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ABSTRACT 9 

Despite advances in computer vision and segmentation techniques, the segmentation of food 10 

defects such as blood spots, exhibiting a high degree of randomness and biological variation in 11 

size and coloration degree, has proven to be extremely challenging and it is not successfully 12 

resolved. Therefore, in this paper, we propose an approach for robust automated pixel-wise 13 

classification for segmentation of blood spots, focusing specifically on challenging texture-14 

uniform cod fish fillets. A multimodal vision system, described in this paper, enables perfectly 15 

aligned RGB and D-depth images for localization of segmented blood spots in 3D. 16 

Classification models based on 1) Convolutional Neural Networks - CNN and 2) Support Vector 17 

Machines - SVM for the classification of defective fillets were developed. A colour-based, 18 

pixel-wise and SVM-based model was developed for accurate segmentation and localisation of 19 

blood spots resulting in 96% overall accuracy when tested on whole fillet images. Classification 20 

between normal and defective fillets based on GPU (Graphical Processing Unit) -accelerated 21 

CNN classification model achieved 100% accuracy, versus the SVM-based model achieving 22 

99%. We present a novel data augmentation approach that desensitizes the CNN towards shape 23 

features and makes the CNN to focus more on colour. We show how pixel-wise classification 24 
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is used for an accurate localization of blood spots in 3D space and calculation of resulting 3D 25 

gripper vectors, as an input to robotic processing. 26 

  27 

Keywords: Image Segmentation; RGB-D image; Robotics; Support Vector Machines; Deep 28 

Convolutional Neural Networks; Data Augmentation. 29 

 30 

1. Introduction 31 

Blood spots and discolouration resulting from inappropriate bleeding are detrimental to fillet 32 

flesh quality [1]. The visual effect of residual blood in fillets reduces consumer acceptance and 33 

the market value of the product. Currently, fillets with blood spots are manually sorted and 34 

trimmed to remove parts that are discoloured due to the presence of blood. The industry requires 35 

a robust, rapid, non-invasive and cost-efficient method for the effective discrimination of 36 

normal and defective fillets, which automatically segments and localises blood spots using 37 

image technologies. Blood spot segmentation is a scientific challenge that remains unresolved 38 

despite recent developments in image-based segmentation techniques. Image-based 39 

segmentation continues to be a very challenging problem, and is highly application dependent 40 

[2]. The segmentation of blood spots in fillet muscle tissue falls into the category of hard-to-41 

solve challenges due to high levels of randomness, high variation in colour, spectral similarity 42 

of blood spots with other similar defects and inherent biological variation encountered in 43 

biological raw materials. For this reason, addressing this challenge with a cost-efficient 44 

multimodal imaging system has great value, both generically and in terms of practical 45 

application. While recent imaging techniques, combined with machine learning [3-5, 6, 7], have 46 

been shown to be efficient tools for food quality assurance, it is also shown that food 47 

applications and recognition are challenging topics in computer vision [8].  48 

Blood spot detection and segmentation in raw material has proved to be very challenging to 49 
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automate. Mertens et al. [9] performed a spectral characterisation of egg shells to detect blood 50 

spots and concluded that brown pigments and other discolouration of the shells interfere with 51 

the peak detection of blood (at 577 nm) and thus makes the detection of blood spots challenging. 52 

Balaban et al. [5] developed an image analysis method to quantify gaping and bruising, and the 53 

presence of blood spots, observed on salmon fillets, by adaptively applying an L (Lightness) 54 

threshold value. The authors suggested that a robust blood spot detection system was required, 55 

based on a specifically tailored classification algorithm. Although popular due to their 56 

simplicity [10], image thresholding segmentation methods using traditional histogram-based 57 

thresholding cannot separate areas exhibiting high similarity in grey scales not belonging to 58 

same regions.  59 

Image segmentation still remains an important area of research in the field of computer 60 

vision [2], and several approaches and methods have been proposed to solve this generic 61 

problem. These approaches are categorised according to methodology: histogram thresholding 62 

methods, clustering methods, edge detection, region methods and graph methods [2, 10 and 11]. 63 

For biological raw materials, image segmentation approaches are extremely application 64 

dependent. Image structure and information exhibit high levels of variation and randomness, 65 

making the segmentation operation even more challenging. Sometime, as in the case of cod fish 66 

fillets, the high degree of uniformity of texture of the fillet muscle image is a disadvantage and 67 

disabling factor in, for example, including texture alongside the colour as features to be used 68 

for development of robust segmentation approaches.   69 

A prerequisite for an effective automated system is that following trained learning, it must 70 

be able to classify objects into respective class categories based on features detected on images. 71 

The selection of the appropriate classification algorithm is, therefore, key to this process. The 72 

most commonly used classification approaches for generic non-food and food related 73 

applications are a) statistics-based, and b) those based on Neural Networks (NN). In recent 74 
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years, Support Vector Machines (SVMs) [12] have emerged as powerful classification 75 

algorithms for food applications due to their excellent performance in a variety of quality 76 

inspection tasks [13] as it can be used to solve both classification and regression problems.  77 

SVM classification algorithms has already been successfully used in several food applications 78 

such as prediction of product quality in industrial bakery processes, prediction of beef 79 

tenderness using image colour and texture features [14, 15].  Du and Sun [16] used low 80 

dimensional colour features and support vector machine algorithm to perform an automated 81 

classification of pizza sauce spread achieving 96.6% classification accuracy on the test set. The 82 

concept of deep learning is also emerging as a powerful machine learning method that allows 83 

computational models composed of multiple processing layers to learn representations of data 84 

containing multiple levels of abstraction and has dramatically improved the state-of-the-art of 85 

visual recognition applications [17]. Kagaya et al. [18] used a convolutional neural network for 86 

recognizing food images and they observed that the network achieved significantly better 87 

performance accuracy (93.8 %) than the baseline method (89.7%). In deep learning, data 88 

augmentation [19] is important since in practice the amount of available data for training the 89 

network is limited. Therefore, data augmentation procedure must be performed correctly so that 90 

transformations performed in the image does not change the image class.  91 

3D image information is valuable in applications involving robotic processing of food and 92 

calculation of respective gripper vectors, containing the pose information for the gripper, is 93 

necessary in such applications [20]. Misimi et al. [20] demonstrate how 3D information from 94 

the Kinect v2 RGB-D camera is used to calculate the correct grasping point for 3D vision based 95 

robotic harvesting of chicken fillets. 96 

The main research objectives of this study were: a) to develop a robust, colour-based pixel-97 

wise classification algorithm for blood spot segmentation in fillets as an example of objects 98 

with high intra-class variance when it comes to size, colour and localization of blood spots, b) 99 
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to develop a model for accurate classification of normal and defective fillets, c) to develop an 100 

approach for perfectly aligned RGB-D images that can make use of pixel-wise classification 101 

for accurate localization of blood spots in 3D and calculation of gripper vectors for robotic 102 

processing; d) to acquire a deeper understanding and visualisation of how changes in SVM 103 

hyperparameters influence pixel-wise classification in general and blood segmentation in 104 

particular, and e) to exploit the capabilities and acquire deeper understanding of CNN for 105 

classification of cod fillets as an example of food objects and appropriateness of current data 106 

augmentation techniques for such applications.  107 

To the best of our knowledge, no work has been published on the automated segmentation 108 

of blood spots or similar defects in food objects based on perfectly per-pixel aligned RGB-D 109 

images and robust pixel-wise classification and localisation in 3D space. Contribution on 110 

visualizing the effects of change of SVM parameters in resulting classification and 111 

segmentation accuracy is also original. This paper investigates the application of CNN-based 112 

deep learning classification in food sorting applications. For this reason, the knowledge 113 

obtained by means of this study on the use and understanding of deep learning for raw food 114 

material classification is original. The data augmentation approach used to reduce the sensitivity 115 

of the CNN approach in terms of shape and increased colour sensitivity is also novel.  116 

The rest of the paper is organized as follows: in materials and methods section we describe 117 

the collected datasets, multimodal vision system overview, and the approach for classification 118 

and segmentation of blood spots. In results and discussion section, we show in detail our results 119 

and discussion regarding the CNN and SVM classifications model, we visualize and discuss 120 

the effect of SVM hyperparameters in actual pixel-wise classification and segmentation of 121 

blood spots and we calculate the 3D gripper vectors for robotic processing. In future work 122 

section are given some solid future research directions, and finally in conclusion section, we 123 

draw some final conclusions. 124 
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2. Materials and methods 125 

2.1. Sample preparation: Fish fillets taken from farmed Atlantic cod (Gadus morhua) were 126 

differentiated by a qualified human inspector into two categories: a) normal (n=33), and b) 127 

defective (d=32), with mean length 48.5 cm ± 5.8 cm. They were subsequently shipped from 128 

the Norway Seafoods (Melbu, Norway) fish processing company to SINTEF SeaLab in 129 

Trondheim where they were stored at 4oC prior to imaging. 130 

2.2. Computer vision system used to acquire the image dataset 131 

Currently existing vision cameras such as 3D SICK IVP ColorRanger, or RGB-D Kinect v2 132 

don't generate aligned RGB and D-depth images. This is very often a drawback when 133 

combination of both RGB and D-depth information is needed for accurate localization of 134 

regions of interest and defects in 3D space for robotic applications [21]. The multimodal vision 135 

system in this paper consisted of a colour imaging line scan CMOS camera, Grasshopper 3 136 

(GS3-U3-23S6CC, Point Grey, Canada), with a USB 3.0 interface, enabling aligned RGB and 137 

3D images. The Region of Interest (ROI) used for imaging the fillets was 1376 x 64, with an 138 

exposure time of 500µs.  The working distance to the camera was 54 cm and the tilt angle was 139 

17 degrees. Each fillet was placed on a conveyer belt for image acquisition. A laser emitting a 140 

100 mW red uniform laser line at 660 nm wavelength, with a fan angle of 30 degrees, was used 141 

in triangulation mode to acquire 3D and reflectance images of the cod fillets. White illumination 142 

used to acquire RGB images was provided by a flexible white LED strip, with colour 143 

temperature of 4000K and colour rendering index RI larger than 75. To enable simultaneous 144 

acquisition of RGB and 3D fillet images using the same camera, the LEDs strips and the laser 145 

were triggered alternately for every other frame. The resulting RGB and 3D images used for 146 

developing of classification models for segmentation of blood spots had a 2650x1317 147 

resolution. 148 

  2.3. Image pre-processing and feature extraction  149 
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2.3.1 Colour calibration of the RGB images: A Gretag Macbeth colour checker with 24 patches 150 

(from Color-Science AG, Hinwil in Switzerland) was used to perform subsequent colour 151 

calibration of images in RGB space using the provided reference sRGB values (from X-Rite, 152 

Munich in Germany). The colour correction matrix was calculated by finding the least squares 153 

solution that minimises the error between the mean of the measured RGB values of each patch, 154 

and the corresponding reference sRGB value. The 4 x 4 colour correction matrix A was found 155 

by calculating; 156 

                                                         min
𝐴𝐴
‖𝐴𝐴𝐴𝐴 − 𝐴𝐴∗‖                                              (1) 157 

where C is a matrix containing the measured RGB mean values for all the 24 colour checker 158 

patches 159 

                                                 𝐴𝐴 = �

𝑅𝑅1 𝑅𝑅2 ⋯ 𝑅𝑅24
𝐺𝐺1 𝐺𝐺2 ⋯ 𝐺𝐺24
𝐵𝐵1 𝐵𝐵2 ⋯ 𝐵𝐵24
1 1 ⋯ 1

�                                     (2) 160 

and C* is a matrix containing the correct reference RGB-values for the corresponding patches 161 

                                                𝐴𝐴∗ = �

𝑅𝑅1∗ 𝑅𝑅2∗ ⋯ 𝑅𝑅24∗
𝐺𝐺1∗ 𝐺𝐺2∗ ⋯ 𝐺𝐺24∗
𝐵𝐵1∗ 𝐵𝐵2∗ ⋯ 𝐵𝐵24∗
1 1 ⋯ 1

�                                     (3) 162 

2.3.2 Pre-processing, segmentation and colour spaces 163 

Figure 1 shows a flowchart of the processing operations that resulted in the images that were 164 

used for feature extraction and training of the classification models. The 3D image was used to 165 

generate a binary mask which in turn was used with the colour-calibrated image to segment the 166 

cod fillets from their background. The RGB fillet images were converted to CIELab colour 167 

space by first converting the RGB images to an XYZ matrix system according to the following 168 

equation [22]: 169 

                                          �
𝑋𝑋
𝑌𝑌
𝑍𝑍
� = �

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1193 0.9505

� �
𝑅𝑅
𝐺𝐺
𝐵𝐵
�                                   (4) 170 
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and then by calculating the L, a and b values, resulting in L, a, and b image channels, as shown 171 

in Figure 2. Conversion between RGB and HSV colour spaces was performed according to the 172 

expressions found in [22] (Fig. 2). The ∆𝐸𝐸 image (Figs. 1 and 2) in the CIELab colour space 173 

was calculated for every pixel in the image as the value of the difference between that pixel's 174 

Lab colour and the average Lab value for the entire fillet according to the formula: 175 

                             ∆𝐸𝐸 = �(𝐿𝐿𝑚𝑚 − 𝐿𝐿𝑖𝑖)2 + (𝑎𝑎𝑚𝑚 − 𝑎𝑎𝑖𝑖)2 + (𝑏𝑏𝑚𝑚 − 𝑏𝑏𝑖𝑖)2                                (5) 176 

where 𝐿𝐿𝑚𝑚, 𝑎𝑎𝑚𝑚, 𝑏𝑏𝑚𝑚 are mean values for the entire fillet, while 𝐿𝐿𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 are values for each i-177 

pixel of the fillet image. 178 

 179 

Figure 1. RGB and 3D images of an example fillet and the sequence of computer vision operations used to 180 

generate images, features, and the ground truth used for training of the classification algorithms. RGB pixel 181 

values of the normal muscle are higher (lighter colour) than the pixel values of the blood spots (dark colour).  182 

2.3.3 Ground truth 183 

In order to facilitate supervised learning of the pixel-wise classification models for blood spot 184 

segmentation, a set of ground truth images were generated by manual labelling the blood spot 185 

regions according to the following procedure: 1) A trained human inspector had previously 186 

provided input as to what constituted a blood spot in the form of labels attached to each fillet; 187 

2) Prior to imaging in the lab, we noted for each fillet the localisation and size of the blood 188 
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spot(s); 3) All this information was available to the researcher who performed manually the 189 

final ground truth labelling on images, marking manually the boundaries of the blood spots. In 190 

this way, a two-level validation of blood spots (steps 1 and 2 above) was completed prior to 191 

establishment of the final ground truth. As a result, all images were manually labelled and 192 

subdivided into regions belonging to three categories (Fig. 1): 1) background (black), 2) normal 193 

fillet muscle tissue (grey) and 3) blood spots (white). Manual labelling as a means of facilitating 194 

supervised learning is a well-known technique used in the development of automated 195 

classification models [10]. 196 

  197 

 198 

2.3.4 Hand-engineered feature extraction for SVM classification 199 

Feature extraction is a key success criterion during the design of a pattern recognition system. 200 

It requires that features are extracted that exhibit the most distinctive characteristics from 201 

among different classes [8]. Hand-engineered features are traditionally engineered features 202 

(hand-crafted), which are used in training the traditional classifiers as opposed to learned 203 

features in deep learning which are automatically learned by the network [17]. Feature 204 

extraction was carried out with a view to performing a two-fold classification involving a) 205 

discrimination between normal and defective fillets, and b) a pixel-wise classification for blood 206 

spot segmentation and localisation. We selected features that were not only of direct relevance 207 

to the application but also rapidly computable. Table 1 shows a complete list of the features 208 

that were extracted for this study. In the case of discriminating between normal and defective 209 

fillets, so-called 𝐹𝐹𝐴𝐴𝑚𝑚 features represent mean colour values extracted from the fillet image, 210 

while for blood spot detection and localisation, the pixel-level features 𝐹𝐹𝐴𝐴𝑖𝑖 shown in Table 1 211 
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were extracted for each pixel of the image in question (Fig. 2).  212 

Figure 2. Fillet images displayed in different colour spaces used for the extraction of features for discrimination 213 

and blood segmentation and localisation in 3D space. 3D – 3D image, R-Red channel of RGB, G-Green channel 214 

of RGB, B-Blue channel of RGB, L-lightness channel of Lab, a-redness channel of Lab, b-yellowness channel of 215 

Lab, Hab-Hue channel of HSV, ΔE-Delta E. 216 

 217 
Extraction of the R, G, B, L, a, b, Hue, Chroma parameters and ∆𝐸𝐸 colour means (Table 1) and 218 

pixel-level features is carried out according to the methods and formulae reported in [23], while 219 

Whiteness was defined as 𝑊𝑊 = 𝐿𝐿 − 3𝑏𝑏. The mean value 𝐹𝐹𝐴𝐴𝑚𝑚 for a single colour plane was 220 

defined by 221 

                                                   𝐹𝐹𝐴𝐴𝑚𝑚 = 1
|𝑆𝑆|
∑ 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆                                                         (6) 222 

 where C is the MxN image matrix (M-rows, N-columns) containing all pixel values of a single 223 

colour plane (channel) in the particular colour space, and S is the set of index pairs (i, j) for all 224 

pixels covering only the fillet image. As is seen in Figures 1 and 2, an S-set of index pairs was 225 

generated from the binary mask and used to segment the fillet from its background. 226 

 227 

 228 

 229 
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Table 1. Extraction of the feature set for operation 1) discrimination between normal and defective 230 

fillets and 2) the pixel-wise classification for blood segmentation. Feature selection is according to the 231 

Fisher's Discriminant Ratio (FDR) criterion. 232 

Feature Set Normal vs defective  Pixel-wise classification FDR Feature 
Ranking 

R-Red  187.5±5.7 169.4±11 R(i,j) pixel level feature 2.1586 B 

G-Green 158.3±7 132.6±10.1 G(i,j) pixel level feature 4.3171 G 

B-Blue 133.6±5.4 111.6±7.5 B(i,j) pixel level feature 5.6669 L 

L-Lightness 83.7±1.3 78.4±2.4 L(i,j) pixel level feature 3.8467 W 

a-redness 3.25±1 5.8±1.4 a(i,j) pixel level feature 2.0667 R 

b-yellowness 9.5±0.9nsd 10±1.1nsd b(i,j) pixel level feature 0.1197 a 

H-Hue 71.1±6.6 60.1±7.8 H(i,j) pixel level feature 1.1975 ΔE 

C-Chroma 10.2±0.8 11.7±0.9 C(i,j) pixel level feature 1.6860 C 

W-Whiteness 55.1±2.7 48.2±2.8 W(i,j) pixel level feature 3.0314 H 

ΔE-Delta E 5.4±0.3 6.6±0.8 ΔE (i,j) pixel level feature 1.8864 b 
nsd - not significantly different 233 

2.3.5 Feature selection 234 

Feature selection is a sorting procedure that, for a given set of extracted features, consists of 235 

choosing the most important features (to reduce numbers) while at the same time also retaining 236 

those that display the maximum amount of discriminatory information [24, 25]. One of the 237 

main reasons why feature selection is required is to increase the generalisation properties of the 238 

classification model. It has been shown that in industrial applications where the acquisition of 239 

large datasets is an expensive business [26, 27], the ratio T/l between the available samples in 240 

a dataset T, and the number of features l used to train a model, is directly proportional to the 241 

generalisation properties of the model. The higher the T/l ratio, the better the generalisation 242 

properties of the model [25]. The so-called classifier error estimate improves as this ratio 243 

becomes higher and, in [27], it is suggested that this ratio should be as high as 10 to 20 for 244 

some applications. The first step of the feature selection procedure is based on a statistical 245 

hypothesis testing technique looking into whether there was a significant difference in values 246 
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(P<0.05) for the feature in question for the different classes [25]. Subsequently, we ranked these 247 

features according to a ‘class separability parameter’. In this case, we selected the Fisher's 248 

Discriminant Ratio (FDR), which is commonly employed to quantify the discriminatory power 249 

of individual features between two classes, and which for a scalar feature y in a 2-class 250 

classification problem is defined as [25]: 251 

                                                           𝐹𝐹𝐹𝐹𝑅𝑅 = (𝜇𝜇1−𝜇𝜇2)2

𝜎𝜎12+𝜎𝜎22
                                                          (7) 252 

where 𝜇𝜇1, 𝜇𝜇2  are the mean values of feature y, while 𝜎𝜎12,  𝜎𝜎22  represent the variances of y in the 253 

respective classes (normal and blood). In the equation (7), (𝜇𝜇1 − 𝜇𝜇2)2 is the between-class 254 

variance, and 𝜎𝜎12 + 𝜎𝜎22 the within-class variance.  255 

2.3.6 Feature scaling 256 

We performed a Min-Max feature scaling to ensure that all feature values were scaled to a fixed 257 

range [0, 1] according to the following expression:  258 

                                                      𝑋𝑋𝑖𝑖 = (𝑋𝑋𝑖𝑖−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚)(𝑈𝑈𝑥𝑥−𝐿𝐿𝑥𝑥)
(𝑋𝑋𝑚𝑚𝑚𝑚𝑥𝑥−𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚)+𝐿𝐿𝑥𝑥

                                      (8) 259 

where 𝐿𝐿𝑥𝑥,𝑈𝑈𝑥𝑥 are the lower and upper limits [0, 1], and 𝑋𝑋𝑚𝑚𝑚𝑚𝑥𝑥 and 𝑋𝑋𝑚𝑚𝑖𝑖𝑚𝑚 the maximum and 260 

minimum feature values respectively. Feature scaling is important since, during the training of 261 

an SVM classifier for feature values with different dynamic ranges, larger feature values may 262 

exert a bigger influence in the cost function than those with smaller values [25]. 263 

2.4. GPU accelerated deep learning 264 

Deep learning is a branch of machine learning that allows computational models that are 265 

composed of multiple processing layers to learn representations of data with multiple levels of 266 

abstraction and has in recent years brought dramatic improvements in the visual recognition 267 

area [17]. The advent of GPU computing has enabled training in connection with deep learning 268 

neural networks to become up to 10 or 20 times faster. In fact, although machine learning and 269 

neural networks have been utilised for decades, two relatively recent trends have been required 270 

to spark their widespread use – the availability of massive volumes of training data, and the 271 
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emergence of powerful and efficient parallel computing tools provided by GPU computing (of 272 

NVIDIA, Santa Clara in the USA). Of particular interest for vision-based applications are the 273 

so called Convolutional Neural Networks (CNNs), which are inspired by the visual cortex and 274 

subsequently tailored for computer vision [28]. CNNs are designed to process data input in the 275 

form of multiple arrays, such as RGB colour images containing three two-dimensional arrays 276 

(rows and columns) of pixel intensities for Red (R), Green (G), and Blue (B) channels [17]. 277 

CNNs can learn a hierarchy of features automatically by convolving the input image with 278 

learned filters to build a hierarchy of feature maps in which each map is a rectangular image 279 

[17]. In our study, we used the pre-trained AlexNet 12 [29] for the processing of RGB images. 280 

The architecture of AlexNet consists of five convolutional layers each followed by a rectified 281 

linear unit (ReLU) layer, brightness or contrast normalisation and overlapping pooling. The 282 

convolution layer is the core building block of AlexNet and consists of a set of learnable 283 

convolution filters. These filters are small in size and are slid across the RGB input image to 284 

produce a 2D array feature map representing a particular feature extracted at all locations [28]. 285 

For l-convolutional layers, the input image or a feature map of the previous layer is convolved 286 

using different filters to produce the respective output feature map of the first layer. The ReLU 287 

layer consists of rectifier activation functions in the form 𝑟𝑟(𝑧𝑧) = 𝑚𝑚𝑎𝑎𝑚𝑚(0, 𝑧𝑧), where 𝑧𝑧 is the 288 

input to a neuron. The r(z) parameter is actually a ramp function and is currently the most 289 

popular activation function for state-of-the-art deep neural networks [29]. It enables faster and 290 

more effective training of deep neural architectures on large and complex datasets, and as such 291 

is more effective than traditional sigmoid and hyperbolic tangent activation functions [30]. To 292 

reduce overfitting, the method referred to in [29] used so-called ‘dropout’ as a regularisation 293 

technique. Dropout is a powerful regularisation technique proposed by Hinton et al. [31], and 294 

developed based on observations of the human brain. It operates by means of setting individual 295 

outputs in a hidden layer to zero with a probability of 0.5. The neurons that are "dropped out" 296 
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do not contribute to the forward pass and do not participate in backpropagation.  297 

2.4.1 Data augmentation approach for fine-training of AlexNet 298 

The performance of deep neural networks is greatly improved by having large training datasets, 299 

since this is one of the most efficient methods to reduce overfitting of image data. In industrial 300 

food processing applications, the acquisition of large datasets is challenging and costly [26], 301 

and one of the most inexpensive ways to expand available image datasets is to enlarge them 302 

artificially using label-preserving transformations [29] as part of a process known as data 303 

augmentation. This allows expansion of the datasets by applying different transformations to 304 

the original images. In our study, a set of augmentations were applied repeatedly and at random 305 

to each image in order to obtain an artificially larger dataset. Before any of these augmentations 306 

were implemented, the background to each fillet image was carefully removed by setting the 307 

background pixels to black. The images were then padded out to be square, and then centred 308 

according to the centroid point of the non-black pixels. The black border pixels were then set 309 

to assume the mean colour of the fillet. This is also carried out in case of transformations that 310 

cause border pixels to enter the image (e.g. rotations). The following augmentations were 311 

applied to our original dataset: Flipping: flipping was applied (Figs. 3a, b, c) according to a 312 

binary Bernoulli distribution. The image was flipped conditionally about the horizontal, vertical 313 

or both axes. Scaling: the image was scaled (Fig. 3d) randomly within the log-uniform range 314 

[1/1.6, 1.6]. Each axis was scaled independently. Rotation: the image was rotated (Fig. 3e) 315 

within the range [0, 360] degrees about its centre using a uniform probability distribution. Shear 316 

image: shear (Fig. 3f) was applied within the range [-30, 30] using a uniform probability 317 

distribution. Translation: translation (Fig. 3g) was applied within a [-25, 25] pixel range, which 318 

is approximately +/- 10% of the image width and height. As with the scaling, each axis was 319 

determined individually according to a uniform distribution. Smoothing: to smooth out the 320 

edges where the fillet meets the background, a Gaussian smoothing filter (σ = 10) was applied 321 
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(Fig. 3h) on each channel separately. This is not an augmentation per-say, but is performed prior 322 

to the next augmentation step which consists of adding Gaussian noise to the image. An 323 

additional function involved in this operation was to reduce edge detection of the fillets’ outer 324 

shape contour.  Gaussian noise: Once the previous augmentations were applied at random, 325 

Gaussian noise was added to each channel (Fig. 3i). Gaussian noise has zero-mean, and a 326 

variance of 0.5. The noise was scaled according to the principal component directions of the 327 

image. The data augmentation described above resulted in a dataset containing 21,775 samples 328 

with more than 10,000 samples in each class. All images in the augmented dataset were RGB  329 

 330 

images of 256 x 256 pixel resolution, as required by the AlexNet deep learning model. The 331 

dataset was labelled to enable supervised training. In fact, a total of 15,327 images were used 332 

Figure 3. Fillet image transformations as part of data augmentation of the original dataset: a) Fillet 
image; b) flipped image c) randomly flipped imaged; d) Log-uniform scaled fillet image; e) randomly 
rotated fillet image; f) shear transform of the fillet image; g) translation of the image; h) image 
smoothing with a Gaussian filter; i) added Gaussian noise to the fillet image. 
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for training while approximately 25% (5,108) were retained for validation. The remaining 1,340 333 

images (670 in each class) were set aside for testing. The training based on our datasets was 334 

implemented in NVIDIA's DIGITS 2.2 platform for deep learning (from Nvidia, Santa Clara in 335 

the USA) on a PC running on Ubuntu, a debian-based Linux operating system. DIGITS 2.2 336 

integrates the Caffe deep learning framework (developed by UC Berkley, USA) and supports 337 

GPU acceleration using the CuDNN library to massively reduce training time. The CuDNN 338 

library is a collection of GPU-accelerated primitives designed for the CNNs and facilitates 339 

implementation of CNN routines such as convolution, pooling, softmax, and neuron activations 340 

(sigmoid, ReLU, and tanh). DIGITS 2.2 includes automatic multi-GPU scaling, and in our study 341 

we used a GeFORCE GTX 780 Titan GPU processor (from Nvidia, Santa Clara in the USA) 342 

with a 3 GB memory. AlexNet was trained for 30 epochs. In our study, fine-training of the 343 

AlexNet, generation of the classification model and validation for a dataset containing 21775 344 

images, took approximately one hour. 345 

2.5. SVM model selection and training for classification and pixel-wise segmentation 346 

Support vector machines (SVMs) represent powerful classification algorithms that are 347 

relatively insensitive to dimensionality, exhibit excellent performance in general terms, and are 348 

suitable for working with high dimensional data [25]. SVM have emerged as powerful 349 

classification algorithms for various applications due to their excellent performance in a variety 350 

of quality inspection tasks [12, 13]. Since there is no prior knowledge of which SVM parameters 351 

are best suited to a given application, it is necessary to perform a parameter search to select the 352 

optimal model. C-SVM is a SVM modality that uses C as a regularisation parameter, and Radial 353 

Basis Function (RBF) kernel is the first choice due to the ability to nonlinearly map the samples 354 

into a higher dimensional space [32]. When using a C-SVM with a RBF kernel, there are two 355 

parameters that require tuning – the penalty parameter C, and the free kernel parameter γ. 356 

Several methods can be used to perform the parameter search [33]. This procedure is usually 357 
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performed by dividing the labelled training set D at random into K folds, i.e. K-disjoint sets of 358 

equal size (n/m), where n is the total number of samples used for training and m is the total 359 

number of samples in the validation set. In K-fold cross-validation, one of the folds is used as 360 

a validation set, while the remaining K-1 folds are used for training and the holdout approach 361 

repeated K times (folds) [34, 35]. The benefits of using K-fold cross-validation are that the 362 

validation folds are independent [36] which minimises the impact of data dependency [37]. The 363 

leave-one-out (LOO) cross-validation [34] takes this to the extreme by validating a single 364 

sample at a time until every sample has been used. LOO is often computationally expensive 365 

and is thus rarely used in practice. In this study, a 10-fold stratified cross-validation approach 366 

was employed. The folds were stratified so as to contain approximately the same proportions 367 

of labels as the original dataset. A stratified cross-validation also ensures that each class is 368 

equally distributed across all random splits. In this paper, a split of 80 training and 20 validation 369 

sets has been applied.  370 

In terms of parameter selection for the SVM algorithm, it is possible to perform an 371 

exhaustive search by attempting all parameter combinations within a certain region with a 372 

defined spacing. This approach is known as a grid search algorithm [38]. Other, more advanced 373 

methods of hyperparameter optimisation exist in which the search is directed intelligently 374 

through sequential steps based on randomly chosen trials [39]. Since SVM algorithms exhibit 375 

a low number of hyperparameters, an exhaustive search is therefore perfectly feasible from a 376 

computational standpoint, especially if the search is performed in parallel [33]. We selected a 377 

grid search strategy for the RBF kernel function which involved selecting the optimal parameter 378 

pairs within the following ranges: C= [2−25 … 2230] and γ = [2−25 … 2230][33] . The 379 

exhaustive grid search used in this paper was evaluated at a fine-grained exponential scale 2𝑥𝑥 380 

with a step size of 1. We also performed a wide exhaustive grid search in the range 𝐴𝐴 =381 

[2−150 … 12150] and 𝛾𝛾 = [2−75 … 230] on an exponential scale of 2𝑥𝑥 with a step size of 5. The 382 
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parameter pair (C, γ) that maximised the prediction rate after completion of a 10-fold stratified 383 

cross-validation was chosen and used to train a model using the full training set, as 384 

recommended in [33]. This model was then used to evaluate the final performance of the 385 

validation set. All image processing steps, training, and validation were performed using a 386 

desktop PC with an Intel-Core i7-4770K processor (from Intel, Santa Clara in the USA) and an 387 

8MB cache and processor speed of 3.9 GHz, 16 GB RAM (DDR3), and GTX 780 (from 388 

NVIDIA, Santa Clara in the USA) GPU processor with 3GB RAM. 389 

2.6. Performance evaluation 390 

The performance metric used for evaluation of the classification algorithms was overall 391 

accuracy, while for the pixel-wise classification we also used the parameters True Positive rate 392 

- TPR, True Negative rate-TNR, as well as the CPU time used to segment a single fillet image 393 

and the segmentation error rate - ER [10] to evaluate the performance of blood segmentation. 394 

ER is defined as the ratio between the mis-classified image pixels over the total image pixels: 395 

                                                                    𝐸𝐸𝑅𝑅 = 𝑁𝑁𝑓𝑓+𝑁𝑁𝑚𝑚
𝑁𝑁𝑡𝑡

x100%                                               (13) 396 

where 𝑁𝑁𝑓𝑓 is the number of false-detection image pixels, 𝑁𝑁𝑚𝑚 is the number of miss-detection 397 

image pixels, and 𝑁𝑁𝑡𝑡 is the total number of image pixels [10].  398 

3. Results and Discussion 399 

3.1. Computer vision and feature selection 400 

The flowchart of image pre-processing steps for fillet images for classification and feature 401 

extraction is shown in Figure 1, with the resulting images in Figure 2. A distinct colour feature 402 

set was built up based on feature extraction consisting of a) average fillet colour values in 403 

several colour spaces – 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟 = {𝑅𝑅𝑖𝑖, 𝐺𝐺𝑖𝑖,  𝐵𝐵𝑖𝑖, 𝐿𝐿𝑖𝑖 ,𝑎𝑎𝑖𝑖,  𝑏𝑏𝑖𝑖,𝐻𝐻𝑖𝑖 ,𝐴𝐴𝑖𝑖,  𝑊𝑊𝑖𝑖,∆𝐸𝐸𝑖𝑖 } , where i is the fillet 404 

sample number in the dataset; and b) pixel-level colour features (Figure 2)                                                     405 

𝑃𝑃(𝑖𝑖𝑖𝑖) = (𝑅𝑅𝑖𝑖𝑖𝑖,𝐺𝐺𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑖𝑖𝑖𝑖, 𝐿𝐿𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖,𝐻𝐻𝑖𝑖𝑖𝑖 ,𝐴𝐴𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑖𝑖𝑖𝑖,𝛥𝛥𝐸𝐸𝑖𝑖𝑖𝑖), for a pixel at the location (i,j) in a MxN 406 

image. Subsequent to application of the FDR, the features were ranked according to their 407 
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class separability. The FDR scores are summarised in Table 1. The highest FDR scores were 408 

recorded for the B-blue feature values from the fillet RGB image, G-green feature values from 409 

the RGB image, and L-lightness feature values from the CIELab image. B, G, and L proved to 410 

be the most informative and most important features, resulting in the following feature 𝑅𝑅3 411 

space for a) classification between normal and defective fillets – 𝐹𝐹𝐴𝐴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑟𝑟 = {𝐺𝐺𝑖𝑖,  𝐵𝐵𝑖𝑖,𝐿𝐿𝑖𝑖} ; and 412 

b) pixel-wise classification for blood spot segmentation 𝑃𝑃(𝑖𝑖𝑖𝑖) = (𝐺𝐺𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖, 𝐿𝐿𝑖𝑖𝑖𝑖). Based on the 413 

FDR score, the B, G and L features for discriminating between normal and defective fillets, 414 

and the B, G and L pixel level values for the pixel-wise classification of blood spot 415 

segmentation and localisation exhibited high between-class variance values and low values 416 

for within-class variance.  417 

The fact that G-green values proved to be a good feature for blood detection is in good 418 

agreement with the absorption peak of blood at 577 nm [9], which is within the absolute 419 

wavelength proximity of green colour (Figure 2, Table 1) which is predominant in the 420 

wavelength range 495-570 nm [40]. As regards the B-feature taken from the RGB channel 421 

(Figure 2, Table 1), it has previously been shown that in general, myoglobin exhibits an 422 

absorption peak at 409 nm [41]. L –lightness (Figure 2) scored high on the FDR criterion for 423 

separability between normal and defective fillets (Table 1). Selection of the subset consisting 424 

only of 3 features (B, G and L, or “BGL”) was considered optimal given the dataset available 425 

to this study. The T/l ratio between dataset sample size and the number of features used for the 426 

training of classification algorithms was greater than 20, which concurs with the 427 

recommendations reported in [27], and is in line with our aim to design a classification model 428 

with good generalisation properties.  429 

3.2. Classification between normal and defective fillets 430 

3.2.1 Support Vector Machines: The optimal BGL feature set combination for fillets in the 431 

training set enabled a linear separability to emerge between the classes in the 3D space as 432 
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defined by these features. The procedure to perform a grid search and validation of the test set 433 

was averaged for 100 randomised 80/20 splits (Table 2). This provided a measure of stability 434 

to the results which would not have been possible if only a single random split had been 435 

reported. The accuracy of the validation set was 99.5% (Table 2). Table 2 also shows the results 436 

from the exhaustive grid searches and selection of the optimal hyperparameters (C, γ pairs) 437 

resulting from the stratified 10-fold cross-validation, as well as for the wide grid search over a 438 

wide range of hyperparameters. We performed this operation to ensure that an exhaustive 439 

stratified 10-fold cross-validation was both sufficiently wide and fine-grained to capture all 440 

possible pairs of hyperparameters. Table 2 shows that the accuracy of the validation sets was 441 

over 99%, implying that from 100 random splits, only one fillet at one particular split was 442 

misclassified.  443 

 444 

Table 2 Algorithm for classification task 1 and task 2. The first row shows the results for a narrow but 445 

fine-grained grid search (task 1). The second row shows the results of a wider and coarser grid search 446 

for task 1, with the third row displaying the results from task 2.  447 

Classifier Task Kernel Feature Set Validation Accuracy Chosen C,  γ Training time (s) 

C-SVM 1 RBF  𝐺𝐺𝑚𝑚,𝐵𝐵𝑚𝑚, 𝐿𝐿𝑚𝑚 80/20 x 100 99.5% Ex: 211, 2-1 4 secs. 

C-SVM 1 RBF  𝐺𝐺𝑚𝑚,𝐵𝐵𝑚𝑚, 𝐿𝐿𝑚𝑚 80/20 x 100 99.46% Ex: 210, 2-5 4 secs. 

C-SVM 2 RBF 𝐺𝐺𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑖𝑖𝑖𝑖, 𝐿𝐿𝑖𝑖𝑖𝑖 80/20 99.9% 29, 2-1 48 mins. 

3.2.2 CNN-based classification of normal and defective fillets  448 

 Figure 4 displays the AlexNet responses for a randomly chosen fillet image from the test data 449 

set. The AlexNet prediction exhibited a very high level of confidence (100%) in identifying this 450 

fillet as defective (blood spots). The original RGB input image at 256 x 256 resolution was 451 

converted to 227 x 227 x 3 as required by AlexNet [29]. The first convolutional layer (conv 1) 452 

filters the image using 96 kernels (layer depth 96) dimensioned 11 x 11 x 3, with a 4 pixel stride. 453 

Figure 4 also shows the respective learned filters applied to the fillet image. Each of the 96 454 
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filters is shared by the 55*55 neurons in one depth slice. The result of the first convolution layer 455 

is an activation map dimensioned 55 x 55. Each of the activation maps corresponding to the 456 

different filters are stacked to form an output map dimensioned 96x55x55 (conv1, Figure 4). 457 

Here it is shown how the blood spots are highlighted by some of the learned filters. We choose 458 

to visualize activation maps from selected layers and highlight in particular the activation maps 459 

for conv1, norm1, pool1, conv5, pool5 and 3 fully connected layers. This helps to give an 460 

understanding of how image data propagate in the layers of AlexNet. Activation maps from 461 

other layers not shown in Figure 4 are subsampling of activation maps from previous layers 462 

based on weights and trained parameters. The output of conv1, after normalisation and pooling, 463 

goes as input to the second convolutional layer conv2 and so on to generate the final prediction 464 

for the fully connected output layer fc8, whose binary activation map is shown in Figure 4. The 465 

model generated by fine-training the AlexNet was tested on 1300 unknown images, previously 466 

not included in the augmented training set. The model resulted in confident predictions of the 467 

class categories of the fillets. Table 3 provides a summary of the accuracy of the classification 468 

process, demonstrating a validation accuracy for 5108 images of 100%, the same as that for the 469 

1300 test images. The prediction confidence for all 1300 test data set images was 100% for 470 

every single normal or defective fillet. 471 

Table 3. Results for the classification model generated using AlexNet on a DIGITS 2.2 472 

platform trained with n=15327 samples. 473 

Classifier Task Network Validation 

(n=5108) 

Accuracy 

(n=1300) 

Deep 
Learning 

1 AlexNet 100% 100% 

     

The data augmentation performed on our original dataset (Figure 3, see section 2.4.1) provides 474 

an effective means of compensating for the lack of large datasets in applications where the 475 
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acquisition of such data sets is a challenging and expensive process. This was our primary 476 

motivation for employing data augmentation. Moreover, data augmentation is one of the easiest 477 

and most common methods used to reduce overfitting [29]. It is well known that large size, 478 

multi-parameter, networks can be prone to overfitting in situations involving limited sample 479 

numbers in the training dataset [42]. Of particular interest in connection with our data 480 

augmentation procedure was the process of filling in the black background of the fillet image 481 

(Figure 2) with the respective RGB image mean (Figure 3). This study was not aiming to 482 

investigate shape feature representations as such, but to reduce the sensitivity of the AlexNet to 483 

fillet shape and increase its sensitivity to colour variations between the classes. As is 484 

demonstrated in Figure 4, the AlexNet focus was shifted towards capturing intricate feature 485 

representations based on the colour properties of the images that maximise the separability of 486 

blood spots from muscle tissue. For this reason, many of the activation maps shown in Figure 487 

4 contain less information than the learned filters can encode. It is seen how maps focusing on 488 

the outer edges and shape of the fillet and exhibit very weak responses. 489 

This indicates that the AlexNet possesses much greater descriptive power than is necessary 490 

for the current application. However, this property can be beneficial for applications where 491 

shape features are relevant for classification. There is a concern that the max-pooling of layers 492 

may result in a loss of accuracy in spatial information [42] regarding the loss of valuable 493 

localisation information especially in terms of detecting the precise spatial relationships 494 

between the parts of a given object in connection with pose, orientation and scale in particular 495 

[36]. For our application, we were not interested in pose, orientation or scale of the object and 496 

this aspect was not relevant. Based on the results shown in Table 3, and as suggested in [17], it 497 

seems that the good, intricate, features used to discriminate normal from blood spot fillets have 498 

been automatically learned during training of AlexNet, resulting in good prediction accuracy 499 

for the test data set in general terms. 500 
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Results in Table 3 are comparable with results obtained from Kagaya et al. [18] in an 502 

application of recognizing food images. They used a 5-layer convolutional neural network for 503 

recognizing food images and they observed that the network achieved significantly better 504 

performance accuracy (93.8 %) than the baseline method (89.7%). Grinblat et al. [43] proposed 505 

an approach using CNN for the problem of plant identification from leaf vein patterns. The 506 

overall accuracy of implemented CNN models achieved significantly better accuracy on the test 507 

set compared to machine learning algorithms such as Support Vector machines or Penalized 508 

Discriminant Analysis, which is line with classification accuracy achieved in our CNN model 509 

outperforming the SVM model for the classification between normal and fillets with blood.  510 

 3.3. Pixel-wise classification for blood spot segmentation  511 

This study adopted a similar approach for the pixel-wise classification for blood spot 512 

segmentation and localisation in the fillet image. As described in section 2.3.4, we used the 513 

pixel level colour values 𝑃𝑃(𝑖𝑖𝑖𝑖) = �𝐺𝐺𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑖𝑖𝑖𝑖, 𝐿𝐿𝑖𝑖𝑖𝑖� as features for the SVM classification model 514 

(Figure 1, Table 1). Individual pixels were randomly sampled, extracted and labelled according 515 

to information obtained from the ground truth images for known blood spots and muscle tissue 516 

regions. They were then classified. For those fillets exhibiting blood spots, a total of 130,000 517 

pixels were labelled as belonging to blood spots. To reduce computational requirements, a fixed 518 

percentage of pixels was sampled from each class as training data. This resulted in the random 519 

sampling and extraction for training and validation of 20,000 pixels from the blood spot regions. 520 

Similarly, 20,000 pixels from normal muscle tissue regions were randomly extracted in order 521 

to obtain a balanced data set. It is known that random sampling is a simple method that 522 

minimises the effects of spatial pixel correlation [10], and for this reason the method is 523 

recommended for similar applications [44]. Figure 5 shows the resulting pixel-wise 524 

classification for blood spot segmentation from two randomly chosen images. Although the 525 

overall prediction accuracies for the validation set are consistently greater than 99% (Table 2, 526 
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third row), it should be noted that the training set samples are a subset of the full set of images. 527 

This means that an accuracy of 99.9% is a measure of the accuracy in detecting blood spots 528 

compared to the ground truth labelling. Labelled pixel samples defined as ground truth data are 529 

taken from regions classified as either “definitely blood” or “definitely normal muscle tissue”. 530 

This ‘conservative’ approach to the selection of ground truth data seemed unavoidable in 531 

situations where the blood spots gradually merge into muscle tissue.  532 

 533 

Table 4. Blood segmentation performance evaluation for the proposed pixel-wise SVM 534 

classification algorithm using whole test fillet images. 535 

Images Accuracy ER TPR TNR time (ms) 

All test 
images 

95.41 % 4.59 % 99.48 % 95.38 % 1498 

Image 13 98.98% 1.02% 100.00% 98.98% 1391 

Image 21 96.36% 3.64% 100.00% 96.33% 1442 

 536 

Table 4 presents the performance evaluation metrics (ER, TPR, TNR, CPU time) for blood 537 

segmentation from whole fillet images based on a pixel-wise SVM classification model applied 538 

to test images, and demonstrates that the proposed segmentation algorithm resulted in low ER, 539 

and high TPR and TPN values. The high TPR values (at or close to 100%), show that the 540 

algorithm classifies as “blood” all the pixels that were manually classified as “blood” from the 541 

ground truth data.  542 
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 543 

Figure 5. Resulting pixel-wise classification and segmentation of blood spots with the approach presented in this 544 

study (c, f). Blood segmentation for two fillet image examples (a, d). Comparison with ground truth data (b, e). 545 

Our pixel-wise blood spot segmentation results and segmentation speed are comparable to the 546 

results reported in Mizushima et al. [45] regarding use of SVM for segmentation of apples. 547 

They achieved a 1.5 s segmentation average time for an apple on a platform consisting of 548 

iCore7, 3.4 GHz CPU, and 16 Gb RAM. 549 

The false positives (mean FPR=4%) resulting from this pixel-wise classification come from 550 

two sources. Some are the result of conservative ground truth labelling and the means by which 551 

the lasso tool is applied along the blood spot boundary, while others are caused by the high 552 

spectral similarity between blood and other closely adjacent discolorations that appear in 553 

normal muscle tissue but which are not blood. This concurs with the findings in [44], according 554 

to which the presence of noise, combined with spectral similarities, represents the main cause 555 

of false classifications that occur when performing pixel-wise classifications based on spectral 556 

data. Both the labelled blood and normal muscle regions seem to share very similar colour 557 

a) d)

b)

c) f)

e)
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attributes as the blood spots gradually merge into normal muscle tissue. Given that our system 558 

and method are designed to be cost-efficient (based on RGB-D digital images acquired with a 559 

relatively low cost camera and computer vision set-up), the classification accuracy 560 

demonstrated in Table 4 is considered to be highly satisfactory for industrial purposes. Table 4 561 

also shows that the proposed algorithm is time-efficient and highly relevant for rapid online 562 

industry applications, since the total mean run time required to segment a single fillet image 563 

once the algorithm is trained is 1.5 seconds. Table 4 also shows performance evaluation metrics 564 

for test image 13 (Figure 5, d and f) and image 21 (Figure 5, a and c). As suggested in [46], it 565 

seems that it is advantageous in the case of pixel-wise classifications for blood spot 566 

segmentation to operate with a low dimensional feature space using only 3 features; (𝑃𝑃(𝑖𝑖𝑖𝑖) =567 

(𝐺𝐺𝑖𝑖𝑖𝑖,𝐵𝐵𝑖𝑖𝑖𝑖, 𝐿𝐿𝑖𝑖𝑖𝑖). Keeping the number of features low also results in acceptable computational 568 

times (see Tables 2 and 3). Vempati et al [47] demonstrate that computational times using an 569 

RBF kernel increase linearly with data dimensionality, and non-linearly with the number of 570 

training samples. 571 

3.4. The effect of SVM hyperparameters on pixel-wise classification and optimisation of 572 

classification performance  573 

It is important here to highlight the effect of the choice of the hyperparameters (C and 𝛾𝛾) on 574 

classification performance [48]. Figures 6, 7 and 8 illustrate the conceptual effect of changing 575 

hyperparameter values during the segmentation of blood spots from normal fillet muscle tissue. 576 

The classification model was trained using values of C and 𝛾𝛾 from opposite sides of the grid 577 

search. While both models yield the same overall classification accuracy in the grid search, the 578 

model trained with the lowest C value identifies a blood spot as extending over a larger region. 579 

This concurs with the observation that low C parameter values enable locations close to the 580 

boundary to be ignored, thus expanding the ‘margin’ region [49]. Figure 6c shows the pixel-581 

wise classification for the same fillet as in Figure 6a using large values of C. In this case fewer 582 
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pixels are classified as ‘blood’ compared with the result in Figure 6b. Figure 7 provides a 583 

visualisation of an isosurface computed for the RBF kernel decision values used in the applied 584 

C-SVM algorithm. Figure 7a demonstrates that although a linear kernel is used, it is found that 585 

a linearly separable data set is well suited to a linear separating hyperplane. Figure 7b 586 

demonstrates that excessively high C values affect the decision isosurface by attempting to 587 

classify all the data into the correct class. A major penalty must be paid for the use of high C 588 

values in that the cost of misclassification is high, data points close to the hyperplane affect its 589 

orientation, and the optimal separating hyperplane adopts a complex shape [48]. The C 590 

parameter controls the loss attributed to samples that exceed the hyperplane margin, and can 591 

therefore be used to fine-tune the decision boundary as blood spots merge into normal muscle 592 

tissue. The kernel parameter γ also has a significant effect on the optimal separating 593 

hyperplane/hypersurface. This parameter controls the width of the Gaussian kernel (σ) because 594 

its relation with σ is given by γ=1/(2σ2). Figure 8 shows the effect of varying γ while keeping 595 

the C (C=21) regularisation parameter constant during classification task 1. 596 

At low γ parameter values (Figures 8d, 8e and 8f) the hyperplane is almost linear and exhibits 597 

a low degree of curvature. As γ increases the curvature of the hyperplane changes (Figures 8a, 598 

8b and 8c). Figure 8c shows that the decision hyperplane/surface has the largest curvature when 599 

γ =25, because the decision surface is forced to curve in order to avoid misclassifications, thus 600 

introducing the risk of overfitting as is also described in [48].  But what is the effect of changes 601 

in the γ parameter for blood segmentation in the pixel-wise classification? 602 
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 603 

Figure 6. The effect of changing the hyperparameters C and γ on the classification accuracy of blood 604 

segmentation of  an example fillet (a);  varying the C parameter (b, c), keeping C constant (C=21) but changing γ  605 

between γ=25(d), and γ =2−5 (e). The value of γ = 25 results in an accuracy of 96%, 100% true positive rate, 606 

and 95.5% true negative rate. 607 

a)

b) c)

e)d)
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 608 

Figure 7. The decision hyperplane visualisation for the SVM algorithm using an RBF kernel. a) Although the 609 

RBF kernel is used for a linearly separable dataset, a linear optimal separating hyperplane is found to be suitable 610 

(C=215, γ = 2−5); b) A separating isosurface with a change of orientation for C=250, γ = 2−5 as an example of a 611 

poor classifier. 612 

Figures 6d and 6e shown pixel-wise classification results using two different values of 𝛾𝛾, 613 

while keeping the regularisation parameter C constant. The example in Figure 6d uses a 614 

kernel where 𝛾𝛾 = 25, while that in Figure 6e uses 𝛾𝛾 = 2−5. If we define the kernel width as 615 

“Full Width at Tenth Maximum” (FWTM), the calculation 𝑊𝑊 = 2�2ln (10)σ=4.291σ [50] 616 

can be performed. For the example shown in Figure 6d, the kernel width is 𝑊𝑊1 = 17.164, 617 

a)

b)
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while for that in Figure 6e, the width is 𝑊𝑊2 = 0.5359. 618 

 619 

Figure 8. Illustration of the effect of changing the 𝛄𝛄 parameter in the decision hyperplane/surface for the RBF 620 

kernel. a) 𝛄𝛄 = 𝟐𝟐𝟏𝟏; b) 𝛄𝛄 = 𝟐𝟐𝟐𝟐; 𝒄𝒄) 𝛄𝛄 = 𝟐𝟐𝟓𝟓; d) 𝛄𝛄 = 𝟐𝟐−𝟏𝟏; e) 𝛄𝛄 = 𝟐𝟐−𝟐𝟐; f) 𝛄𝛄 = 𝟐𝟐−𝟓𝟓. Figure 8 (c) shows that high values 621 

of 𝛄𝛄 change the curvature of the decision hyperplane/surface in an attempt to avoid pixel mis-classification. 622 

For the image displayed in Figure 6d, the resulting classification exhibited an overall 623 

accuracy of 96%, 100% true positive rate, and 95.5% true negative rate (slightly higher – 1% – 624 

than the classification using γ = 2−5). It is clear that, although lower γ parameter values result 625 

in slightly lower levels of accuracy  (94,5% for γ = 2−5), the classification model in these 626 

cases is considered to exhibit better generalisation properties in terms of the classification of 627 

unknown samples, whereas the use of high γ values may introduce the risk of overfitting and 628 

poor generalisation. 629 

3.5. Blood spot segmentation and localisation in 3D space and calculation of gripper 630 

vectors for robotic processing  631 

Figure 9 demonstrates how the results obtained can be used for the accurate localisation of 632 

blood spots in 3D space. Perfectly per-pixel aligned RGB and 3D images of the fillet are shown 633 

with the blood spots segmented from normal muscle tissue, oriented in an OXYZ frame. The 634 

a)

d)

b) c)

e) f)
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resulting RGB image from the pixel-wise classification is combined with the 3D image of the 635 

fillet, and a RGB-D map (in mm) is generated in order to achieve accurate localisation of blood 636 

spots in terms of OXYZ coordinates. A normal gripper vector is calculated for each blood spot 637 

with respective vector origin coordinates (in mm) relative to the origin of the OXYZ frame 638 

where P1 (125.7, 123.7, 16) is used for gripper vector 1, and P2 (284.7, 157.2, 26) for gripper 639 

vector 2. This information is sufficient for a robot manipulator to perform automated trimming 640 

of the blood spots. Once control of the 3D coordinates of the entire blood spot regions has been 641 

achieved, it is a straightforward task for any robotic gripper or cutting tool to remove blood 642 

spots because the gripper motion path can now follow the 3D profile of the fillet to the specific 643 

area marked as a blood spot given in OXYZ coordinates. This demonstrates how classification 644 

results can be directly converted into information that is relevant to automated robotic 645 

processing. 646 

 647 

Figure 9. Visualisation of blood segmentation and blood spot localisation in 3D space (OXYZ coordinates). The 648 

visualisation of 3D gripper vectors normal to the plane is defined by the presence of blood spots and a specification 649 

of the area (in mm) covered by spots. 650 

3.6 Future work and future research directions  651 

As future work, several approaches might be considered in order to increase the robustness of 652 

methods used to identify defective fillets, and of pixel-wise classification approaches used for 653 

the segmentation of blood spots based on RGB-D images. Studies addressing texture 654 
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classification and colour image segmentation [10, 51] have shown that it is possible to include 655 

textural features to improve pixel-wise classification models. However, these methods are best 656 

suited to applications where the texture of the objects or regions in question exhibits high levels 657 

of contrast. They are less well suited to dealing with biological raw materials that exhibit low 658 

variations in texture since a typical cod fillet will exhibit very homogeneous muscle tissue 659 

patterns regardless of the presence of blood spots.  660 

 661 

Based on the presented research results and observed trends from the bibliography we foresee 662 

an increased focus on the synergies of computer vision, deep learning and robotics also for food, 663 

biomarine and agricultural applications resulting in future research directions: 664 

• Increased use of 3D information and combined RGB-D images in inspection, 665 

recognition, and robotic application tasks. 3D is invaluable information for detection, 666 

recognition and localization of objects in the scene and localization, in 3D space, of the 667 

defects in the object itself. For example, we use the 3D information to localize in 3D 668 

space the blood spots and to calculate the relevant gripper vectors. Similarly, the 3D 669 

information can be used for localization of gaping in the cod fillets. The advent of RGB-670 

D cameras such as Kinect v2, Intel RealSense SR300 and specialized hardware from 671 

manufacturers such as NVIDIA and Intel will open up for new research developments 672 

in using 3D information for development of novel and robust machine learning models.  673 

• Transfer learning – increased use of the existing pretrained CNN architectures on large 674 

datasets, such as AlexNet, VGG16, VGG19, and fine-tuning of these networks for 675 

various inspection, recognition, robotic application tasks. This is because in food, 676 

biomarine and agricultural domains the datasets are limited and it is challenging to 677 

acquire large enough datasets to train the network architectures from the scratch.  678 

Another modality is to use the CNN as a feature extractor by removing the last fully 679 
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connected layer. In this way the CNN would generate automatically learned features 680 

alleviating the need for hand-engineered features. In our case, we used a pre-trained 681 

AlexNet on a large dataset, and fine-tuned the network with our particular dataset of cod 682 

fillets consisting of normal fillets and those with blood spots. 683 

• In applications where temporal aspect is important such as action recognition of 684 

livestock from video, there will be an increased use of CNN and Recurrent Neural 685 

Networks - RNN in combination with LSTM-Long Short Term Units and GRU-Gate 686 

recurrent units. LSTM or GRU units add a memory component to the network which is 687 

important to capture motion features for action recognition. The application domains of 688 

such network architectures can be action recognition of livestock in order to estimate 689 

the welfare status or to optimize operations such as feeding. Concretely such 690 

architectures can be used for study of fish behaviour and action recognition from 691 

underwater video. 692 

• Robot learning – Robot 3D manipulation, handling and processing of complex 693 

agricultural products is still challenging due to, among others, inability to teach robots 694 

to dynamically manipulate the raw material. Increased focus on use of deep learning 695 

architectures to process visual information and learning to grasp, manipulate, and 696 

process objects is necessary to improve the performance of robots. One strategy for 697 

learning is the Learning from Demonstration where humans guide the robot, either 698 

physically or by teleoperation, to teach a skill. This could be an example strategy to use 699 

for learning the robot to trim the blood spot from the fillet. However, the robot through 700 

Learning from demonstration can only be as good as the teacher and in some other 701 

applications other learning strategies should be considered. Deep reinforcement 702 

learning is, for example, one learning strategy we are going to see more in robotic 703 

agricultural applications due to ability to endow robots with manipulation and 704 
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behavioural skills without much human intervention and with possibility to improve the 705 

learned behaviour and skill over time. 706 

• Synthetic generation of image datasets for training of classification and prediction 707 

models – in cases and applications where acquiring large datasets is challenging. It is 708 

known that acquisition of large datasets in food and agricultural industries is limited and 709 

very often it is unpractical and very expensive to acquire such datasets.  710 

 711 

4. Conclusions 712 

In this study, we present approaches for classification between normal and defective fish fillets 713 

based on SVM classifier and GPU-accelerated convolutional neural networks, together with a 714 

robust SVM- pixel-wise classification approach for blood spot segmentation based on RGB and 715 

3D images. The best hand-engineered features for optimisation of the discrimination of normal 716 

muscle tissue from blood spots were found to be G-green, B-blue, and L-lightness image 717 

features in RGB and CIELab colour space. A summary of main conclusions regarding the main 718 

research objectives is as follows: 719 

a) Development of robust, colour-based pixel-wise classification for blood spot 720 

segmentation in cod fillets: The pixel-wise classification model, employing a SVM 721 

algorithm with a Gaussian RBF kernel using pixel level features resulted in an overall 722 

classification accuracy of 99%, 99.5% for sensitivity, and 95.4 for specificity. The SVM 723 

based pixel-wise model demonstrates that results can be used for accurate segmentation 724 

and localization in 3D space and calculation of respective gripper vectors for robotic 725 

processing of such defects and similar biological raw muscle tissue where defective and 726 

normal regions exhibit high levels of spectral similarity.  727 

b) Classification of normal and defective fillets: Both SVM and CNN-based models 728 

showed good classification accuracies for the test sets with CNN-model slightly 729 

outperforming the SVM-model (100% vs 99%). The results from these models show 730 
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that this approach to the classification may have applications beyond the specific scope 731 

of this study.  732 

c) Per-pixel aligned RGB-D images: the approach results in perfectly per-pixel aligned 733 

RGB and D images of high resolution acquired in real-time during scanning of the fillet 734 

while it is transported on conveyer belt.   735 

d) Conceptual effect of the SVM hyperparameters: a visualization of the change of SVM 736 

hyperparameters C and γ gives a better understanding on these two parameters and their 737 

effect on the classification accuracy. This is important in order to prevent model 738 

overfitting.  739 

e) CNN capabilities for classification of food objects and correct data augmentation: The 740 

deep learning approach implemented by fine-tuning of the pretrained AlexNet resulted 741 

in 100% classification accuracy between normal and defective fillets. The data 742 

augmentation approach to desensitize the CNN for shape and focus only on colour 743 

features resulted in high classification accuracy between normal and defective food 744 

products. As a result of desensitization process, many activation maps of the AlexNet 745 

contained less information than the learned filters can encode. Despite this, the results 746 

show that AlexNet possesses much greater descriptive power than it was necessary for 747 

our application in classification of cod fillets. 748 

The proposed approaches, although demonstrated in laboratory scale, have also practical 749 

industrial relevance given segmentation of blood spots by the pixel-wise classification model 750 

is rapid, with possibility to time-optimize it, as it is currently able to process one fillet image in 751 

average 1.5 seconds. This opens up for potential real-time industrial use of the reported 752 

approaches. For transfer of these methods to industrial application, software optimization with 753 

regard to increased speed of operation is necessary, in addition to complying with hardware 754 

requirements deriving from operating in humid and cold production environment. 755 
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