OKR workshop,
ad-hoc communication and Product Owner (PO).

3.1 OKR Workshop

Working towards the same goals was identified as a critical success factor. To
achieve this, the project relied on the OKR framework. Every quarter the teams



Managing Dependencies in Large-Scale Agile 57

Fig. 2. Coordination mechanisms and dependencies identified.

arranged OKR workshops to set the direction and linking to the overall objec-
tives of the project to the teams. Each team was encouraged to look at other
teams’ OKRs to understand the dependencies between teams. Team Alpha’s
OKR meeting handled internal team dependencies such as expertise, require-
ment, historical, business process, and entity.

Further, the OKR workshop managed expertise and requirement dependen-
cies because they relied on very specific knowledge to create optimal OKRs. The
workshop also managed entity dependencies as many individuals on the team
provided valuable knowledge to ensure the quality of the OKRs. The team mem-
bers stated how OKRs provided increased transparency, predictability, shared
goals and an increased sense of ownership to what was produced in the project.
The agency also utilized an OKR tracker, a tool which allowed any team to view
the progress of other teams. One of the hardest parts about using OKR that
was stated by several team members, was quantifying objectives through key
results and the corresponding choice of words. A member of team Alpha stated:
“I think OKR is difficult. It is useful to maintain focus, but it is hard to create
good, measurable key results which make sense.” This further emphasizes the
need for this workshop to manage the dependencies, as they are reliant on it to
improve their collective understanding and set better OKRs.



58 H. Vedal et al.

3.2 Ad Hoc Communication

Besides regular inter-team and intra-teams meetings, there was a substantial
amount of communication performed ad hoc, mainly using Slack. The ad-hoc
communication on Slack managed expertise (team members reached out to
other experts in the project), requirements (a team member located specific
product related domain knowledge), task allocation (discussions led to emerg-
ing tasks) and activity dependencies (a team member needed information to
continue work).

The Slack infrastructure provided public slack channels, dedicated team
channels and private messages. Private messages was used both internally in
the team and externally to communicate with others in the large-scale project.
While much information was sent as private messages, the project members were
encouraged to ask questions in open channels. When team members were unsure
about details of the domain or technology, they found it easy to reach out on
Slack to locate this information. The tech lead explained the following: “Our
team have a lot of experience with cloud technology and other project members
often ask for assistance. We have similarly reached out to other teams that have
specific knowledge which might be relevant for us”. This spontaneous commu-
nication often led to unscheduled meetings and positively benefitted the par-
ticipants. The communication also involved agreeing on pair programming and
discussing debugging. Because all project members were distributed, this coordi-
nation mechanism was probably more evident as the majority of communication
during work hours was digital.

3.3 Product Owner

The PO was a coordinator role that managed a total of five dependencies. The
role managed dependencies of types expertise, requirement, task-allocation, busi-
ness process, and entity, as shown in Fig. 2. The PO communicated stakeholder
interests, checked status, and pointed teams in the right direction. The major-
ity of the work performed by the PO was coordination related to both intra-
and inter-team coordination. Working tightly with the team lead and tech lead
of Team Alpha, the PO assisted in the discussion of which key results (related
to OKR) to prioritize throughout the quarter. This is what ultimately decides
many of the tasks which the team works with during any point in time, which
in turn manages requirement and task allocation dependency. It was not always
evident to the product teams what to prioritize. The PO managed much of the
inter-team coordination with the appropriate teams. This allowed the teams to
be aligned and focus on their product, enabling autonomy and avoiding potential
bottlenecks and misunderstandings.

4 Discussion

Understanding coordination in a distributed environment is critical to project
success [13]. We studied how dependencies were managed in a large-scale agile



Managing Dependencies in Large-Scale Agile 59

project that was forced to work from home due to Covid-19. We now discuss our
research question: How are dependencies managed in large-scale agile projects?.

The use of OKRs served as an essential mechanism for managing dependen-
cies because the approach was a foundation for setting direction for all teams.
We identified how the OKR workshop managed dependencies such as expertise,
requirement, historical, business process, and entity. The key to a successful
workshop was having an overview of past decisions and specific knowledge about
the product and project goals. In the workshop, team lead and tech lead man-
aged requirement dependencies, which enabled effective prioritization, which is
vital in high uncertainty complex projects [8].

The second most important mechanism to dependency management was ad
hoc communication, which addressed expertise, requirement, task allocation,
activity, and entity. For example, Team alpha often agreed to do pair program-
ming ad hoc, which was positive, since one of the main challenges of remote pair
programming is the initiation of pairing [14].

All scheduled and unscheduled communication was performed digitally. How-
ever, a high number of Slack channels resulted in challenges of getting an
overview of what was going on in the project. Our findings are in accordance
with [15], which found that coordination challenges are evident in distributed
teams. Our results further showed that it was hard to balance ad hoc communi-
cation on Slack and scheduled meetings. We found that some discussions could
go on for too long on Slack which created misunderstandings, instead of orga-
nizing a meeting to discuss the dependency and resolve the blocking of progress.
Our findings are consistent with the findings of [13], which showed that a lack of
guidelines when using Slack resulted in coordination being confusing and frus-
trating for team members. Another challenge with the use of Slack was that
it was expected that the project members answered reasonably quickly, which
some interviewees said led to increased interruptions and context switching in
the distributed teams.

The third most important mechanism for managing dependencies was the
PO role. The PO managed knowledge, process, and resource dependencies. Our
results confirm previous research, that the PO role is important in large-scale
agile for managing dependencies between and within the team [16–18]. In our
case, the PO worked in close collaboration with the team leader and tech lead,
thus managing process-related and technical dependencies. In accordance with
the findings of Bass [17], we found that the PO performed a wide set of different
functions. Our findings are also in line with Remta et al. [18]. In their study of
POs in a company that implemented the Scaled Agile Framework, they found
that the PO role entails responsibilities such as being a gatekeeper, motivating,
communicating and prioritising [18], addressing five types of dependencies.

5 Conclusion and Future Work

In conclusion, our study suggests that by discussing OKRs, the teams manage
dependencies both within the teams and also inter-team dependencies. We found



60 H. Vedal et al.

that ad-hoc communication mostly happened on Slack and that this communi-
cation made team members locate expertise in the large-scale project as well
as discussing requirements, task-allocation and activity dependencies. The PO
played an important role because it managed five different types of dependen-
cies. In this large-scale project, there was no dedicated role focusing on OKRs,
so discussions about them in the teams took time during meetings and required
much facilitation. Our findings indicate that large-scale projects would benefit
from having a dedicated “OKR master” to facilitate and follow up the OKR
process. Future work should further explore how OKRs can be used to align
teams in a large-scale distributed set-up.

References

1. Dingsøyr, T., Moe, N.B., Seim, E.A.: Coordinating knowledge work in multiteam
programs: findings from a large-scale agile development program. Proj. Manag. J.
49(6), 64–77 (2018)

2. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Comput. Surv. (CSUR) 26(1), 87–119 (1994)

3. Strode, D.E.: A dependency taxonomy for agile software development projects. Inf.
Syst. Front. 18(1), 23–46 (2016).

4. Crowston, K., Osborn, C.S.: A coordination theory approach to process description
and redesign (1998)

5. Boehm, B., Turner, R.: Management challenges to implementing agile processes in
traditional development organizations. IEEE Softw. 22(5), 30–39 (2005)

6. Bass, J.M.: Future trends in agile at scale: a summary of the 7th international
workshop on large-scale agile development. In: Hoda, R. (ed.) XP 2019. LNBIP,
vol. 364, pp. 75–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30126-2 9

7. Bass, J.M., Salameh, A.: Agile at scale: a summary of the 8th international work-
shop on large-scale agile development. In: Agile Processes in Software Engineering
and Extreme Programming-Workshops, p. 68 (2020)

8. Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile soft-
ware development projects. J. Syst. Softw. 85(6), 1222–1238 (2012)

9. Stray, V., Moe, N.B., Mikalsen, M., Hagen, E.: An empirical investigation of pull
requests in partially distributed BizDevOps teams. In: The 16th ACM/IEEE Inter-
national Conference on Global Software Engineering (ICGSE), pp. 110–119 (2021)

10. Berntzen, M., Stray, V., Moe, N.B.: Coordination strategies: managing inter-team
coordination challenges in large-scale agile. In: Gregory, P., Lassenius, C., Wang,
X., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 140–156. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-78098-2 9

11. Niven, P.R., Lamorte, B.: Objectives and Key Results: Driving Focus, Alignment,
and Engagement with OKRs. Wiley, Hoboken (2016)

12. Yin, R.: Case Study Research and Applications: Design and Methods, 6 edn. SAGE
Publications, Upper Saddle River (2017)

13. Stray, V., Moe, N.B.: Understanding coordination in global software engineering: a
mixed-methods study on the use of meetings and slack. J. Syst. Softw. 170, 110717
(2020)

https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1007/978-3-030-30126-2_9
https://doi.org/10.1007/978-3-030-78098-2_9


Managing Dependencies in Large-Scale Agile 61

14. Smite, D., Mikalsen, M., Moe, N.B., Stray, V., Klotins, E.: From collaboration
to solitude and back: remote pair programming during Covid-19. In: Gregory, P.,
Lassenius, C., Wang, X., Kruchten, P. (eds.) XP 2021. LNBIP, vol. 419, pp. 3–18.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78098-2 1

15. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Team knowledge and
coordination in geographically distributed software development. J. Manag. Inf.
Syst. 24(1), 135–169 (2007)

16. Berntzen, M., Moe, N.B., Stray, V.: The product owner in large-scale agile: an
empirical study through the lens of relational coordination theory. In: Kruchten,
P., Fraser, S., Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 121–136. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19034-7 8

17. Bass, J.M.: How product owner teams scale agile methods to large distributed
enterprises. Empir. Softw. Eng. 20(6), 1525–1557 (2015).

18. Remta, D., Doležel, M., Buchalcevová, A.: Exploring the product owner role within
safe implementation in a multinational enterprise. In: Paasivaara, M., Kruchten,
P. (eds.) XP 2020. LNBIP, vol. 396, pp. 92–100. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-58858-8 10

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-030-78098-2_1
https://doi.org/10.1007/978-3-030-19034-7_8
https://doi.org/10.1007/978-3-030-58858-8_10
https://doi.org/10.1007/978-3-030-58858-8_10
http://creativecommons.org/licenses/by/4.0/

	Managing Dependencies in Large-Scale Agile
	1 Introduction
	1.1 A Framework for Coordination in Agile Teams
	1.2 Objectives and Key Results

	2 Research Method
	3 Results
	3.1 OKR Workshop
	3.2 Ad Hoc Communication
	3.3 Product Owner

	4 Discussion
	5 Conclusion and Future Work
	References




