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ABSTRACT Construction and analysis of genome-scale metabolic models (GEMs) is
a well-established systems biology approach that can be used to predict metabolic
and growth phenotypes. The ability of GEMs to produce mechanistic insight into mi-
crobial ecological processes makes them appealing tools that can open a range of
exciting opportunities in microbiome research. Here, we briefly outline these oppor-
tunities, present current rate-limiting challenges for the trustworthy application of
GEMs to microbiome research, and suggest approaches for moving the field forward.
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OPPORTUNITIES

Genome-scale metabolic models (GEMs) are mathematical representations of the
chemical reactions that can be carried out by an organism. In their simplest form,

they encode the quantities of reactants and products consumed or produced in chemi-
cal reactions. As such, GEMs can simulate the growth of organisms in diverse environ-
mental contexts through approaches such as flux balance analysis (1) and have
become essential tools for generating testable hypotheses about their metabolic func-
tions. This combination of versatility and mechanistic insight allows GEMs to be readily
extended to investigate the roles of individual species in complex microbial assemb-
lages (2–4). In particular, a collection of GEMs can predict the metabolic interactions
that can emerge between members of microbial communities by calculating the flow
of metabolites through each organism and its environment (5). As such, GEM simula-
tions can also predict environmental modifications that can occur as a result of metab-
olite secretion and utilization by community members (6). GEMs can be used with ex-
perimental or observational data (referred to as “context-specific modeling”) (7) and in
time- and spatially resolved simulations with single or multiple organisms (8, 9). These
approaches can all be extended to multicompartment models to study host-microbe
interactions by simultaneously modeling host and microbial metabolism. In particular,
such frameworks have been used to predict microbiome responses to interventions
that are challenging to represent experimentally (e.g., dynamic environments, invading
species in sensitive ecosystems, clinical scenarios) (10, 11). GEMs also provide
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opportunities to generate insights from microbiome multiomics, i.e., metagenomics,
metatranscriptomics, metaproteomics, and/or metabolomics data (12–15).

Most microbiome studies employing GEMs use them to explicitly model a micro-
biome (i.e., a single simulation captures metabolism of the entire microbiome).
Alternatively, the physiological factors represented by a GEM (e.g., biochemical capabil-
ities, genome annotations) or the results of simulations with individual organisms’
GEMs (e.g., simulated nutrient preferences, simulated metabolite production) can be
used outside the context of microbiome-wide in silico simulations to evaluate new
hypotheses with metagenomics and metabolomics data (12, 16, 17). For example,
rather than using GEMs to simulate fluxes in a community, simulations with GEMs for
individual organisms can be used to predict metabolic traits for members of a commu-
nity. Statistical analyses (e.g., regression, classification) can then be performed using
these traits as input to predict environmental observations (e.g., nutrient abundances,
plant yields, clinical outcomes) (17). These applications, as well as their use across a va-
riety of systems and temporospatial scales, have been thoroughly reviewed (18–21).

CHALLENGES

To ensure the reliability of GEM predictions, it is crucial to establish the appropriate
context for their application to microbial communities (22). First, one must consider that
the application of GEMs is generally limited to metabolic interactions, while other factors
key to microbial community dynamics (e.g., gene regulation, expression, and protein
localization; pH’ temperature; antibiotics; and quorum sensing) are only accounted for in
specific modeling extensions (8, 23–33). Second, one should select a simulation scope
according to the experimental question raised, preferred simulation output, appropriate
assumptions, and available data (Fig. 1).

The application of flux balance analysis (FBA) to microbial communities necessitates
the study of many nonmodel organisms, requiring either reconstruction of strain-spe-
cific GEMs for a particular microbiome or utilizing “bag-of-genes” models in which all
microbial metabolic capabilities are combined into one network (34–37) (Fig. 1, row 1).
While model reconstruction has traditionally been a major bottleneck, recently devel-
oped GEM reconstruction pipelines and curated resources are eliminating many of the
challenges associated with throughput and model quality (32, 36, 38–40). A remaining
challenge, however, is to account for model structural uncertainty introduced through
gene annotation, gene-to-reaction mapping, environment specification, and biomass
composition. In combination with degeneracy in FBA solutions, this accumulates to a
total uncertainty associated with model predictions that is difficult to quantify (41).
Ensemble modeling is a promising approach for representing this uncertainty, but
challenges remain in scaling these approaches to address heterogeneous sources of
uncertainty at the microbiome level (42, 43).

Scaling the scope of GEM simulations to communities (Fig. 1, row 2) results in a
number of additional sources of uncertainty and technical challenges. First, different
chemical and reaction namespaces between disparate data sets and models can hinder
the combination of GEMs from different sources (44, 45). Additionally, community FBA
methods require the formulation of a community-level objective that both draws from
biological rationales and balances the trade-off between community-level and individ-
ual objectives, making it difficult to accurately predict phenotypes for complex micro-
biomes (21, 46).

Instead of defining a community-level objective, microbial interactions mediated
via the environment can be simulated through dynamic FBA (Fig. 1, row 3), a technique
that allows community dynamics to emerge from individual-level objectives. However,
dynamic FBA requires additional model parameters (e.g., metabolite- and organism-
specific uptake kinetics) that are challenging to estimate for a complex microbiome.
Spatial dynamics such as diffusion can be combined with dynamic FBA through more
advanced modeling frameworks (9, 47), but this also introduces parameters which are
difficult to estimate (Fig. 1, row 4). Increasing the time scale of dynamic microbiome
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simulations is possible but complicates the underlying mechanisms as metabolic adap-
tation and evolution play into eco-evolutionary dynamics (48, 49).

As models scale up to represent dynamics at these higher levels, it is important to
understand the propagation of the uncertainties mentioned above to ensure robust
simulation frameworks. Efforts toward modeling microbiomes with individual-orga-
nism resolution need to consider the current state of accuracy and uncertainty in each
constituent GEM, as well as the sensitivity of the phenotype of interest to this uncer-
tainty. In the simplest case, we may consider an in silico study of two bacterial strains
during steady-state growth with glucose as a sole carbon source. Here, the goal of the
study would be to predict whether a coculture of the two organisms will increase

FIG 1 Choice of microbiome modeling scope with genome-scale metabolic models (GEMs). Row 1 shows analysis of individual species (alone or within a
microbiome) at a single time point with flux balance analysis (FBA). FBA can also be used for bag-of-genes models of a microbiota, which include all metabolic
functions of the microbiota within a single compartment. Row 2 shows simulation of multiple species at a single time point in a community context with
community FBA (where “Community FBA” is inclusive of all nondynamic FBA-based methods employing GEMs for multiple organisms in a shared extracellular
compartment). Row 3 shows dynamic FBA, wherein metabolic fluxes and growth are simulated for a community with objective functions at the individual organism
level. In dynamic FBA, multiple iterations of FBA are performed to introduce a temporal dimension. Community dynamics emerge in dynamic FBA through the
shared extracellular compartment. Row four shows spatiotemporal FBA, which introduces spatial dimensions within a dynamic FBA framework to account for
diffusion (or environmentally induced mixing) of metabolites and microbial biomass. Example simulation output and a nonexhaustive list of critical assumptions are
listed for each scope. Examples of appropriate scenarios and questions are shown for each scope, with examples showing how introducing experimental data to
constrain GEMs (text in blue) can increase the specificity of the simulation output at each scope relative to scenarios where little or no experimental data are used
to constrain GEMs (text in red). Note that the following terms are not interchangeable: growth rate (growth per unit time), growth yield (growth per unit substrate
uptake), and maximum theoretical growth yield (maximum growth per unit substrate, determined by stoichiometry and reversibility alone).
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biomass yield for either individual organism. If the coculture simulation accounts for
uncertainty, the researchers can base their degree of trust in the simulation on how
the predictions are distributed. The researchers can also use uncertainty in monocul-
ture simulations for any functions related to the coculture outcomes (growth yield in
the fresh medium, metabolite secretion, and uptake and metabolism of putatively
cross-fed metabolites) to identify functions in individual GEMs that should be curated
to reduce uncertainty (and potentially improve accuracy) of the coculture simulations.

Phenotyping individual organisms in high throughput is a promising approach to-
ward improving GEM curation; however, it is not always feasible (e.g., obligate intracel-
lular organisms) or may be experimentally challenging to set up (e.g., organisms which
have no known, chemically defined culture conditions) (36, 50). Furthermore, when
studies are scaled to the complexity of most natural microbiomes, it becomes infeasi-
ble to test the performance of each individual organism in well-controlled monocul-
tures. As we attempt to make use of increasingly complex models of microbiomes, sys-
tematic curation strategies will need to be coupled with expert intuition to establish
the appropriate level of detail that is coarse-grained enough to be robust to parameter
uncertainty and stochastic community dynamics (51–53) yet detailed enough to cap-
ture important processes. Researchers should keep this in mind when selecting the
appropriate simulation scope for the application of GEMs to microbial communities
and should try to balance the opportunities and challenges of each approach. We dis-
cuss the implications of these challenges for scientific funding priorities in the follow-
ing section.

MOVING FORWARD

The potential of GEMs to advance microbiome science is founded upon a rapidly
growing body of genomic (and, increasingly, transcriptomic and metabolomic) data,
which has already enabled researchers and clinicians to explore the metabolic func-
tions of microbiomes associated with diverse ecosystems—from soil and plants (54,
55), to insects (56), to mammals (36, 57). However, these advances have largely been
driven by independent analyses by theoretical and empirically focused research
groups. Thus, they have resulted in a fragmentary understanding of the mechanisms
and impact of interspecies interactions on microbiome function. While many opportu-
nities exist for two-way communication between theoretical and empirical microbiome
research communities, several barriers prevent this potential from being realized.

In order to better understand these barriers, we conducted a community survey of
microbiome scientists (Fig. S1, Table S2). This survey revealed that, while over 70% of
empirical researchers expressed an interest in using metabolic modeling, a lack of com-
putational expertise and concern about the accuracy of predictions has prevented
them from integrating models into their work. Based on these responses, we advocate
for increased accessibility of modeling techniques and more transparent communica-
tion and interpretation of simulation results. To this end, we have compiled existing
resources to initiate microbiome scientists—from a range of backgrounds—to use ge-
nome-scale modeling to address questions about the microbiome (Fig. 2). Importantly,
we have highlighted resource gaps that must be filled to maximize the accessibility of
the modeling field and facilitate cross talk between theoretical and empirical research-
ers. Such resources will enable microbiome scientists to determine the appropriateness
of applying this modeling framework to their research questions.

In addition to the points raised by empirical researchers in our survey, participants
with modeling experience echoed our concerns regarding the lack of universal
approaches to verify model robustness and evaluate predictions. This challenge is
especially important in microbiome science, given the potential for error propagation
associated with scaling up models to the enormous diversity of organisms found in
many microbiomes. We advocate for improving model trustworthiness via transparent
modeling practices (construction, curation, and validation) and the integration of
uncertainty in predictions. Just as community efforts have led to advances and
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standardization in GEM validation (58), similar endeavors are needed to ensure transfer
of knowledge across studies, both in specific scientific application areas and in the
practice of GEM reconstruction. These efforts should focus on ensuring that GEM con-
struction and curation processes are transparent and modifiable (59).

FIG 2 Opportunities for training and establishing curricula to prepare scientists to apply genome-scale
metabolic modeling in microbiome studies. Each topic rectangle lists resources we feel are beneficial for
scientists exploring genome-scale metabolic modeling of microbiomes. All resources are listed with accession
information in Table S1. The top half includes prerequisite topics based on researcher background; those with
more computational experience (left side) or more biological experience (right side) will have different
knowledge gaps. The bottom half includes resources that should be helpful regardless of background. Content
in “still needed” lines was identified by our authors as having strong deficiencies in available learning material.
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We close with specific recommendations for the microbiome modeling community
and funding agencies to address the challenges and capture the opportunities we
have highlighted.

� First, the modeling community should create new mechanisms for evaluating GEM
construction and simulation methodology. Specifically, we recommend establishing
competitive challenges with objective assessments (60, 61). As an example, the
Critical Assessment of protein Structure Prediction (CASP) has been funded by the
NIH for over 20 years at about $500,000 per year and has yielded a variety of useful
methods for predicting protein structure.

� Second, funding agencies should establish mechanisms and proposal expectations
that incentivize development, maintenance, and improvement of modeling
methods and tools. As in bioinformatics tool development (62), genome-scale
metabolic modeling methods are nearly exclusively developed ad hoc through
grants focused on application rather than development of methods. We see two
divergent paths to foster collaborative microbiome studies enabled by metabolic
modeling:

� Increase budget limits for proposals involving collaborating specialist groups.
� Reduce expectations of interdisciplinarity in grant proposals. As nearly all
modelers are interested in collaborating with experimentalists, providing
funding stability which is not contingent on a collaboration will reduce grant
writing burden and administrative complexity and encourage transparent
communication of modeling results between collaborators. Experimentalists
will also feel more comfortable only pursuing modeling approaches that are
likely to add value to their work.

Early career researchers, who often choose to specialize to demonstrate productiv-
ity and compete for funding, will benefit most from reduced collaborative expectations
at the grant proposal review stage and a culture of transparent modeling. Efforts to
increase methodological transparency in the metabolic modeling field will also benefit
early career researchers by lowering barriers to entry for researchers from diverse disci-
plines and backgrounds. The training resources enabled through transparency will
increase access to modeling tools and allow researchers without access to costly exper-
imental technologies greater opportunity to do science. These aspects are particularly
relevant to researchers using GEMs within the microbiome field, which is already
incredibly interdisciplinary. Ultimately, the challenges associated with applying GEMs
to the microbiome field emphasize fundamental opportunities for growth of the ge-
nome-scale metabolic modeling field.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 2.8 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.02 MB.
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