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Abstract

Multiblock analysis attacks the problem of how to combine data from various

data sources for purposes such as prediction, classification, clustering, or visual

data analysis. A key concept is the distinction between “common” and “dis-
tinct” parts, that is, what information repeats itself across the blocks and what

is unique to an individual block.

The statistical field of multiblock analysis holds many different approaches,

which leads to different treatments both of the terms distinct and common

themselves and to differences in the numerical results. In this article, we

extend the discussion of distinct and common in multiblock analysis to the

domain of distance matrices, that is, the situation where data point sets,

so-called configurations, are analyzed via relative distances either because con-

figurations are not available directly or because a distance representation is

favorable. Situations typical for chemometrics will be highlighted and illus-

trated in examples.

When analyzing different methods, we have focused on three key aspects.

First, during the transition from the distance to configuration domains, one

needs to consider how multiple distance matrices are treated. Second, when

extracting common and distinct parts, one needs to manage a tradeoff between

explaining variance and ensuring similarity between subspaces. Third, there is

a design choice to be made as to whether the subspace containing the common

parts is “shared” between blocks or if separate subspaces are associated with

each individual block. The three aspects help to categorize and explain well-

known methods in the field. A selection of methods was analyzed and subse-

quently applied to examples.
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1 | INTRODUCTION

Distance data are relevant in several domains and have been used extensively in psychology and sociology based on
notions of “similar” and “dissimilar,” or rankings, to quantify the distance between sets of concepts, categories, sam-
ples, and so forth.1,2 A similar application occurs in sensory analysis where distances between products, for instance
wines, are used to map these onto a sensory map and using frequencies of word descriptions to interpret the mean-
ing of the coordinate axes.3 In a completely different domain, for localization of “objects,” it is frequently necessary
to combine distance estimates relative to base stations, or transmitter/emitters, to determine the coordinates of these
objects. Applications include time of arrival from access points for indoor localization in WIFI networks or signal
strength to multiple beacons for localization in low energy bluetooth,4 the latter being particularly relevant for
smartphones.

Even when the original representation is not in the form of distance data, it may be convenient to use distances in
some analyses. For instance, when fusing data sources of very different formats due to differing dimension or to
variables being of different types such as binary and continuous.5,6 Another example is when prior information is most
easily incorporated in the form of UniFrac7 distance matrices, such as phylogenetic information about microbial
species.

In psychology, sociology, and in sensory analysis, a basic work horse for analyzing distance data to obtain a low
dimensional representation is classic multidimensional scaling (MDS) or variations thereof.1 This tool takes a distance
matrix and produces a coordinate representation, hereafter called “configuration,” with a predefined dimension
(typically a low-dimensional representation) such that distances between samples approximate the original distance
matrix. We will later briefly present the principles of MDS.

In the sensory example above, it is common to use a larger panel of tasters to arrive at a consensus, a kind of
“average” interpretation of samples.3 This process involves multiple distance matrices, one for each assessor. Also,
for the other examples of data fusion, one ends up with a collection of distance data describing relationships
between the same set of samples. Of course, to analyze data, an obvious approach would be to convert the distance
matrices to low-dimensional configurations and then proceed from there. However, methods also exist for handling
multiple distance data, “blocks,” and two such methods are DISTATIS8 and INDSCAL.1 A key step for the former is
a form of averaging in the distances domain while the latter employs a specific model on distances for the
individual blocks.

Extracting information from multiple blocks of data, data fusion, is a rich field and applies to standard data tables,
“configurations.” An important question in that context is what the different blocks have in common and what distin-
guishes between them. A review of approaches for analyzing common and distinct for configurations is given in Smilde
et al.9 However, to the knowledge of the authors, little work has been done to extend this analysis to multiple blocks of
distance data.

The objective of this article is to investigate the analysis of common and distinct scores from sets of distance matri-
ces. We will present a framework for categorizing and analyzing different approaches. This framework describes three
axes along which methods may be categorized and which we believe are relevant for understanding properties of the
different approaches. We will also apply the framework to several existing methods, for instance, DISTATIS and
INDSCAL mentioned above. We also think the framework is relevant to describe the span of possible approaches to
describing common and distinct scores for distance matrices.

Three examples will be presented to illustrate the use of the framework. The first example is a simple simulation
and will be used to illustrate the variance-correlation trade-off. The second example is from sensory analysis of food
(Figure 1A) where the individual distance matrices represent the tasters' judgements of differences between olive oils.
The focus is on obtaining a consensus among tasters. The third example is from pharmacogenomics where the blocks
represent different measurement principles for tumor cell lines of cancers. The data considered are given as drug
response, proteomics, gene expression, and copy number alterations. The focus here is to get insight into the common
and distinct variability.

While we believe the framework is relevant for categorizing and understanding the different approaches, our ambi-
tion is not to provide a hierarchy along “better” to “worse” among them. What is recommended may be dependent both
on the actual data and the aims of the analysis. Also, treatments of the above examples are more illustrative of pitfalls
than of best practice.

A brief note on terminology: We follow the convention that bold face letters represent matrices (upper case) and
vectors (lower case) while italics denote scalars. RðAÞ denotes the range of A while rðAÞ denotes its rank. Unless
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otherwise stated, the norm kAk is the Frobenius norm for matrices while ⟨x,y⟩ denotes the inner product between
vectors x,y.

In Section 2, we will present some background material and introduce the framework as well as applying it to
a selection of methods: MDS with generalized canonical correlations analysis (GCA), DISTATIS, and
INDSCAL. These methods will be illustrated through application to examples in Section 3. A discussion is given
in Section 4.

2 | FRAMEWORK

We begin with a very brief introduction to multidimensional scaling (MDS) as this is an important tool underlying the
different approaches addressed later in the article, see Dokmanic10 and the book Modern MDS1 for more information.

2.1 | Multidimensional scaling (MDS)

The distance matrices are often Euclidean distance matrices (EDM) D, which contain the squared distances between all
pairs of samples ði, jÞ.

Dij ¼ xi�xj
�� ��2 ¼ xik k2�2⟨xi,xj⟩þ xj

�� ��2 ð1Þ

where X¼½x1, � � �,xi, � � �,xN �T represents the original, perhaps unknown, configuration containing N samples and each
xi is an M-dimensional vector representing the sample. Without lack of generality, assume the columns are centered. It
can be shown that by applying an operator (J¼ I� 11T

N ) to the EDM, effectively centering the configuration, and
appropriately scaling the result we are left with a positive semi-definite matrix G¼� 1

2JDJ ¼XXT ,10 called the Gram
matrix. The positive definiteness means an eigenvector decomposition is possible with eigenvectors in V and positive
real eigenvalues along the diagonal of Λ and hence its square-root is well defined. We can calculate a configuration
using this square root:

Z¼VmΛ1=2
m : ð2Þ

FIGURE 1 (A) In projective mapping (PM) sensory analysis, assessors are asked to place similar samples close to one another on a piece

of paper, thereby creating a set of distances between the fruits. The axes are arbitrary and may vary from assessor to assessor. (B) An

illustration of the concept of using distances to locate receivers in Wi-Fi and Bluetooth networks, or combinations thereof as illustrated here.

Here, the distances may be proxies such as received signal strength indicators. Any three distances to known references is ideally sufficient

for pin-pointing the location in the two dimensional plane
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where the subscript m indicates the dimension of the approximation to the original X. This result is the core of MDS. A
cause for differences between the original X and approximation Z is the invariance of distances D to both rotations and
translations: the choice of reference system is arbitrary. Incidentally, this motivates the above assumption of column
centered data. In the following, the matrix Z will be denoted “scores.”

2.2 | Axes for classifying methods

As stated in the introduction, the basis for analysis is multiple blocks of distances, from which common and dis-
tinct configurations shall be calculated. As a motivational example, in projective mapping (see Figure 1A) a set of
tasters place samples on a table such that distance reflects dissimilarity of samples with no prior instruction
regarding which qualities to judge. In this scenario, two assessors may judge “sweetness” along one axis but
switch between “sourness” and “bitterness” along the second. Ideally, small differences in perceived sweetness
would be found in differences within the common subspaces, and sourness and bitterness may be assigned distinct
subspaces.

We will in this paper consider methods which all are constructed upon the same workflow: the use of a set of K dis-
tance matrices Dk, where rows and columns in different blocks refer to the same set of samples, to construct a consen-
sus V and a set of common scores Zkc and distinct scores Zkd:

Dkf g! V , Zkc,Zkdð Þf gð Þ such thatVTV ¼ I and 8k, Zkc ⊥Zkd ð3Þ

where K refers to block, c to common, and d to distinct, see Figure 2. All methods aggregate information across blocks
to define the consensus V, an orthonormal basis of this subspace. The consensus can be conceptualized as the axes
shared by all blocks—the “level” playing field. The common configurations for each block Zkc should lie either within
this subspace (“on the field”), or at least close to it.

How individual methods formulate the optimization problem defines how the consensus is calculated and
how common scores relate to the consensus. The distinct scores are further defined to be orthogonal to the common
scores.

In the following, we will denote by “common subspace” the subspace that is spanned by the scores (columns of Zk),
and sometimes will address elements of a basis of this subspace as “common components.” These “components” are
basically synonymous with the individual scores (column vectors in Zk) in the sense that they span the same subspace.
Finally, as noted earlier, a “configuration” is the collection of N (row) samples and the subspace spanned by its column
vectors is sometimes implicitly implied in this article as “column space”. Similar remarks apply when talking about dis-
tinct “subspaces,” “configurations,” and “components.”

The methods discussed in this paper may be categorized along three conceptual “axes” which will be called:

• “domain shift,”
• “variance-correlation tradeoff,” and finally the
• “within-between requirement.”

For methods discussed in this article, we will emphasize their relations to the axes, and believe this will make it easier
to see similarities and differences between them.

2.2.1 | Domain shift

This axis addresses how the methods transform the data from the distances domain to the configurations domain. The
different methods may be classified into three groups: “MDS first”, “averaging of distances” and “direct”.

MDS first: Distances fDkg to total configurations fZkg
In multiblock analysis, there is significant work on the decomposition of feature blocks into common and distinct con-
figurations. Therefore, it appears that the easiest route to a decomposition of distance matrices is to first calculate block
scores Zk using MDS and then analyze these using the above-mentioned framework for features. This will give both
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common and distinct scores through the use of established methods (e.g., GCA, SCA, JIVE, and DISCO, see Smilde9).
This is called the “MDS first” group.

Averaging of distances: defining a distance-to-configuration operator T
The second group of approaches aggregates information directly in the distance domain which leads to a single distance
matrix. Applying MDS to this matrix defines the consensus. Regarding the common scores, several approaches exist
including the definition of a common subspace from the analysis of D and analyzing the blocks w.r.t. this subspace; or
defining a transform T based on the eigen-decomposition and applying it to the block distances. An example of the lat-
ter is DISTATIS8 which will briefly be discussed in Section 2.3.2.

Direct: Distances fDkg to common configurations fZkg
The last group is denoted “direct” because the original distance matrices are used directly as input to the methods with-
out any prior processing other than a possible standardization. Common configurations are a direct result of the origi-
nal distance data, such as for the well-known method INDSCAL.1

In the two latter groups, “direct” and “averaging of distances,” a second stage estimates the distinct parts for each
block. Our approach has been to apply a constrained MDS on the original distance matrices which will be addressed in
Section 2.3.3.

2.2.2 | The variance-correlation tradeoff

Different viewpoints on commonness can be envisioned. One perspective aims at finding common scores with high
resemblance across blocks. Another perspective emphasizes the stability of estimates as it is often desirable that the
common scores “explains” a large part of the observations. The first objective favors correlation between the common
scores while the second requires that reconstructed Gram matrices are good approximations to the original Gram matri-
ces. The well-known method simultaneous components analysis (SCA11) belongs to the last group, while generalized
canonical correlation analysis (GCA9) belongs to the first group.

These two objectives are not always aligned, and one is left with a trade-off, see Section 3.2 for an example. In Dahl
and Næs,12 a method for seamlessly compromising between maximizing correlation and explained variance was
described. In a similar fashion, we will show that the concrete methods considered in this article can be parametrized

FIGURE 2 Illustrating the workflow. There are four samples, with all pairwise distances measured in K blocks (assessors, instruments,

time, etc): DKf g, see left part of figure. Here, d1,2 represents the distance between samples 1 and 2 for block k (blue). From these blocks,

common and distinct configurations are estimated and shown in center. To the right the recalculation of distances from configurations

approximates the original distances. The common configurations have dimension mc while the distinct configurations have dimension md;

each dimension (column) represents a latent variable. The variables of the common configurations are related to the consensus while

variables of the distinct configurations are orthogonal to the variables of common configurations of the same block

SOLBERG ET AL. 5 of 24



by the power α of the eigenvalues of the individual Gram matrices, and that this parameter implicitly adjusts the
variance-correlation tradeoff.

All the methods to be considered below can be formulated as an optimization of a sum of Frobenius norms measur-
ing the residuals between data and model. An intermediate step defines the consensus V—an orthonormal basis—and
which may be formulated, for several of the methods, as an eigenvector problem involving an appropriate semi-definite,
positive matrix G defined as:

G¼
X
k

ωkV kΛα
kV

T
k , ð4Þ

where ωk is a scalar scaling factor, Vk,Λk are the eigenvectors and values of the blocks' Gram matrices Gk. For
the methods considered here, α is an integer in the set f0,1,2g. The scaling factors ωk could be rescaling of the
individual Gram matrices so they are more easily comparable. In all cases the mc first eigenvectors define the
consensus.

α¼ 0
This value means that all eigenvectors will have the same weight in the sum, the ones with the larger eigenvalues
and those with the smaller eigenvalues. The first eigenvector can be shown to be a function of principal angles to
blocks and will favor small angles, or equivalently high correlation. The story concerning the subsequent
eigenvectors is more complicated. This behavior is relevant for the MDS first followed by GCA, see
Section 2.3.1. It is important to note that some of the effects of high sensitivity to eigenvectors with small eigen-
values can be avoided if each of the individual MDS decompositions are truncated before being incorporated in
the sum in Equation (4).

α¼ 1
Contrary to the previous case, for α¼ 1 the scale of the Gram matrices will influence the results as the “large” blocks
(either with large norms or eigenvalues) will contribute most to G and hence pull considerably on the consensus. Exam-
ples where this is the case is DISTATIS and MDS followed by SCA.

α¼ 2
Finally, the case α¼ 2 applies when using SCA directly on distance matrices: “direct” SCA (see Appendix A.2 for
details). In this case, directions corresponding to large eigenvalues are even more favored compared to the
previous case.

As can be seen, this shows that α is one way of parametrizing the different problems and sets the tradeoff between
correlation and explained variance. The choice of tradeoff in large part defines the interpretation of “common” between
“similarity” and “best explained.” For a simulated example, see Section 3.2.

2.2.3 | The within-between requirement

The third “axis” qualifying the different methods concerns the question of whether each common subspace should be
contained within the span of each block, or if they may lie in the span of the set of blocks (this case is denoted
“between”). Whether solutions “within” or “between” are acceptable depends on the specific application. For instance,
projective mapping (PM) focuses on the consensus, which necessarily lies “between” the blocks.

On the other hand, different blocks may come from qualitatively different sources, such as different instruments or
a combination of instruments and questionnaires. In this case, it may be important that the common configurations
represent each part faithfully and one way to do so is to require it to lie within the range of the respective blocks,
RðGkÞ. This implies that the common configurations can be expressed as linear combinations of the original variables
and therefore be viewed as latent variables within the individual blocks.

Another distinction applicable to “between” versus “within” has to do with the total number of dimensions spanned
by common scores. For instance, when parametrizing common to mc components for the common space “between” in
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SCA, this space contains all common scores. With the same choice for MDS followed by GCA, each block has dimen-
sion mc which means that they collectively likely span a larger space.

The choice for the common subspace immediately implies a choice for the distinct subspace as they have been
defined to be orthogonal. When the common subspace lies within, it is natural to define the distinct subspace within,
too, so it can be extracted from the projection onto the orthogonal complement (for instance, using the md principal
components). When the common subspace lies between, the orthogonal complement also lies between. It is possible to
add constraints to force the distinct subspace to lie within even in this case for instance using the method described in
Section 2.3.3 or by further projections onto the space spanned by the block.

2.3 | Selected methods

The methods discussed in the next sections are intended as examples of possible approaches and have been selected to
illustrate the “axes” discussed above. Furthermore, they will be applied to example analyses in Section 3. It will be
explicitly stated where they belong in the general framework above, that is, how they relate to the three axes. After dis-
cussing the three methods, we will give a brief review of other possibilities in the same framework and present them in
a table.

2.3.1 | Method 1—MDS first followed by GCA

This method is an example from the “MDS first” methods, which favors correlation over explained variance and which
results in common and distinct scores within blocks. The method starts by extracting total scores from each distance
matrix separately.

MDS Dk,mkð Þ¼Zk �ℝNxmk ð5Þ

where mk is the dimension of the space containing the total scores. As we propose below a method for extracting the
distinct part from Zk, mk should account for both the dimensions of the common and distinct spaces: mk ≥mkcþmkd.
We will comment on this choice below.

Generalized canonical correlation analysis (GCA9) is then applied to the set of total scores:

min
V ,Pk

X
k

ZkPk�Vj jj j2, ð6Þ

where the consensus V is orthogonal and of rank mc. The solution to the consensus V are the first mc eigenvectors ofP
kV kVT

k , see Smilde et al.,9 and as such has parameter α equal to zero as discussed in Section 2.2.2. Note again that
some of the effects of the directions with smaller eigenvalues may be avoided if each of the individual MDS operations
are truncated prior to (6).

The product ZkPk approximates the orthogonal matrix V and does not lead to a good approximation of the original
Gram matrices because these are not necessarily normalized. This product effectively identifies a subspace in RðZkÞ, so
the common space for this block should be the mkc principal components within this subspace. Let Ukc be an orthonor-
mal basis for ZkPk, then define Zkc using the mkc largest principal components of UkcUT

kcZk. It should be stressed that
this is not normally a part of GCA but has been proposed to fit within the framework of this article. This procedure
leads to common configurations contained within the blocks.

The distinct scores can be defined as the mkd principal components of the projection of Zk onto the orthogonal
complement of Ukc: I�UkcUT

kc

� �
Zk. Also, the distinct scores lie within blocks.

Choosing mk ≥mkcþmkd was based on the above way to extract the distinct part. This need not be enforced: other
methods exist for extracting distinct parts and which do not need the residual of Zk, for instance the method CMDS
described in Section 2.3.3. In this alternative, it would be sufficient with mk ≥mkc.
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While the above allows for separate mkc, the objective of the method is to identify a common space, and therefore, a
departure from mc should be justified, for instance, if dimensions greater than mkc would be considered too noisy for
some block K .

Relation to the three axes: This method is MDS first, focuses on correlation, and scores lie within the blocks' spaces.

2.3.2 | Method 2—DISTATIS

The second group of approaches applies a weighted sum in the distance domain. This approach emphasizes explained
variance and results in a decomposition within blocks.

There are several ways of selecting the coefficients of the weighted sum: using equal weights amounts to
the Sum-PCA approach mentioned in Kiers,13 while in DISTATIS8 the choice is based on emphasizing “similar”
structures.

DISTATIS normalizes block Gram matrices with respect to their largest eigenvalues λkþ. The RV coefficients14

between these matrices are calculated and put into a new matrix, which, under fairly general circumstances, has only
positive entries and thus admits a first eigenvector (e) with positive entries. The weights of the convex sum are then
ω¼ e=kek1 and leads to:

G¼
X
k

ωk

λkþ
Gk: ð7Þ

MDS is applied to this matrix which defines both the consensus V and eigenvalues Λ, see also Equation (4). In analogy
with Z¼VΛ1=2 ¼G � ðVΛ-1=2Þ, DISTATIS defines the blocks' common scores Zkc based on an operator T (where we
have added the factor γk in order for reconstructed Gram matrices to be of equal norm as the originals):

Zkc ¼T Gkð Þ¼ γk �Gk � VΛ�1=2
� �

, ð8Þ

which means that each block is handled by the same decomposition as the average. As the transformation
amounts to a linear combination of the columns of Gk, the common scores lie within the space spanned by individ-
ual blocks. The value γk scales the reconstructed Gram matrix to the same size as the original Gram matrix:
ZkcZT

kc

�� ��2 ¼ Gkk k2.
An interesting observation about methods averaging in distances before applying MDS is made in Kiers13:

argmin
V ,Λf g

G�VΛVT
�� ��2 ¼ argmin

V ,Λf g

X
k

ωk
Gk

λkþ
�VΛVT

����
����
2

ð9Þ

where we see that the approximation is also in sum the best approximation to the individual (scaled) Gram matrices.
In terms of relative weights between eigenvalues (4), this method is parametrized by α¼ 1, that is, the method is

focused on “explaining variance.”
With regards to extracting distinct scores, no “total scores” is available as for the MDS first group. The option pro-

posed here is to apply the constrained MDS approach described in the next section.
Relation to the three axes: This method is based on averaging of distances, explained variance, and scores lie

within the block spaces.

2.3.3 | Constrained MDS

In this case, there are no “total scores” Zk from which to deduce the distinct scores. Instead, a constrained version of
MDS (CMDS) is used to extract supplementary information from the individual distance matrices. A key step in MDS is
an eigen analysis of the distance matrix, and in Rao,15 a constrained version is defined allowing to extract eigenvectors
which are orthogonal to a set of vectors, see Appendix A.1 for details of the method.
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Zkd ¼CMDS Dk,md,Zkcð Þ ð10Þ

were md is the dimension of the distinct configurations and Zkd ⊥Zkc. In general, the distinct scores lie in a space which
is not contained in any block—“between”—for reasons discussed in appendix A1.

2.3.4 | Method 3—INDSCAL with CMDS

In this last group of approaches, a “direct” solution for common components is sought for: some model fY kg approxi-
mates the block Gram matrices in the Frobenius norm.

min
Yk

X
k

Gk�Ykk k2 ð11Þ

A well-known example is INDSCAL1 which suggests a model where in the MDS stage the subspaces are identical
but each block may weigh axes differently, and as such explicitly introduces a weighted distance model: Dij ¼
xi�xj
� �T

W k xi�xj
� �

: The problem is formulated as follows:

min
V ,W k

X
k

Gk�VW kV
T

�� ���� ��2 ð12Þ

where the consensus is V (not necessarily orthogonal) with rank mc and W k are diagonal matrices with strictly
positive entries. The solution is described in chapter 22 of Borg and Groenen.1 The common configurations are
defined as Zkc ¼VW 1=2

k and lie in the consensus subspace RðVÞ and hence between blocks. INDSCAL is the
only method discussed in this paper that does not fit into the eigenvector solution framework described in
Equation (4).

INDSCAL is only concerned with the consensus, and as for DISTATIS, there is no total configuration to relate to,
and the constrained MDS approach may also here be applied to calculate distinct scores.

Relation to the three axes: this method is based on the direct use of distances and explains variance, and the solu-
tion is between block spaces.

2.4 | Overview and alternatives

Table 1 summarizes many aspects of the various approaches discussed above, as well as adding two: the problem
formulation defining the consensus, the solution for the consensus, the common and distinct configurations. The
expressions for the common configuration indicate when they lie “within” the individual blocks or between (amount to
linear combinations of the columns of the consensus). Furthermore, the exponent of the eigenvalue matrix for blocks
indicates if the method favors correlation or explained variance.

In addition to the mathematical details of the different methods, the table also places these methods along the
“axes” defined previously: domain shift, the variance-correlation tradeoff and the within-between requirement.

Many other methods could be inserted into the space spanned by the axis, JIVE16 and DISCO17 to mention a couple
for the MDS first approach, IDIOSCAL1 as a slight alternative to INDSCAL which in addition allows for individual rota-
tions; and more.

2.5 | Explained variance

Once a decomposition has been obtained for each of the distance matrices, one could attempt to qualify the results.
However, as the separation into common and distinct configurations is not known a priori, there is in general no
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reference to measure how well these configurations have been identified. The only reference one has is the set of dis-
tance matrices, or equivalently the set of Gram matrices.

Although Gram matrices do not in general decompose into common and distinct Gram matrices (in the sense that
if Xk ¼XkcþXkd, then Gk ¼GkcþGkd), if the common and distinct scores are combined by concatenating their matri-
ces, a decomposition is possible:

Zk ¼ Zkc,Zkdð Þ! bGk ¼GkcþGkd: ð13Þ

This choice will allow for expressing “explained variance” in terms of the common or distinct Gram matrices separately,
see below.

The notion of “explained variance” (EV ) is often used to summarize the accuracy of some model and one way of cal-
culating it is:

EV ¼ 1�
P

k Gk� bGk

��� ���2P
k Gkk k2 : ð14Þ

This expression can be decomposed as a convex sum of explained variance per block:

EV ¼
X
k

Gkk k2P
n Gnk k2EVk ¼

X
k

wkEVk, EVk ¼ 1�
Gk� bGk

��� ���2
Gkk k2 : ð15Þ

Using the common scores to estimate the Gram matrices (bGk ¼ bGkc), the above expression may also be used to quantify
their contributions (EVc,EVck)—and similarly for the distinct parts (EVd,EVdk).

2.6 | Measuring overlapping dimensions

In this paper, our main emphasis has been on common (shared by all) and distinct, orthogonal to common. In practice,
however, it may both happen that the common subspaces share little and that distinct subspace are not orthogonal to
all other blocks. To quantify these cases, we propose below a useful index which, in a sense, measures the number of
overlapping dimensions. This index is similar to other matrix similarity indices, in particular, the similarity of matrices
index (SMI)18 and Yanai's generalized coefficient of determination (GCD),19 but avoids normalization for the index to
have an easy interpretation.

The index “overlap” between two matrices ðX ,YÞ is based on their orthonormal column bases (UX ,UY ) and is a
function of the m principal angles θi between these bases, where m is the minimum of the size of the respective bases,
see Hamm and Lee20:

overlap X ,Yð Þ¼ UT
XUY

�� ��2 ¼XM
i¼1

cos2 θið Þ ð16Þ

To illustrate the index, assume the bases contain a single component each: uA1,uB1. The index lies in the range ½0,1�
indicating anything between zero overlap with no common subspace and full overlap of one with parallel bases. Exten-
ding the example to two components in each basis, the first pair of “closest vectors” in respective subspaces defines the
first principal angle θ1. Orthogonalizing the bases with respect to this pair leads to a second pair of vectors and which
define the second principal angle θ2. Here, the index lies in the range ½0,2� between zero overlap (orthogonal subspaces)
and a complete intersection between the two planes.
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2.7 | Selecting dimensions

When applying principal components analysis, a key question concerns the number of latent variables to include in the
analysis. This number may be chosen based on how much of the variance is “explained”. Because this value is directly
related to eigenvalues of the analysis, Scree plots—where eigenvalues are plotted in decaying size—may be used to the
same effect (see Figure 3 below for an example).

In the context of distance matrices, the basic ideas could be used in the same way and applied to the Gram matrices.
The interpretations of “number of latent variables” is equivalent to the dimension of the embedding space and how well
distances are represented in any given number of dimensions.

While this may provide indications of how well individual blocks may be compressed with a given number of
dimensions, this is not enough because these subspaces may not overlap as shown in the pharmacogenomics example
in Section 3.4. The key objective is after all to identify subspaces that are common in some sense.

A natural way of providing a scree plot for Gram matrices is to plot EV as a function of the number of components
along with that for the individual blocks (EVk) and the common configurations (EVc), see Section 3.4 for an example.
In this example, monitoring EV as the number of components increases may reveal properties relevant to commonness,
as it did in the INDSCAL with CMDS solution which clearly showed that subsequent components essentially belonged
to individual blocks. In this example, the measure of overlap was used to qualify the solution post hoc: given a solution
to common scores, how well do the subspaces overlap?

Incidentally, it may also be relevant to monitor overlap between distinct subspaces, too. This may be surprising
given the objective of the analysis of common subspaces to contain basically all that is common. As shown in the simu-
lated example in Section 3.2, having extracted a common configuration does not preclude distinct configurations with
high degrees of overlap between associated subspaces. In this example, this behavior was related to dominant distinct
configurations and very small common configurations.

A final remark concerns the shift between common and distinct parts: the more dimensions are used to describe
common, the less is left over for distinct subspace. While in some cases the distinction may be clear, it is expected that
often subsequent increases in dimension of the common spaces will only to some degree overlap. Setting the cutoff
between common and distinct is hence left to the discretion of the analyst.

3 | EXAMPLES

3.1 | Pitfalls and success stories

The selected examples in this section illustrate some of the concepts introduced in Section 2.2 and methods introduced
in Section 2.3. In Section 3.2, the first example illustrates a potential pitfall in the variance-correlation tradeoff, namely,
the case when there exists a small common configuration and large, orthogonal distinct configuration. It shows how a
correlation-based method may prove superior and reveals possible misinterpretations when using a method maximizing
explained variance. In Section 3.3, a projective mapping (PM) study is analyzed and also it illustrates the role of the con-
sensus. It is also an example of noisy data with numerous blocks and where the distinct parts are not primarily the
focus. Finally, in Section 3.4, a study concerning the effect of drugs on cancers is analyzed.5 The different blocks repre-
sent different kinds of information: gene expression, copy number aberration, proteomics, and drug response; and both
common and distinct are of interest. The example shows another pitfall where GCA, which handled the first example
elegantly, now suggests common subspaces with little overlap between them in spite of the method optimizing for cor-
relation. It also shows the application of INDSCAL to a problem and as such contrasts two methods along the within-
between requirement.

3.2 | Simulated example—When correlation matters

We have created a scenario that is simple to grasp and nevertheless illustrates some of the issues with the variance-
correlation tradeoff. Two assessors agree on all samples along one dimension zc and disagree for some samples (50%)
along a second direction. We construct this as:
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Zk ¼ zc,zkdð ÞþEk, k � 1,2f g

zc ¼ �bT,�bT,bT,bT� 	T
,

z1d ¼ 10 � �aT ,bT ,�bT ,bT ,�aT
� 	T

, z2d ¼ 10 � �bT ,bT ,�bT ,bT
� 	T

where a is a vector of N ones, b is a vector of 2N ones and Ek is an i.i.d. normally distributed noise term and all zc,zid
are column vectors of length 8N . With the above definitions, both zTkdzc ¼ 0, i.e. distinct are orthogonal to common.
Incidentally, the two distinct z1d and z2d are also orthogonal. The important point, however, is that the distinct compo-
nents are much larger than the common components by a factor 10 between norms and this is expected to affect
methods that aim at explaining variance. The data are depicted in Figure 3A.

The MDS first with GCA method presented in Section 2.3.1 successfully identifies both common and distinct
components, despite the small relative length of the common components, see Figure 3B.

On the other hand, DISTATIS is displayed in Figure 3C, and this method focuses on explaining variance. It con-
founds common with distinct and thereby ends up with common components for each block that are orthogonal, a
result which runs counter to the idea of “common.” Also, the two distinct components are highly correlated, again run-
ning counter to the idea of “distinct.” The root cause is that by approximating original distance matrices with a single
component, it is more efficient to approximate the larger, distinct components.

In summary, this example illustrates the difference between similarity and explained variance and shows a possible
pitfall when selecting the latter group of approaches. They may end up with common components which have low
correlation between them: the spaces they span are not necessarily “close.” This pitfall may be detected using the over-
lapping dimensions index, see Table 2.

FIGURE 3 (A) True common (lines) and distinct (dashes) components, where both common are identical (z1c ¼ z2c). (B) Estimated

common and distinct components using MDS first and GCA. The estimated are good approximations of true components. (C) Estimated

common and distinct components using DISTATIS. Each block common corresponds to true distinct while each block distinct corresponds

to the true common: This represents a reversal between common and distinct components. This reversal happens even though the combined

estimated components are good approximations of the combined true components
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3.3 | Sensory—Olive oil data

Our sensory example concerns an olive oil tasting experiment using projective mapping (PM) with so-called ultra-flash
profiling where assessors assign descriptive words to different olive oils. A typical aim of this type of experiment is to
understand significant dimensions in describing products, and then using these dimensions to place each product in
this map. As PM data are often noisy, it is important to include a fair number of assessors and the analysis is tuned
towards the description of group preferences. This is an example where the main objective is to study the consensus.
The common components are, however, also sometimes of interest in order to study variability among assessors and
therefore the validity of the consensus.3

PM data are essentially two-dimensional at an individual level. Still, it is technically possible to extract more compo-
nents when the assessors' data are aggregated. This phenomenon was discussed thoroughly in Næs et al.21 Typically,
there may be one dominating sensory phenomenon which is perceived more or less similarly for all assessors, while the
second may be related to different sensory dimensions for the different assessors. This means that going beyond one
common component may induce errors or fail to represent qualities for at least some of the different assessors. The
consensus for all components will in any case be dominated by the assessors with a similar distance matrix, a kind of
majority vote.

The olive oil data set contains 11 products, each judged by 10 assessors. The coordinates for each assessor's
projective map Xk are used to calculate squared distances, Dk, and then the consensus is extracted using DISTATIS.

TABLE 2 Overlap for methods

MDS first followed by GCA DISTATIS with CMDS

bz1c bz2c bz1d bz2d bz1c bz2c bz1d bz2d
bz1c 1 1 bz1c 1

bz2c 1 1 bz2c 1

bz1d 1 bz1d 1 1

bz2d 1 bz2d 1 1

Note: Zeros in the table are omitted for clarity. It appears clearly in the DISTATIS with CMDS method that the two estimated common components are
orthogonal while the distinct parts are parallel.

FIGURE 4 Olive oil data consensus by DISTATIS for a multiple of runs while excluding two of 11 assessors in order to visualize

variability in estimates. The labels “PC1” and “PC2” correspond to the first and second dimensions of the consensus after aligning all

simulations using generalized Procrustes analysis, and the percentages are the average explained variance of the original projective maps by

projections onto the consensus dimensions
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While this provides a single analysis, here, we wished to illustrate the sensitivity to noise. A series of analyses were
applied to subsets of 8 assessors, leading to a set of R¼ 90 consensuses: fV rg, where r indexes the selection of assessors.
This set was subject to generalized Procrustes analysis22 producing aligned consensuses: fV r

0g and which are depicted
in gray in Figure 4. An ellipse is constructed for each product so that, under hypothesis of a multivariate normal distri-
bution, 90% of the subsets of assessors fit inside.

Finally, the average consensus: V avg ¼ 1
R

P
rV r

0, is used to create a biplot with the most frequent words used in the
ultra-flash profiling. A vector f w is constructed based on frequencies of the word for each product. This vector is projec-
ted into the space spanned by the average consensus:Xw ¼ VT

avgV avg

� ��1
VT

avg f w, and are collectively scaled so that their
lengths are comparable to the consensus. These projections are added to the biplot in Figure 4. The final length of a word
vector in the biplot depends hence on both sum frequency and correlations with the average consensus' dimensions.

Considering the word vector projections Xw, the axis between “mild” and “pungent” is most significant and aligns
well with the first dimension of the average consensus. There is no natural pair of word vectors that align well with the
second dimension, and the projections are generally short. Consider for instance “fruity-berry” which has a higher sum
frequency than “mild,” but whose word vector projection is much shorter—this is due to low correlations with the
average consensus dimensions, so while the word is often used, assessors tend to disagree on the products associated
with them. Considering the second consensus dimension, it appears nevertheless to be associated with positive words,
“green,” “fruity-berry,” in the positive direction, and more negative words: “machine oil,” “pungent,” in the negative
direction (Figure 5).

3.4 | Pharmacogenomics

In this case, we have selected a subset of a larger dataset which relates drug response to various characteristics of a set
of tumor cell lines. The data subset we will be considering consists of four blocks: drug response (DR), proteomics (PR),
gene expression (GE), and copy number alterations (CNA). The 276 samples are tumor cell lines of various cancers. For
details on the data set and selection of samples as well as for missing data imputations, see Aben et al.,5(sec 2.6) hereafter
called the “iTop” article. Distances are Euclidean except for block CAN, which is based on the Jaccard distance between
two Boolean vectors (dðx,yÞ¼ 1�ðP ixi and yiÞ=ð

P
ixi or yiÞ). See Table 3 for a summary of the data set.

After calculation of squared distance matrices, eDk, the norms of these matrices are very different. Therefore, these
matrices have been normalized by the largest eigenvalue of their respective Gram matrices Gk, Dk ¼ eDk=λþk .

FIGURE 5 (A) Scree plot of eigenvalues of the concatenated, centered projective maps Xk , and associated part of the total variance

(
PkXkk2) that is “explained” by the principal components. (B) Explained variance as a function of the number of dimensions used for the

common subspaces. Adding a third component increases the EVk for two assessors. Further increases do not appear on average to improve

explained variance
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One of the basic assumptions in all methods considered is that the data blocks can be compressed into a smaller set
of components, which we group in the common and distinct parts. However, we see in Figure 6 that the eigenvalue
structure is different between blocks, with GE and CNA both having distributed eigenvalues, while PR and DR can be
significantly compressed with only a few components.

For this dataset, we have focused on two methods: INDSCAL with CMDS; and MDS first followed by GCA. The first
method was selected due to a different model of distances, and the latter to illustrate a pitfall in the GCA method. We
will see that in the former, components appear to be selected in part per block while in the latter there is little “in
common” between the common blocks Zkc.

Explained variance, dimensions, and common parts
In Figure 7, we have plotted the explained variance as a function of the number of components. For simplicity, this
number is equal for both common and distinct subspaces. Also, to ease comparison, the number of components in the
MDS stage is fixed at 20 (MDS first followed by GCA). Regarding the INDSCAL with CMDS method, we observe jumps
in single blocks for each added component in common. In the MDS first followed by GCA method, the common
subspaces pick up first on the GE and CNA blocks (with distributed eigenvalues), and significant increases only occurs
for the PR block after 6 components have been identified.

To continue, for the methods, five components were selected for both the common and distinct subspaces. This
choice is loosely motivated by the number of significant eigenvalues for the PR and DR blocks. Also, while this could
have been chosen differently for each block, for simplicity the selection is equal for all blocks. Table 4 shows how well
the two methods approximate the Gram matrices expressed through EV . As the MDS first approaches are limited by
the MDS stage, the EV of this stage is given at the end of Table 4. While the difference in total explained variance
between them is not large, how the explained variance is distributed across blocks is qualitatively different: there is a

TABLE 3 Summary of pharmacogenomics data

Block Raw data type Width Distance metric

Copy number alterations (CNA) Boolean: xij� f0,1g 427 d i, jð Þ¼ 1� xi \ xj
xi [ xj

Gene expression (GE) Continuous: xij�ℝ 17739 dði, jÞ¼ kxi�xjk2
Proteomics (PR) Continuous: xij�ℝ 187 dði, jÞ¼ kxi�xjk2
Drug response (DR) Continuous: xij�ℝ 218 dði, jÞ¼ kxi�xjk2

Note: For every block, there are 276 samples from tumor cell lines.

FIGURE 6 Sorted, eigenvalues ( log10ðλÞ) of the blocks' Gram matrices. (A) Full set, (B) zoom in on first few components. The blocks

gene expression and copy number alteration have slowly decaying eigenvalues, and this is an issue when attempting to synthesize

information in a small selection of directions
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strong complementarity in how PR and DR data are incorporated into the common configurations. While common EV
for GE and CNA are similar for the two methods, INDSCAL favors PR and MDS followed by GCA favors DR.

Common versus similar
A part of the story that Table 4 does not tell is how similar the different common components are. To address this ques-
tion, the overlaps between the blocks' common subspaces was calculated for each of the methods. For the common sub-
spaces of the INDSCAL with CMDS method, the overlap was basically complete between all blocks, as expected
because all are in the consensus subspace. However, as can be seen in Table 5 the same is not true for the MDS first
followed by GCA method where there was only significant overlap between PR and GE. This difference is a conse-
quence of defining the common subspaces “between” blocks as opposed to “within” each of the blocks. So, while GCA
maximizes correlation in its search for a consensus V , the individual common Zkc end up almost orthogonal for several
blocks.

FIGURE 7 Explained variance of common configurations for the different blocks as well as the total contribution from common

(EVc—dotted) and total (EV—dashed). (A) INDSCAL, (B) MDS first followed by GCA where 20 components were chosen for the MDS stage

for all cases

TABLE 4 Explained variance in example with pharmacogenomics data

INDSCAL with CMDS Proteomics Gene expression Drug response CNA

EVc ¼ 50% 95% 81% 0% 38%

EVd ¼ 27% 4% 10% 97% 21%

Weighted total EV ¼ 76%

MDS first followed by GCA Proteomics Gene expression Drug response CNA

EVc ¼ 41% 7% 85% 62% 28%

EVd ¼ 26% 56% 6% 5% 32%

Weighted total EV ¼ 67%

Norms kGkk2 1.1 1.5 1 3.9

Weights 14% 20% 14% 52%

MDS (10 components) Proteomics Gene expression Drug response CNA

EV ¼ 81% 100% 94% 100% 66%

Note: This table explained variance for each method, and a decomposition along blocks. The largest contribution (see weights at the bottom—these are wk in
15) comes from the explained variance of the CNA block due to the large spread of eigenvalues of this block. This same cause limits the possible EV with a
limited number of common and distinct components. The bottom part of the table gives the explained variance of the MDS stage alone, which limits the values
for the MDS followed by GCA method.
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To conclude that INDSCAL produces “more common” components in terms of correlation is hardly justified, too,
because as mentioned before, successive components are attributed entirely to individual blocks, see Figure 6.

Local common
The focus in the iTop article was on establishing links between data sets using a concept of “partial correlation”. A link
between any two blocks was strong if significant correlation remained after enforcing conditional independence
w.r.t. some other blocks. The aim with such analyses is to come closer to describing causal pathways and the analysis
was beautifully synthesized in a concise graph, see Figure 7 in the iTop article. For our selection of 4 blocks, a strong
link was found between PR and GE; both were linked to DR; and only GE was linked to CNA. The article further pro-
vided a biological interpretation of the importance and foundation of links between PR, GE, and DR.

We saw that when using the INDSCAL with CMDS method, the common subspace in effect disregards DR while
representing a fair amount of all the other blocks. Even restricting the selection of blocks to PR, GE, and DR only cap-
tures a small part of DR using the same parameters as above. While the iTop article showed that there are links
between these three data sets, the axes that connect them are not the same as those identified by extracting common
components with this method. Also, while the overlap in this method is high—the method finds common “between”
blocks and so are shared, which promotes overlap, see Table 1—the way EV jumps for a single block with the inclusion
of new components suggests that in effect each new component is mainly associated with one and not several blocks.
For example, at six common components, the EV for DR increases abruptly while those of the other blocks remain
essentially constant—see Figure 7. This point is not revealed by the overlap between blocks, which was high for this
method. While one could suspect that the focus of this method on explaining variance, see Table 1, were the culprit, we
will see that by using the MDS first followed by SCA, also focusing on EV , there are large components explaining a
significant proportion of PR, GE and DR. A remaining hypothesis explaining the above is the specific distance model
underpinning the INDSCAL method and which may place too strong restrictions.

Optimizing EV is not the culprit
It is interesting to note that MDS first followed by SCA only needed two components to create significant associations,
see Table 6. Furthermore, the overlaps between all blocks were full, which follows from the method. A similar question
is how much the consensus overlaps with each block, and this is given at the bottom of Table 6; this emphasizes how
similar the consensus is to individual blocks. As a method that emphasizes variance, see Table 1, this result suggests
significant components for at least three of the blocks.

Different stories
Tables 4 and 6 appear to tell different stories about the underlying data: the INDSCAL with CMDS method tends to
suggest that there is no strong subspace linking GE and PR with DR, while both MDS first with GCA and SCA both tell
a different story. Furthermore, in the latter, with only two components, the DR is the block that is explained the most.

These stories are further complicated by the fact that MDS first with GCA has low overlap between GE and DR,
suggesting little in common, even though both blocks have large EV , which in turn suggests common information. On
the other hand, INDSCAL with CMDS has high overlap, suggesting “common,” but still effectively associates compo-
nents with blocks, which is closer to a notion of “distinct.” It would appear that MDS first followed by SCA has the
most consistent story in the sense that all blocks have high overlap, that the consensus overlaps with the individual
blocks and three have significant EV .

TABLE 5 Overlap in pharmacogenomics example

MDS first followed by GCA Proteomics Gene expression Drug response CNA

Proteomics 5 2.8 0.4 0.4

Gene expression 5 0.3 0.3

Drug response 5 0.2

CNA 5

Note: Due to symmetry, only the upper-triangular part is filled in. The table shows that there is little overlap between blocks, except for between Proteomics

and Gene expression. Recall that 5 common components are extracted for each block, hence the identical number 5 on the diagonal.
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A final word concerns the overall aim of the analysis of the pharmacogenomics data set. If one wishes to support
the assumption that there exist links between three or more blocks, using the concept of common among these blocks
posits the extra assumption that such a link exists in a common subspace. If data were such that blocks A,B,C only
taken pairwise share subspaces, then it may be so that they collectively share nothing: no vector v exists such that it is
not orthogonal to at least one in the triplet. Such a situation would be better addressed through the notion of local
common, where common subspaces are searched among the set of blocks. As mentioned earlier, this approach is
outside the scope of the present article.

4 | DISCUSSION

In the discussion of various methods for analyzing distance matrices for common and distinct configurations, three
“axes” were identified and placed under the headings of “domain shift,” “variance-correlation tradeoff,” and the
“within-between requirement.” Also, some tools were suggested in Section 2. In the following, the different examples
will be evaluated in terms of these concepts.

4.1 | The notion of common

As noted previously, the consensus is central to the notion of “common” as defined here. We have also seen that by
requiring common subspaces to lie within the spaces of the individual blocks, each block's common subspace may end
up quite dissimilar.

An intuitive definition of “common” is one that places emphasis on correlation in the variance-correlation tradeoff:
“common” is what behaves similarly. This showed benefits in the simulated example in Section 3.2 where a small,
correlated part was identified even though each block contained a much larger distinct part. In the same example, a
method skewed towards variance failed to provide a simple story for the example, by confusing “common” with
“distinct.”

However, the same method which was so powerful in Section 3.2 did not show the same consistency across blocks
in the pharmacogenomics example of Section 3.4 where the common subspaces were virtually orthogonal between sev-
eral of the blocks. The application of INDSCAL to this example explains about as much as the GCA based approach
and it does so in a well-defined subspace (defined by the consensus). However, here too there is a catch: each added
component only improved the approximation of one block at a time, meaning that the components can hardly be con-
sidered common.

The more information of respective blocks is contained in the common configuration, at least when using few
components, the more compact the representation. This is generally a good thing and represents the main motiva-
tion for PCA. As SCA can be considered a generalization of PCA, using it instead of GCA should lead to a more
compact representation, albeit attention must be paid to possible asymmetries in scale least a few blocks dominate.
In effect, in the pharmacogenomics example, this approach seemed to provide the simplest story: with two
components, significant parts were explained in all blocks and the consensus had a high degree of overlap with the
individual blocks.

TABLE 6 Overlap in pharmacogenomics data, MDS followed by SCA

MDS first followed by SCA Proteomics Gene expression Drug response CNA

EVc ¼ 22% 38% 28% 69% 3%

EVd ¼ 29% 20% 32% 4% 36%

Weighted total EV ¼ 51%

Overlap with consensus
(2 components):

1.0 2.0 1.4 1.9

Note: This table explained variance for MDS first followed by SCA with two components for both common and distinct. Overlap between common for all pairs
of blocks was two (full overlap).
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In the sensory example of Section 3.3 an important consideration is noise reduction as it is well known that such
experiments generate noisy data. The focus for these cases is often on methods that “explain” the largest part of the
variance—equivalently minimize residuals. The idea is that the values for each sample are stabilized by noisy contribu-
tions from each block.

4.2 | Within or between?

As discussed in Section 2.2.3, there are two broad approaches to defining the individual common subspaces: either in a
single, common subspace or as a set of distinct subspaces which lie in the range of respective blocks.

The blocks may be replications of an experiment as in the Olive Oil example: a small set of components are assumed
to be noisily expressed by a “large” set of assessors, and this noise may explain the departure from a common subspace.
Hence in such cases, there seems to be little reason for needing individual common subspaces. Actually, in this example
the individual common subspaces were not even considered as these lie within each block and with two components
100% of every block was “explained”. In other words, there was no compression—no synthesis. Hence, the focus on the
consensus.

When blocks come from qualitatively different sources, as in the pharmacogenomics example, the reason for choos-
ing “common” between or within blocks is less clear-cut. We did however see that the MDS first followed by GCA
method, which finds individual common subspaces “most correlated” with each other, extracted subspaces that were
mostly dissimilar.

In Section 2.2.3, we discussed the within-between requirement and argued that the “within” approaches lead collec-
tively to a larger number of dimensions spanning the common scores compared with the “between” methods, at least
when a single parameter mc is used. This effect explained in part the simulated example in Section 3.2 where DISTATIS
assigns two separate common scores (within) rather than being forced to use a single component (between). This dis-
tinction may also be what contributes to the small overlap between common subspaces when using MDS followed by
GCA in the pharmacogenomics example in Section 3.4.

4.3 | Domain shift

The main aim of this article has been to discuss the analysis of common and distinct configurations with regards
to distance matrices. As mentioned, this rests on the body of work already applied to feature matrices and the
most direct manner of exploiting known tools is to first use classical MDS to convert to the feature matrix
domain, and then apply known methods from multiblock analysis. This is exemplified by the MDS first followed
by GCA approach.

There are other approaches that have been investigated and which attempt in varying degrees to perform part of the
analysis directly in the distance domain. Some form of averaging in the distance domain is applied in DISTATIS, and
INDSCAL uses an individually weighted distance model.

While details are different between approaches there are striking similarities between them. The way the consensus
is defined unifies most approaches we have considered as seen in Equation (4) where the eigenvalues of different blocks
are weighted according to method. The convex sum of for instance DISTATIS could have been applied to SCA/GCA for-
mulations. Also, given the limitation to Euclidean distances, all methods resemble a principal component analysis
(PCA) because presented methods attempt a decomposition which should approximate the original Gram matrices. For
the case were a concatenation of the common and distinct configurations, Zk ¼ðZkc,ZkdÞ, we aim for a good
approximation:

γ ∘ κ Zkcð Þþγ ∘ κ Zkdð Þ≈Gk:

where κ calculates squared distances from configurations and γ calculates Gram matrices from these. In the same way,
the principal components Z0

k of a feature matrix Xk may be viewed as such an approximation:
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γ ∘κ Z0
k

� �
≈Gk ¼XkX

T
k :

The limitation to Euclidean distances excludes a broad set of approaches1 where the analogy with PCA is less relevant.
The non-Euclidean case is addressed indirectly in the pharmacogenomics example. There, both the Gene expression
and CNA blocks do not lend themselves to concise compression in the sense of PCA, and the CNA block does not rely
on Euclidean distances given that the components are binary vectors.

4.4 | Measuring overlap

Precisely because the similarity across blocks of common and distinct is such an open issue, an index for assessing the
connections proved helpful. For instance, this was used in the pharmacogenomics example to show how little of com-
mon subspaces were shared across blocks in Table 5, and for the simulated example provided a concise summary of
overlap within and between common and distinct subspaces. In the simulated examples in Section 3.2, it likewise
showed the good performance of the GCA approach and the correspondingly bad performance of the DISTATIS
approach.

4.5 | Selecting approach

As has been shown in this article, the different approaches to common and distinct presented and exemplified
lead to different solutions with potentially significant differences. That such differences exist is natural and follows
from different problem formulations and the properties of solutions. These differences in solutions posed some
challenges in the pharmacogenomics data set. A major issue in practice is therefore to choose the most appropri-
ate method for the actual problem which is not always a simple task. At the present stage of development, it is
hard to give any fully general advice and this article has investigated the methodological choices that would guide
this choice. Furthermore, it is always possible to use different methods to illuminate the problem from different
angles.

5 | CONCLUDING REMARKS

In the field of multiblock analysis, there is a large literature on the extraction of common and distinct components. In
this article, we investigated possible extensions of this work to the domain of distance matrices.

We have analyzed various methods for extracting common and distinct configurations from distance matrices. To
do so, we have proposed a framework for categorizing methods along three axes and which define key design choices:
how the transition from the distance domain to the configuration domain is done; how the methods manage a tradeoff
between explaining variance and emphasizing correlation between subspaces; and finally, whether the common space
is the same for all blocks or separate for each. Several methods have been analyzed within this framework including
DISTATIS and INDSCAL, and these have been summarized in table form.

The issues related to the design choices are illustrated with examples. A simulated example provides a case where
the power of methods emphasizing correlation is demonstrated. A sensory example demonstrates a projective mapping
case where the original data contains distances, and which emphasizes the role of the consensus. Finally, a pharmaco-
genomics data set shows a case where the inputs are general matrix data.

We do not suggest a final “best practice” in part because we believe this will depend on the data itself and on the
objectives of the analysis. However, we do believe the analyses and framework are relevant for understanding some key
properties of methods. The examples were included to illustrate these properties and demonstrated possible pitfalls.
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APPENDIX A: APPENDICES

A.1 | Orthogonalized principal components
The Gram matrix G is a positive semidefinite matrix. As shown in Rao,15 it is possible to find eigenvectors and eigen-
values of G which are subject to orthogonality constraints:

VTV ¼ I^VTC¼ 0,

max
V

X
i
vTi Gvi ¼

X
i
λi,

where vi is the ith column of V . These eigenvectors and values are those of the following matrix:

I�C CTC
� ��1

C
� �

G

and may be calculated using a symmetric formulation. The resulting eigenvectors are transformed back to those of
the above expression:

UΛUT ¼G1=2 I�C CTC
� ��1

CT
h i

G1=2

V ¼ΓG�1=2U

where Γ is diagonal with values γii ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uT
i G

�1ui

q
. With respect to CMDS where G is the outer product of the con-

figuration (G¼XXT), V forms an orthonormal sequence which maximizes the following sum under constraints of rank
(q) and orthogonality with C:

Xq

i¼1
vTi XX

Tvi ¼
XN

j¼1

Xq

i¼1
vTi xj
� �2 ¼XN

j¼1
VTxj

�� ��2 ¼XN

j¼1
VVTxj

�� ��2 ¼ VVTX
�� ��2:

This means that V maximizes the norm of the projection of X . Let Y ¼VVTX , one consequence of the above is that
Y is not necessarily contained in the space spanned by X . As an example, consider the RðXÞ a slanted plane in 3D space
and RðCÞ the z-axis. Then the principal components span the x-y plane, and Y is the projection of X onto this plane.

The above can be used for a constrained MDS approach (CMDS):

Zd ¼CMDS D,md,Zcð Þ¼VΛ1=2,

where G¼ γðDÞ, md is the dimension of the distinct subspace, Λ is the diagonal matrix with the above eigenvalues
and Zc are the common scores and used for C.
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A.2 | Direct SCA
A “direct” version of SCA can be formulated as

min
V ,Pk

X
k

Gk�VPT
k

�� ���� ��2:

The solution to the consensus V is here given by the eigenvalue problem:

VΛVT ¼
X

k
GkG

T
k ¼

X
k
V kΛkV

T
k

� �
V kΛkV

T
k

� �T ¼X
k
V kΛ2

kV
T
k :

We observe that the value of α is in this case 2.
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