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Abstract: In the present work, the global wind and wave climate is studied on the basis of two well-
known reanalysis products, namely ERA5 and CFSR-W (WW3 hereafter). Several statistical features
of the datasets are assessed, such as seasonal variability, quantiles of the probability distribution,
monthly, annual and inter-annual variability, and several error metrics. The time span covers a period
of 31 years (1979–2009), a fact that assures that most of the long-scale features are equally present in
both datasets. The analysis performed is depicted both on a global and regional scale. The results are
also assessed by means of a global satellite altimeter dataset.

Keywords: significant wave height; wind speed; wind climatologies; wave climatologies; ERA5;
CFSR-W; seasonal analysis; probability analysis

1. Introduction

The study of ocean wave climate is of great importance for a large number of ap-
plications, including among others: ocean climate change studies, design of ships and
offshore/coastal structures, planning of sea operations, wind and wave energy conversion.

There are various sources of wind and wave data, namely (i) visual observations [1],
(ii) satellite altimeters [2,3], (iii) in situ buoy measurements, and (iv) numerical models [4,5].
Each one of them have its own advantages and disadvantages. The great advantage of
numerical models is their wide coverage on a high time and space resolution in a global
scale, making it possible to produce long-term wind and wave climatologies without gaps.

The quality of wave data is heavily dependent on the quality of the wind forcing,
improvements on the physical modelling and assimilation techniques among others. At
least two meteorological centers (National Centers for Environmental Prediction, NCEP,
and European Centre for Medium-Range Weather Forecasts, ECMWF) work constantly
for the last few decades towards the improvement of their forecast models. For this, apart
from the results of their operational versions, they perform reanalysis studies from time to
time to offer homogenized wave products.

(Stopa [6], Table 1) summarizes most of the well known wind datasets used throughout
the years to generate global wave hindcasts. These wind products led to several global
reanalyses of wave datasets over the last few decades. Among them, it is worth noting
ERA-15, ERA-40, ERA-Interim from ECMWF [7,8], NCEP/NCAR, and CSFR-W from
NCEP [8–10]. Other climatologies include HIPOCAS [11], GOW1 and 2 [12,13].

The emergence of these reanalysis databases has been followed by intercompari-
son studies against each other and/or against other sources of data such as buoy and
satellite measurements. For example, Caires et al. [14] have compared six different re-
analysis datasets (ERA-40 and NCEP/NCAR among them) against NOAA buoy and
TOPEX/Poseidon altimeter datasets. Semedo et al. [15] compared ERA-40 against visual
observations and satellite data. Stopa in a series of works has analyzed CSFR-W wave
data and their relation to climate indices [16], against ERA-Interim and a number of al-
timeter data [17], using 12 different wind fields as input and against two different satellite
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datasets [6]. Finally, [18] have compared the results of HIPOCAS climatology against
CSFR-W and ERA-Interim.

In the present work, a global wind and wave climate analysis is performed by inter-
comparing two reanalysis databases: (a) the CFSR-W [8,10] called for simplicity WW3,
and (b) the newly released ERA5 by ECMWF through Copernicus Climate Data Store [19].
The former has been extensively studied by Stopa and coauthors [16,17], whereas the latter
is studied here for the first time. Preliminary results, including only results for waves, have
also been presented in [20].

In the next section, a brief description of the two datasets is given, as well as a
description of the analysis procedure followed. Then, numerical results are presented and
commented on, and finally, conclusions are drawn.

2. Methodology
2.1. Data Used

In the present study, three datasets were used for the intercomparison, covering the
entire globe. The two of them were generated by means of third-generation numerical
models, namely WAVEWATCH III [21] and WAM [4], and the third one consisted of satellite
altimeter measurements merged from several satellite missions. The model data were in
regular gridded netcdf format (361 lats × 720 lons = 259,920 datapoints), while the satellite
data were stored in tracks.

The first dataset, called WW3 hereafter for simplicity, is a reanalysis generated by
means of WAVEWATCH III model [10]. It consists of fields of significant wave height
and wind speed covering the entire globe for the period 1979–2009 in 3-h intervals
(31 years × 2920 3-h = 90,520 time instances). For a more detailed description of the data
and the model setup, one can see here: https://polar.ncep.noaa.gov/waves/hindcasts/
nopp-phase2.php (last accessed: 10 September 2021).

The second dataset, ERA5, is a reanalysis generated by means of WAM model and
has recently been released [19]. It also consists of fields of significant wave height and
wind speed. Although the data cover the period 1979-present in hourly intervals, only the
period 1979–2009 in 3-hourly intervals was taken into account to facilitate the comparison
with WW3. For a more detailed description, see: https://www.ecmwf.int/en/forecasts/
datasets/reanalysis-datasets/era5 (last accessed: 10 September 2021).

In addition, and for comparison purposes, satellite altimeter data from the archive
of IFREMER were used. The archive contains data from nine altimeter missions, namely
ERS-1,2, ENVISAT, TOPEX/Poseidon, Jason-1,2, GEOSAT-FO, Cryosat-2, SARAL, covering
the period 1992–2016. Since some of the altimeters (ERS-1,2, ENVISAT, Jason-1, Cryosat-
2, SARAL) have already been assimilated in ERA5 [19], they were excluded from the
calculations. More detailed information about the missions, as well as about the validation
against buoy data and the induced corrections can be found in [22].

Since satellite data have a different time-space data structure, and in order to make
possible a comparison between them and the two model datasets, mean monthly values
were calculated from all sources for 13 different subregions; see Figure 1. These discrete
non-overlapping subregions have been defined by [23], such that the wave conditions
within each of them to be qualitatively similar [24].

https://polar.ncep.noaa.gov/waves/hindcasts/nopp-phase2.php
https://polar.ncep.noaa.gov/waves/hindcasts/nopp-phase2.php
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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Figure 1. Selected subregions of the oceans: Extratropical South Indian (ETSI), Extratropical South
Pacific (ETSP), Extratropical South Atlantic (ETSA), Tropical South Indian Ocean (TSIO), Tropical
Western South Pacific (TWSP), Tropical Eastern South Pacific (TESP), Tropical South Atlantic Ocean
(TSAO), Tropical North Indian Ocean (TNIO), Tropical Western North Pacific (TWNP), Tropical
Eastern North Pacific (TENP), Tropical North Atlantic Ocean (TNAO), Extratropical North Pacific
(ETNP), Extratropical North Atlantic (ETNA).

2.2. Statistical Analysis Procedure

The data were available as fields in the form{
X(ti, φj, λk), i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K

}
, (1)

where i runs over the time instances, and j, k over the latitudes and longitudes, respectively.
In the sequel, two kind of analysis were performed: (a) field analysis , showing results

for the entire field, and (b) averaged analysis, showing results averaged over all (or a subset
of) datapoints. In this way, various statistics related to different aspects of the datasets
were depicted.

First, the time index was reparametrized according to Buys–Ballot triple index [25] in
order to properly treat variability at different time scales. Hence, the following triple index
(y, m, n) was used. The first component y is the yearly index. The second m = {1, 2, . . . , 12}
is the monthly index. The third n = {1, 2, . . . , Nm} represents the time within a month, with
Nm being the number of 3-hourly observations within the m-th month.

According to the three-index notation, the field X(ti, φj, λk) was reindexed as follows:{
X(y, m, n, ·, ·), y = 1, . . . , m = 1, . . . , 12, n = 1, . . . , Nm

}
. (2)

The three indices (y, m, n) represent three different time scales, making it possible to
explicitly define statistics with respect to each one of them, separately.

2.2.1. Seasonal Analysis

First, the fields of monthly values of mean value and standard deviation were formed

µ3(y, m, ·, ·) = 1
Nm

Nm

∑
n=1

X(y, m, n, ·, ·), (3)

σ3(y, m, ·, ·) =

√√√√ 1
Nm

Nm

∑
n=1

[
X(y, m, n, ·, ·)− µ3(y, m, ·, ·)

]2. (4)

Then, the mean monthly values were obtained by averaging Equations (3) and (4)
over the years Y:
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µ̃3(m, ·, ·) = 1
Y

Y

∑
y=1

µ3(y, m, ·, ·), (5)

σ̃3(m, ·, ·) = 1
Y

Y

∑
y=1

σ3(y, m, ·, ·), m = 1, 2, . . . , 12. (6)

These parameters are also known as seasonal mean value and seasonal standard devia-
tion, depicting the seasonal patterns of the data, and they have been used in a nonstationary
time series modelling suitable for metocean and maritime parameters; see [25–27].

If, further, one averages over all φj’s and λk’s, an averaged picture for the mean
monthly values in Equations (5) and (6) is obtained

µ̃3(m) =
1

J K ∑
j

∑
k

µ̃3(y, m, ·, ·), (7)

σ̃3(m) =
1

J K ∑
j

∑
k

σ̃3(m, ·, ·). (8)

Combining Equations (5) and (6), or, equivalently, Equations (7) and (8), one can
calculate the coefficient of variation

c̃v3(m, ·, ·) = σ̃3(m, ·, ·)
µ̃3(m, ·, ·) , (9)

depicting the Mean Monthly Variability (MMV) of the field (equiv. of the averaged data).
Similarly, one can calculate the yearly values of mean value and standard deviation

µ32(y, ·, ·) = 1
Ny

M

∑
m=1

Nm

∑
n=1

X(y, m, n, ·, ·), (10)

σ32(y, ·, ·) =

√√√√ 1
Ny

M

∑
m=1

Nm

∑
n=1

[
X(y, m, n, ·, ·)− µ32(y, ·, ·)

]2, (11)

where

Ny =
M

∑
m=1

Nm. (12)

Then, the Mean Annual Variability (MAV) is obtained as

c̃v32(·, ·) =
σ̃32(·, ·)
µ̃32(·, ·)

, (13)

where µ̃32(·, ·) and σ̃32(·, ·) are calculated in a similar way as in Equations (5) and (6).
Further, the Inter-Annual Variability (IAV) is defined as

ĉv32(·, ·) =
σ̂32(·, ·)
µ̂32(·, ·)

, (14)

where

µ̂32(·, ·) =
1
Y

Y

∑
y=1

µ32(y, ·, ·), (15)

σ̂32(·, ·) =

√√√√ 1
Y

Y

∑
y=1

[
µ32(y, ·, ·)− µ̂32(·, ·)

]2, (16)
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are the mean value and standard deviation of µ32(y, ·, ·); see Equation (10). By investigating
these parameters, one can look into the year-to-year variability; see, e.g., [16].

2.2.2. Probability Analysis

If the probability function of month m and year y is denoted by

F (x; y, m, ·, ·), y = 1, 2, . . . , Y, m = 1, 2, . . . , M, (17)

then the quantiles of it are given by

xp = F−1(p; y, m, ·, ·), p ∈ [0, 1]. (18)

In the present paper the quantiles of p = 50% (median), 90%, 95%, 99%, and 99.9%
were calculated.

The overall probability function, and consequently the associated quantiles, could be
obtained by adding the frequencies of each month m and year y. Similarly, in the averaged
analysis, the probability was obtained by adding the frequencies of all points together.

2.2.3. Error Analysis

The following statistics were used as error metrics in order to assess the difference
between the two reanalysis datasets: Bias, Root-Mean-Square (RMSE), Scatter Index (SI),
and Pearson’s correlation coefficient (CorrCoeff).

Following the parametrization of the previous sections, the monthly values of these
metrics were (1 stands for ERA5, and 2 for WW3 dataset):

Bias(y, m, ·, ·) =
(
X1 − X2

)
, (19)

where X ≡ µ3(y, m, ·, ·) is calculated using Equation (3).

RMSE(y, m, ·, ·) =
√

(X1 − X2)
2 , (20)

SI(y, m, ·, ·) = RMSE
/

X1 , (21)

CorrCoeff(y, m, ·, ·) = X1 X2 − X1 X2√(
X2

1 − X1
2
)(

X2
2 − X2

2
) . (22)

In addition, according to [17], the following error metrics were also computed

NBias(y, m, ·, ·) =
(
X1 − X2

) / √
X2

1 , (23)

NSTD(y, m, ·, ·) = std
(
X2
) /

std
(
X1
)

, (24)

CRMSE(y, m, ·, ·) = std
(
X1 − X2

) /
std
(
X1
)

, (25)

where std
(
X
)
≡ σ3(y, m, ·, ·) is calculated using Equation (4).

The mean monthly and/or annual variability of these indicators can be studied by
applying appropriate averaging as in Equations (5) and (6) and/or Equations (10) and (11).

3. Numerical Results
3.1. Seasonal Analysis

Following the analysis procedure presented in the previous sections, the mean monthly
variability was assessed on the basis of the mean monthly values µ̃3(m, ·, ·) and σ̃3(m, ·, ·),
calculated by Equations (5) and (6). According to these, there was a zonal distribution
of the values with a distinct different behaviour between the Northern and the Southern
Hemisphere. Especially, around the equator there was a zone with the least variability in
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all months. It seemed that the variability of mean values of ERA5 was a bit lesser than the
corresponding of WW3 in both hemispheres.

In addition, the seasonal variability on a regional basis was studied by analysing
separately the 13 subregions shown in Figure 1. In Figure 2, the mean monthly values
µ̃3(m) and σ̃3(m), calculated using all points included in each subregion, are depicted
for 8 out of the 13 subregions: two showing the variability in the northern extratropical
zone (ETNP, ETNA), four in the tropical zone (TENP, TNAO, TNIO, TSIO) and two in the
southern extratropical zone (ETSP, ETSA).

Additionally, and for comparison purposes, the mean monthly values of satellite
data are also plotted. Although the satellite measurements did not have the structure of a
time series, but rather of a time-space series, it was possible to calculate equivalent mean
monthly values µ̃3(m) and σ̃3(m) by considering all points included in each subregion [25].
In addition, this was expected to reduce the error due to undersampling of altimeters,
as suggested by [28]. As expected, the general picture showed more pronounced variability
in the extratropical areas (ETNA, North Atlantic; ETNP, North Pacific; ETSP, South Pacific;
ETSA, South Atlantic), and a lesser one in the tropical zone (TWNP, TNAO, TESP, TSAO).
Additionally, in TNIO and TSIO the regional phenomenon of monsoon was observed.

Overall, there was better agreement between ERA5 and WW3, rather than with
the satellite data; especially, in the extratropical subregions (ETNP, ETNA, ETSP, ETSA).
In the tropical zone, satellite data were also in agreement with ERA5 and WW3 (TWNP,
TNAO, TESP, TSAO). Generally, small deviations between satellite and model data could
be attributed to the fact that the former were estimated using 18 years (1992–2009), while
the latter were estimated usin 31 years (1979–2009).

Further, the mean annual variability was investigated in terms of c̃v32(·, ·); see Figure 3.
The agreement between ERA5 and WW3 datasets was good. Especially for the waves,
more pronounced variability was shown by both models in the North Pacific and North
Atlantic Ocean.

Figure 2. Cont.
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Figure 2. Mean monthly values for the northern extratropical zone (ETNP, ETNA), the tropical zone
(TENP, TNAO, TNIO, TSIO) and the southern extratropical zone (ETSP, ETSA); see also Figure 1
(continuous: mean value, dashed: standard deviation).

Figure 3. Mean annual variability (in %) (top: ERA5, bottom: WW3, left: significant wave height,
right: wind speed).
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Finally, the inter-annual variability was studied on the basis of ĉv32(·, ·); see Equation (14).
In Figure 4, the coefficient of variation is plotted for both datasets with WW3 exhibiting
greater variability in most of the areas (for waves), and especially in the Southern Hemi-
sphere (for wind). It is worth noted that, the present WW3 results were in accordance with
findings in [16].

Figure 4. Inter-annual variability (in %) (top: ERA5, bottom: WW3, left: significant wave height,
right: wind speed).

3.2. Probability Analysis

In this part of the analysis, the monthly empirical cdf’s of ERA5 and WW3 were
calculated, and then, the quantiles of 50% (median), 90%, 95%, 99%, and 99.9% were chosen
to described the behaviour of the empirical distribution. Due to the fact that the distribution
was not symmetric, the median described the mean behaviour of the distribution better
than the mean value. The other four were used for the description of the tail.

In Figure 5 the overall (averaged over all points) mean monthly values of the quantiles
were plotted, giving a bird eye’s view of the monthly variability of the distribution. It seems
that WW3 distribution had higher values in all quantiles. In addition, ERA5 exhibited
greater (month-to-month) variability in the 99.9% quantile. On the average, the differences
in each quantile between the two datasets were as follows: (a) significant wave height: x50%:
−0.98%, x90%: −9.05%, x95%: −9.21%, x99%: −6.53%, x99.9%: −1.18%, (b) wind speed: x50%:
−2.80%, x90%: −5.73%, x95%: −6.78%, x99%: −5.93%, x99.9%: −4.41%, where minus means
that ERA5 had lower values than WW3. Further, it should be noted that some behaviors
like, e.g., the low variability of the 99% quantile of wind speed might be attributed to the
large spatial differences of this quantile, as we will see further below in Figures 6 and 7,
which resulted in evening out these differences now where all datapoints were taken into
account for the calculation.
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In Figures 6 and 7, the mean annual fields of 50%, 90%, 95%, 99% and 99.9% quantiles
of significant wave height and wind speed are depicted for ERA5 and WW3. In general,
there better than the mean value again a zonal distribution of the quantiles, and ERA5
seemed to exhibit less variability than WW3 (especially the wave height). Additionally,
quantile-values in the Southern Hemisphere seemed to be higher than the ones in the
Northern counterpart, except from the two (resp. three) last quantiles for waves (resp.
wind). The results were in accordance with [29,30], based on altimetry data, and [16], based
on WW3 data.

Figure 5. Monthly quantiles 50% (median), 90%, 95%, 99%, and 99.9% taking into account all
datapoints (left: ERA5, right: WW3, top: significant wave height, bottom: wind speed).

3.3. Error Analysis

Here an assessment of the differences between the two reanalysis datasets was per-
formed on the basis of the error metrics defined in Section 2.2.3. It is reminded that, in the
definition of these metrics, 1 stands for ERA5, and 2 for WW3 dataset. Thus, a “minus”
sign in the results means lower ERA5 values with respect to WW3 ones.

In Figure 8, the overall (averaged over all points) mean monthly variability of the
error measures is given, namely bias, RMSE, SI, CorrCoeff, and NBias, NSTD, CRMSE (left
panels: significant wave height, right panels: wind speed). In addition, in Tables 1 and 2,
the monthly values for the plots are given.
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Figure 6. Mean annual fields of quantiles 50%, 90%, 95%, 99% and 99.9% of significant wave height
(left: ERA5, right: WW3).
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Figure 7. Mean annual fields of quantiles 50%, 90%, 95%, 99% and 99.9% of wind speed (left: ERA5,
right: WW3).
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Similarly, in Figure 9, the overall (averaged over all points) mean annual variability of
the same quantities is also plotted (left panels: significant wave height, right panels: wind
speed), and in Table 2, the monthly values are given.

Most of them seemed to have no significant variability at all. One might see a decrease
in mean annual bias after 1994, which meant better agreement between the two reanalyses
after that year. However, this fact was not considered statistically significant, since the
values were relatively low. The same held true if one observed the normalized Bias NBias
which showed a more stable behavior throughout the years. It is worth noticing that
CorrCoeff was near 1 (0.9 for wave and 0.8 for wind), which means that the two datasets
were in good correlation.

Table 1. Mean monthly variability of error measures between the two reanalyses (significant
wave height).

Month Bias RMSE SI CorrCoeff NBias NSTD CRMSE

January −0.12 0.38 0.17 0.88 −0.04 1.11 0.49
February −0.11 0.37 0.15 0.89 −0.03 1.08 0.47

March −0.10 0.36 0.15 0.90 −0.02 1.09 0.46
April −0.11 0.35 0.15 0.90 −0.03 1.12 0.45
May −0.13 0.35 0.15 0.90 −0.03 1.14 0.46
June −0.15 0.36 0.16 0.88 −0.05 1.17 0.49
July −0.13 0.40 0.18 0.87 −0.05 1.18 0.52

August −0.16 0.36 0.17 0.89 −0.05 1.19 0.50
September −0.12 0.35 0.16 0.89 −0.03 1.13 0.47
October −0.09 0.34 0.15 0.89 −0.02 1.12 0.45

November −0.09 0.35 0.16 0.88 −0.02 1.15 0.46
December −0.11 0.37 0.17 0.89 −0.04 1.15 0.48

Table 2. Mean monthly variability of error measures between the two reanalyses (wind speed).

Month Bias RMSE SI CorrCoeff NBias NSTD CRMSE

January −0.04 1.62 0.23 0.79 −0.00 1.06 0.62
February 0.00 1.58 0.22 0.80 0.00 1.05 0.61

March −0.01 1.58 0.22 0.80 0.00 1.06 0.61
April 0.05 1.57 0.22 0.79 0.01 1.03 0.60
May 0.05 1.56 0.22 0.77 0.01 1.03 0.60
June 0.01 1.54 0.22 0.78 0.01 1.02 0.60
July 0.09 1.61 0.23 0.78 0.01 1.03 0.62

August −0.00 1.57 0.22 0.78 0.00 1.03 0.61
September 0.01 1.59 0.23 0.79 0.00 1.04 0.61
October 0.04 1.58 0.22 0.79 0.01 1.03 0.60

November 0.04 1.57 0.22 0.78 0.01 1.02 0.60
December −0.01 1.58 0.22 0.79 0.00 1.03 0.61
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Figure 8. Mean monthly variability of error measures between the two reanalyses (left: significant
wave height, right: wind speed).

Figure 9. Mean annual variability of error measures between the two reanalyses (left: significant
wave height, right: wind speed).
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Further, the overall (averaged over all the years) mean annual variability of the same
measures is depicted in Figures 10–12. In these figures, one can observe lower values of
ERA5 (negative bias and NBias) in the Northern and the Southern Hemisphere, and higher
values (positive bias and NBias) in the swell-dominated tropical zone. The greater differ-
ences, in absolute value, of the two datasets were exhibited in the Southern Hemisphere,
as shown by RMSE. In addition, the study of NSTD revealed that the variability of WW3
was generally higher than the one exhibited by ERA5, while the reverse situation was exhib-
ited in the areas near the coasts of South America for both wind and waves, and additionally
near the coast of Canada for waves.

Additionally, following the spatial distribution of SI, it seemed that wind speed
exhibited larger variability than wave height, especially in areas around the Equator in
Southeast Asia, west coast of Central America and West Africa.

Further, the two datasets were more correlated in the extratropical zones in both the
Northern and the Southern Hemisphere according to the CorrCoeff, with waves showing
higher values than winds. This was also justified by CRMSE, which exhibited its lowest
values (low relative variability of the differences) in the same areas.

One may argue that there was an inconsistency between the spatial distribution of the
values of RMSE and those of CorrCoeff. However, the two error metrics should be seen
as complementary, giving only partially overlapping (and not exactly the same) statistical
information. According to [31], a more convenient measure to be related with CorrCoeff is
the CRMSE, which is normalized with the standard deviation of the data; see Equation (25).
Indeed, one can observe that in the areas where CorrCoeff suggested low correlation
between the two datasets, CRMSE error exhibited its highest values.

Figure 10. Mean annual variability of Bias, NBIAS (from top to bottom) between the two reanalyses
(left: significant wave height, right: wind speed).
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Figure 11. Mean annual variability of RMSE, NSTD, SI (from top to bottom) between the two
reanalyses (left: significant wave height, right: wind speed).

Figure 12. Mean annual variability of CorrCoeff, CRMSE, (from top to bottom) between the two
reanalyses (left: significant wave height, right: wind speed).

Finally, the same error measures were calculated for the 13 subregions, using the
monthly values of the datasets. The results both for (a) ERA5 vs Satellite, (b) WW3 vs
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Satellite are given in Tables 3 and 4. In most of the regions, bias was negative (satellite data
had greater values than ERA5 and WW3), except for regions: TESP (ERA5 greater than
satellite), and TSAO (both ERA5 and WW3 greater than satellite). The values of RMSE
were pretty close for each area. As already mentioned, CorrCoeff was near 1, which was an
indication of the correlation of the datasets. NSTD, which showed the ratio of the standard
deviations of the two datasets, varied between 1.17–1.71 for “WW3 vs satellite” (satellite
had greater variability 17–71%), and 1.19–1.99 for “ERA5 vs. satellite” (satellite showed
even greater variability compared to ERA5).

Table 3. Error measures (Bias, RMSE, SI, CorrCoeff) between (a) (E)RA5 and (S)atellite, (b) (W)W3
and (S)atellite for the 13 subregions (significant wave height).

Bias RMSE SI CorrCoeff
E-S W-S E-S W-S E-S W-S E-S W-S

ETNP −0.19 −0.21 0.46 0.46 0.19 0.19 0.91 0.90
ETNA −0.44 −0.50 0.68 0.74 0.29 0.32 0.86 0.84

TNIO −0.08 −0.11 0.38 0.38 0.26 0.26 0.81 0.80
TWNP −0.13 −0.17 0.34 0.36 0.20 0.21 0.79 0.79
TENP −0.01 −0.06 0.21 0.22 0.10 0.11 0.83 0.79
TNAO −0.09 −0.09 0.23 0.24 0.13 0.14 0.81 0.80

TSIO −0.07 −0.11 0.28 0.29 0.13 0.14 0.74 0.74
TWSP −0.13 −0.24 0.26 0.34 0.15 0.20 0.34 0.34
TESP 0.03 −0.03 0.32 0.31 0.14 0.14 0.54 0.56
TSAO 0.00 0.01 0.25 0.26 0.13 0.13 0.58 0.49

ETSI −0.18 −0.09 0.41 0.42 0.12 0.12 0.77 0.62
ETSP −0.17 −0.14 0.38 0.41 0.12 0.12 0.79 0.65
ETSA −0.16 −0.11 0.40 0.40 0.14 0.14 0.68 0.55

Table 4. Error measures (NBias, NSTD, CRMSE) between (a) (E)RA5 and (S)atellite , (b) (W)W3 and
(S)atellite for the 13 subregions (significant wave height) (continued).

NBias NSTD CRMSE
E-S W-S E-S W-S E-S W-S

ETNP −0.07 −0.08 1.19 1.17 0.53 0.52
ETNA −0.18 −0.21 1.32 1.42 0.69 0.77

TNIO −0.05 −0.07 1.42 1.27 0.81 0.70
TWNP −0.07 −0.10 1.35 1.33 0.91 0.89
TENP −0.01 −0.03 1.25 1.20 0.79 0.77
TNAO −0.05 −0.05 1.26 1.31 0.74 0.79

TSIO −0.03 −0.05 1.35 1.25 0.83 0.77
TWSP −0.07 −0.14 1.99 1.62 1.86 1.60
TESP 0.01 −0.01 1.85 1.71 1.60 1.44
TSAO 0.00 0.01 1.77 1.59 1.37 1.26

ETSI −0.05 −0.03 1.34 1.21 0.79 0.80
ETSP −0.05 −0.04 1.35 1.17 0.89 0.88
ETSA −0.05 −0.04 1.39 1.28 1.06 1.03

4. Concluding Remarks

In the present paper, the newly released ERA5 wind and wave climatology is compared
against WW3 climatology, as well as a merged satellite database. The intercomparison
covers a period of 31 years (1979–2009), and has been performed using three-hourly wave
fields for the entire globe.

The mean monthly values of the datasets are used as cornerstones of the analysis. First,
seasonal analysis is performed based on seasonal characteristics of them, showing a very
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good agreement. Moreover, the mean annual and the inter-annual variability computed
are in accordance with findings of other researchers [16].

Then, quantiles of the empirical cumulative distribution are calculated in order to
get a picture of the variability of the distribution and of several percentiles of interest;
especially in the tail of the distribution.

Finally, several error measures are derived in order to assess the agreement between
the datasets.

In addition to the field analysis, data are considered for thirteen non-overlapping
subregions following [23], and the above mentioned analysis (seasonal, probability, error)
is performed for each one of them.

All in all, the two datasets are in a very good agreement, with WW3 having little
greater variability than ERA5.

Some particular comments are as follows. The two datasets are well correlated in the
extratropical zones in both the Northern and the Southern Hemisphere. ERA5 has lower
values than WW3 in the Northern and the Southern Hemisphere, and higher values in
the swell-dominated tropical zone. The variability of WW3 is generally higher than the
one exhibited by ERA5, while the reverse situation is exhibited in the areas near the coasts
of South America for both wind and waves, and additionally near the coast of Canada
for waves. It also seems that wind speed exhibits larger variability than wave height,
especially in areas around the Equator in Southeast Asia, west coast of Central America
and West Africa.
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