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A B S T R A C T   

Energy system models are increasingly used to identify climate change mitigation measures. Crucially, such 
models require future cost estimates, which depend on both technological advancement and investments. In 
global models, which encompass the whole world, this can be implemented via learning curves. In regional 
models, which typically span a country or continent, it can however be challenging to reconcile global cost 
reductions with local investments. We propose a new approach to account for global cost developments in 
endogenous regional energy system models. Moreover, we show how this approach can be implemented using 
either a MILP formulation or discretized investment packages. Finally, we demonstrate and compare the pro-
posed approach of implementing cost reductions to exclusively exogenous and endogenous approaches in a 
simple case study.   

1. Introduction 

Over the past 15 years, there has been a growing awareness of the 
anthropogenic climate change attributed to greenhouse gas emissions. 
Global temperatures will likely reach at least 1.5 ◦C above pre-industrial 
levels [1], but most nations have by now committed to limiting global 
warming to below 2.0 ◦C via the Paris Agreement [2]. As a concrete step 
towards that goal, the European Union has set its target to be net-zero 
emissions by 2050 [3]. Since a large fraction of the pertinent emis-
sions come from the combustion of fossil fuels by the energy and 
transport sectors, fundamental changes to the energy system are 
required to achieve these objectives. 

Realistically, energy system transformations of this magnitude must 
be guided by policy makers, which in turn require energy system models 
to make informed decisions. Energy system models come in many fla-
vors and can be, e.g., classified [4] as energy system optimization models 
(ESOMs) such as MARKAL/TIMES [5–7], MESSAGE [8], OSeMOSYS [9], 
and eTransport [10]; energy system simulation models (ESSMs) such as 
LEAP [11], NEMS [12], and PRIMES [13]; power-system 
/electricity-market models; and qualitative/mixed-method scenarios. 
Many of these models have roots in the models developed after the oil 
crisis in the 1970s and are now being used to plan a transition to a 
low-emission energy system. For more background, see e.g. Pfenninger 
et al. [4]. In this paper, we focus on ESOMs in particular, although the 
techniques may be appropriate for other models as well. 

Energy system optimization models attempt to minimize the costs of 

constructing, maintaining, and operating an energy system, while 
satisfying the predicted societal needs: transport, heating, electricity, 
etc. Consequently, they can help identify realistic pathways to a zero- 
emission energy system [14], evaluate different technologies that 
satisfy the same societal needs [15], restructure the energy system into 
suitable regions [16], and not least, suggest cost-optimal strategies to 
achieve all these goals. Moreover, a regional energy system model is 
generally required to determine which technology investments are 
cost-effective within a geographical region, as different regions will 
have different natural resources, different industrial needs, and different 
existing infrastructure. 

Based on the time scales proposed in current international treaties, 
modeling the full transition to a zero-emission energy system requires a 
model that spans decades. However, the costs of the energy system 
components are expected to change drastically on this time scale. One of 
the main factors behind this cost development is technological learning, 
which describes how, e.g., a production process becomes increasingly 
optimized as more units are produced and deployed. To provide useful 
predictions, these learning effects must be accounted for. For example, 
the goal of an ESOM is to minimize costs. However, this requires an 
estimate of the cost, which for large-scale models requires a model for 
the cost reductions due to technological learning. Many scenarios of 
interest in energy systems analysis, such as the potential costs of flawed 
regulation or a lack of international coordination, may also yield 
different outcomes when learning effects are properly accounted for. For 
a recent review covering applications of learning effects in energy sys-
tem models, see e.g. Ouassou et al. [17]. 
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There are two ways to include cost developments due to learning 
effects in an energy system model [18]: exogenous learning, where the 
cost development over time is a predefined input to the model [19]; and 
endogenous learning, where the costs are dynamically updated as func-
tions of the investments made by the model [20]. In the second 
approach, the final cost of a technology is notably an output from the 
model. In this paper, we focus on the latter, specifically via the concept 
of learning-by-doing [21]. Learning-by-doing was originally observed by 
Wright [22]; although only one of several known mechanism for tech-
nological learning [23], it is often the only one modeled [17,18,24]. 
Mathematically, such one-factor learning curves are formulated as follows 
[25]: 

C(x)=C0

(
x
x0

)b

(1)  

Here, C(x) corresponds to the capital costs of one unit after a cumulative 
capacity x has been installed, while C0 is a reference cost at an installed 
capacity x0. This equation is often parametrized in terms of a conven-
tional learning rate LR = 1 − 2b. In a full-scale energy system model, 
each relevant technology would be described by at least one such 
learning curve, where the learning rates are empirically determined by 
curve-fitting historical data. 

Technologies are in general produced and deployed on a global scale. 
As an example, the deployment of renewable energy like wind power or 
photovoltaics is global with a large increase in recent years in Asia [26]. 
However, as discussed briefly above, most energy system models are 
regional. This causes difficulties in including learning effects stemming 
from regions outside the bounds of the energy system model. There are 
three main approaches to this problem, as discussed below. 

The first approach is to ignore global capacity expansions, i.e., to use a 
purely regional endogenous model. One example of such a model would 
be US EIA’s National Energy Modeling System (NEMS) [12,27]. This 
approach may be acceptable for some scenarios (e.g., forecasting local 
installation costs); but for many technologies, global learning effects can 
be expected to be as significant as local learning, which implies that this 
approach risks drastically overestimating future costs. In addition to the 
issues with applying endogenous learning models in a regional model 
specifically, their application to energy system modeling in general has 
been criticized in the literature; see e.g. Nordhaus [28]. This necessitates 
a careful analysis of the data and assumptions used for their imple-
mentation, as discussed in more depth by, e.g., Samadi [29]. 

The second approach is to model the entire world, which avoids the 
problem by directly calculating global cost reductions. An example of 
this approach is CSIRO’s Global And Local Learning Model (GALLM) 
[30]. They divide the world into three regions: AU (Australia), DV 
(developed world), and LD (less developed world). Technologies of in-
terest are then grouped based on whether they primarily experience 
local learning (e.g., PV BOS) or global learning (e.g., PV modules). The 
former category is modeled using separate learning curves per region, 
while the latter category is modeled using a global learning curve. While 
this is clearly the most rigorous solution to the problem, it also signifi-
cantly increases the computational effort and data requirements 
compared to the first approach discussed above. Moreover, as there is 
always a trade-off between model complexities along different di-
mensions for fixed modeling resources, this approach may require a 
reduced accuracy along other axes to make the optimization problem 
numerically tractable. Examples of other relevant dimensions one may 
need to sacrifice to implement this approach are the number of invest-
ment alternatives, the geographical and temporal resolutions, and the 
level of detail in energy infrastructure models (e.g., for energy trans-
mission and storage). 

The third approach is to model only the region of interest fully endoge-
nously and approximate the effects of global learning. Capacity expansions 
outside the region of interest are then estimated based on existing global 
models—either directly, or via references like the World Energy Outlook 
[31] or the Energy Technology Perspectives [32]. One may then use 
various mathematical approximations to subsume these global effects 
into the regional model. This provides an accuracy that is intermediate 
between the two conventional approaches above, while retaining the 
comparatively low computational requirements of the first approach. 
This is the approach that we focus on in the present paper. 

One such strategy is to downscale the global capacity expansions to 
the modeled region, and use this to adjust the learning rates employed in 
the regional endogenous energy system model, as was performed by 
Heuberger et al. [25]. Note that in their model, they assume that the 
current ratio between capacity installed in the UK and globally will 
remain constant throughout the modeled time period. As the UK is a 
developed economy, this approach may lead to an overestimation of the 
learning rate for the UK as the scaling increases the learning rate. Hence, 
it corresponds to an optimistic scenario with respect to future cost re-
ductions, as pointed out by the authors. The increased learning rate may 
result in an early investment in technologies in the chosen region 

List of notation 

Sets 
N Investment periods with index n ∈ N 
L Line segments for piecewise linear implementation of cost 

reduction with index l ∈ L 
P Investment packages with index p ∈ P 

Latin variables 
x Cumulative invested capacity 
xinv,p Capacity of investment package p 
C Unit costs 
t Time 
y Cumulative investment costs 
ypre,n Cumulative investment cost in investment period n with a 

total investment of xn− 1 

Greek variables 
α Fraction of initial cost that experiences global learning 
ρn,l Binary variable for the piecewise linear approximation to 

assign a capacity to a given segment 

Parameters 
b Exponential coefficient, calculated from the learning rate 
LR Learning rate 
Xlo,l Lower cumulative capacity for a given line segment l 
Xup,l Upper cumulative capacity for a given line segment l 
Ylo,l Lower cumulative investment cost for a line segment l 
Yup,l Upper cumulative investment cost for a line segment l 
Slopel Cumulative investment cost slope for a line segment l 

Subscripts 
i Inside the investigated model area 
o Outside the investigated model area, i.e., exogenous input 
0 Initial installed capacity and cost 
s Cumulative installed capacity at the start of an investment 

period, i.e. before purchasing new investment packages 
f Final installed installed capacity for an investment period, 

i.e. including investment packages purchased in that 
period  
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resulting in an overestimation of the impact of global cost reductions. 
This overestimation can be caused by the model assuming implicitly that 
a certain capacity increase outside the investigated area is happening 
simultaneously. This may however not be the case. The approach can be 
further expanded with adjustments of the learning rates as a function of 
time due to a reduced share of capacity investments in the investigated 
region over time. This is similar to the approach reported by Handayani 
et al. [33]. 

Another uncertainty arises in this approach that certain aspects of 
cost reductions are associated to a regional and not a global effect. One 
example is the construction of wind turbines. Here, the foundation, the 
tower and the blades may have regional learning effects due to the 
transport costs and bulkiness of the components, while the turbine and 
gearbox may be more affected by global cost reductions. Correspond-
ingly, it can be raised that utilizing endogenous learning effects does not 
deliver what it promises with respect to improved estimates of future 
costs, and hence, robustness of the model results. This concept is 
touched by Louwen, Schreiber [18], but unfortunately, no details 
regarding the implementation in an energy system model with 
time-depending global data was provided. 

We propose a new methodology for approximating global learning 
effects in regional energy system models, which addresses some short-
comings of the previous implementations. Our approach treats the re-
gion of interest purely endogenously and the rest of the world purely 
exogenously, and we formulate a mathematical and numerical strategy 
to consolidate these two learning models into a hybrid model that is 
appropriate for regional learning model applications. Notably, this 
strategy could be used to retrofit existing regional energy system models 
with a learning model that accounts for both local and global learning 
effects—without requiring the implementation of a global energy system 
model. 

The paper is structured as follows. Section 2 will present a general-
ized framework for the inclusion of global effects in a regional energy 
system model with a focus on the differentiation between learning 
caused by global and regional effects. Section 3 extends the concepts of 
learning-by-doing to a discrete investment model where the investments 
are bundled into packages. Section 4 illustrates the results with a small 
case study and compares them with purely endogenous and exogenous 
cost reductions. Section 5 discusses the inclusion of global effects in a 
regional model, how the approaches for including global effects differ, 
and what that the inclusion of global learning effects can imply for 
policies. 

2. Implementing global learning with continuous investments 

2.1. Combining endogenous and exogenous cost reductions 

When employing a regional energy system model, it is possible to 
treat the regional learning effects endogenously. However, global 
learning effects should be exogenously defined as they are independent 
of the model results. Thus, combining regional and global effects into a 
regional energy system model results in a hybrid approach where both 
exogenous and endogenous cost reductions are present. In that respect, 
the capacities x and x0 in Eq. (1) can be disaggregated as 

x = xo + xi

x0 = xo,0 + xi,0
(2)  

in which the subscripts i and o correspond to capacity expansions inside 
and outside the investigated area. Consequently, the cost C(x) is no 
longer a function of only the installed capacity x, but also a function of 
time, as is the case for exogenous cost developments. Eq. (1) can be then 
modified to 

C(t) = C0

(
xo(t) + xi(t)

x0,o + x0,i

)b

(3)  

Hereby, xo(t) is provided entirely exogenously to the model, while xi(t)
is a result of the model. Hence, it is necessary to obtain capacity 
expansion numbers for the regions of the world not considered in the 
energy system model. These can in general be obtained from global 
reports like World Energy Outlook [31] or the Energy Technology Per-
spectives [32]. As most energy system models utilize an approach using 
two different horizons, one for investments and one operational, time 
will normally not be modeled as a continuous variable. Instead, an 
integer variable is utilized, reducing Eq. (3) to 

Cn
(
xn,i, xn,o

)
= C0

(
xn,o + xn,i

x0,o + x0,i

)b

(4)  

in which the index n corresponds to the nth investment period. Note that 
the cost is in this representation both a function of the investment period 
n and the total installed capacity in all areas xn,o + xn,i. In practice, xn,o is 
given exogenously to the model while xn,i is an endogenous variable. 

2.2. Inclusion of exclusive regional cost reductions 

The advantage of the hybrid approach suggested in section 2.1 is the 
possibility to differentiate between factors affected by global capacity 
expansion (e.g., battery cells or solar PV modules) and factors affected 
solely by regional capacity expansion (e.g., construction or balance of 
plant). Although current implementations of endogenous cost re-
ductions allow a differentiation in components with different learning 
rates using the concept of composite learning curves [34], the proposed 
approach allows to combine said exclusive local factors with global ef-
fects. To this end, we can extend Eq. (4) using composite learning curves 
to differentiate between the regional and global effects: 

Cn
(
xn,i, xn,o

)
= C0

[

α
(

xn,o + xn,i

x0,o + x0,i

)bo

+ (1 − α)
(

xn,i

x0,i

)bi
]

(5)  

Here, the total cost is divided into a fraction α that experiences global 
learning and a fraction 1 − α where only regional learning occurs. Fig. 1 
illustrates this concept for capacity expansion of solar PV using the 
concept of iso-cost curves in which the investigated region is Europe. 
That is, each line corresponds to a constant curve in €/kW as shown on 
the lines. As we can see in subplot a), if we neglect regional learning (α =

1), then there is not much to gain to include endogenous learning in the 
energy system model as the cost is dominated by the global investments. 
There is only a small benefit for investing in 2020–2025, as can be seen 
by the falling lines corresponding to cheaper investments in Europe at 
high invested capacities. In later investment periods, this benefit is 
reduced due to the large investments outside the investigated area as can 
be seen by the flatter (less steep) iso-cost curves. If we however assume 
that roughly half the cost comes from the balance of system, which is 
suggested to experience regional learning [35] (α = 0.5, subplot b), then 
we can directly see the impact of global vs. regional learning: each 
contour curve now decreases significantly as a function of the European 
installed capacity, highlighting the importance of endogenous learning 
in the model. This is especially pronounced for high installed capacities 
in Europe as a significant fraction of the initial capital costs only expe-
riences regional learning. The kinks in the contour plot are caused by the 
linear interpolation for the years not reported, resulting in 
non-continuous derivatives at the reported years. Furthermore, the 
overall cost reductions are reduced compared to the case with only 
global learning, as the balance of system costs are only affected by 
regional capacity expansion, hence reducing the number of doublings 
experienced by the system. 

2.3. Implementation in energy system models 

When modeling energy systems using Eq. (5), one challenge is how to 
handle the exogenous capacity xn,o. Should one use forecasted capacity 
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at the beginning of period n, which may last several years, at the middle 
year within period n, or for the final year of n? Using values for the 
beginning of n implies that the costs are not affected by forecasted in-
vestments outside the investigated area within the period n. There are 
two main ways to address this issue: 

1. Use the initial external capacity xn,o in the first year within the in-
vestment period n, and neglect potential cost reductions stemming 
from investments in later years within that period n; or  

2. Include global reductions for investment costs in period n that occur 
due to investments within that period. 

The first alternative addresses the problem through using the 
external capacity xn,o at the first year of period n. However, the invested 
external capacity in period n will affect the investment costs in period 
n+ 1. Conceptually speaking, this approach corresponds to simulta-
neous investment in capacities without learning between the investment 
within an investment period. The cost reduction through learning is then 
only experienced in investment period n+ 1. 

The second alternative is to include the cost reductions through in-
vestments outside the investigated area within an investment period n. 
This can be achieved by averaging the cost with respect to the interna-
tional capacity expansions within that investment period. The average 
cost in each period is defined as an integral of the cost, 

Cn
(
xn,i

)
=

1
xn+1,o − xn,o

∫xn+1,o

xn,o

Cn
(
xn,i, xo

)
dxo (6)  

Note that this reduces a two-argument function Cn that depends on both 
the endogenous capacity xn,i and exogenous capacity xn,o, to a one- 
argument function Cn that only explicitly depends on the endogenous 
capacity. Formally, the exogenous contribution is still there via the time 
index n, but this reformulation of the cost curve lets us treat the problem 
purely endogenously within a given investment period n. If we now 
substitute in Eq. (5) and perform the integration, we find the following 
analytical expression for the resulting cost function: 

Cn
(
xn,i

)
=

C0α
ao

xao
rel,n+1 − xao

rel,n

xrel,n+1 − xrel,n
+ C0(1 − α)

(
xn,i

x0,i

)bi

(7)  

where we defined ao = bo + 1 and the relative total capacities xrel,n =
(
xn,o + xn,i

)/(
x0,o + x0,i

)
, xrel,n+1 =

(
xn+1,o + xn,i

)/(
x0,o + x0,i

)
. 

Fig. 2 illustrates the implementation of discrete investment periods 
for both alternatives. The continuous contour lines correspond to Fig. 1 
b) to simplify the understanding, while the color coding remains the 
same for the vertical, discontinuous contour lines. The discontinuous 
contour lines correspond here to the learning curves within an invest-
ment period. The discontinuous contour lines will approach the 
continuous contour lines in the limiting case in which the length of the 
investment periods approaches 0. Subplot a) shows the implementation, 
when the used capacity from outside the investigated area corresponds 

Fig. 1. Illustration of Eq. (5) using iso-cost curves (in €/kW) as a function of investment year and cumulative installed capacity in Europe. The data for the global 
capacity expansion is taken from the Net Zero by 2050 report [36]. The assumed global learning rate is LRo = 20% and initial cost C0 = 671 €/kW based on the costs 
reported by the Net Zero by 2050 report [36]. Subplot a) shows α = 1 while b) uses α = 0.5 and LRi = 13% corresponding to BOS. 

Fig. 2. Cost development using iso-cost curves (in €/kW) for an assumed constant cost in a 5 year investment period (indicated through grey boxes) as a function of 
the investment period and cumulative installed capacity in Europe. The vertical lines correspond to costs within an investment period when a) the initial capacity is 
used for calculating the impact of global capacity expansion [Eq. (5)] and b) the average price from global capacity expansion capacity is used for calculating the 
impact of global capacity expansion [Eq. (7)]. The vertical green line corresponds to a cost of 525 €/kW, the vertical light blue line corresponds to a cost of 475 €/kW, 
while the vertical pink line corresponds to a cost of 425 €/kW. The continouos contour lines in the background are the same as in Fig. 1 b). 
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to the initial year in the investment period using Eq. (5) for each in-
vestment period. This concept can also be verified as the vertical contour 
lines intersect with the continuous contour lines at the beginning of a 
new investment period. Subplot b) on the other hand utilizes Eq. (7) 
which corresponds to the average cost when considering the in-
vestments outside the investigated area through calculating the average 
investment cost. The vertical contour lines are in subplot b) shifted to 
the left and the leftmost vertical contour lines in subplot a) are not 
present. This is visualized for the individual years with the vertical 
green, light blue, and pink lines. Hence, using the average cost results in 
lower cost for the capacity expansion compared to using the initial cost. 
This is not surprising as the approach also considers cost reductions 
through learning outside the investigated area. 

Due to the nonlinearity, learning curves are frequently implemented 
using piecewise linear approximations [25,37,38]. Here, it is preferred 
to utilize the cumulative cost instead of the unit cost to avoid a bilinear 
term in the cost function [25]. The inclusion of global learning effects 
would then result in the development of piecewise linear approximation 
for each investment period. Considering the implementation of Heu-
berger et al. [25] and based on the work of Gómez [37], we propose an 
extension for the inclusion of global learning. For simplification, we 
exclude the set il in our mathematical description below. This set cor-
responds to the technologies which experience learning effects. As we 
only consider technologies with learning in this approach, it is not 
necessary to include this index. However, that does not limit the 
approach to models in which all technologies experience technology 
learning. Furthermore, we consider investments in continuous capacity 
(MW) instead of number of units of a given capacity each. However, the 
approach could be also implemented when the model invests in units 
instead of capacity. Furthermore, we adjusted the notation to be 
consistent with the chosen notation in this paper. Fig. 3 reproduces 
Fig. 2b) from Heuberger et al. [25] with the adjusted notation. The 
cumulative capacity xn corresponds in this representation to 10 GW, 
which results in line segment 3 being active. The corresponding upper 
and lower cumulative capacities Xup,3 and Xlo,3 as well as the cumulative 
costs Yup,3 and Yup,3 are highlighted in combination with the cumulative 
cost yn. 

Using the notation outlined in this paper, the implementation is then 
given by 
∑

l
ρn,l = 1 (8)  

xn,l ≥ Xlo,lρn,l (9)  

xn,l ≤ Xup,lρn,l (10)  

xn =
∑

l
xn,l (11)  

yn =
∑

l
ρn,l Ylo,l + Slopel

(
xn,l − ρn,lXlo,l

)
(12)  

Slopel =
Yup,l − Ylo,l

Xup,l − Xlo,l
(13)  

Each line segment l generally spans multiple investment periods n, but 
the binary variables ρn,l in Eq. (8) ensure that only one line segment l is 
active per investment period n. Consider Fig. 3: ρn,3 = 1 while ∀l ∕= 3 :

ρn,l = 0. Eqs. (9) and (10) limit the capacity in each line segment to the 
lower and upper bound of that segment. Correspondingly, xn,l = 0 if 
ρn,l = 0. Eq. (11) translates the cumulative capacities into the total ca-
pacity as introduced beforehand. Eq. (12) calculates the cumulated cost 
for all investments up to the investment period n using the slope 
calculated using Eq. (13). Note that the slope is a parameter, and hence, 
calculated beforehand. As this implementation is using the cumulative 
cost, that is all investments that happened up to the investment period n, 
it is important to subtract yn− 1 from yn in the cost function. Otherwise, it 
would not be possible to include discounting. 

As can be noted from Eqs. 8–13, only the parameters describing the 
piecewise linear formulation are independent of the investment period. 
Introducing global cost reductions can hence be achieved through the 
introduction of time dependent parameters for describing the piecewise 
linear approximation, that is using, e.g., Slopen,l instead of Slopel. 
However, this also requires modifications to the objective function as 
different piecewise linear approximations are used in the calculation of 
yn− 1 and yn. Instead, it is necessary to calculate the cumulative cost ypre,n 

corresponding to the cumulative investment cost in this period without 
any investments given by 

ypre,n =
∑

l
ρn− 1,l Ylo,n,l + Slopen,l

(
xn− 1,l − ρn− 1,lXlo,n,l

)
(14)  

and subtract this value from yn instead of yn− 1. One prerequisite of Eq. 
(14) is that the split in line segments is similar for all piecewise linear 
representations of the cost function. If this is not the case, it is possible to 
introduce further variables corresponding to the position of the cumu-
lated installed capacity in the previous investment period xn− 1,l. Hence, 
constraints (8) to (10) have to be duplicated: 
∑

l
ρpre,n− 1,l = 1 (15)  

xpre,n− 1,l ≥ Xlo,n,l ρpre,n− 1,l (16)  

xpre,n− 1,l ≤ Xup,n,l ρpre,n− 1,l (17)  

3. A discrete approach for implementing global learning effects 

3.1. General implementation of learning by doing for discrete investments 

One alternative to the continuous implementation in the previous 
section is the implementation via investment packages. In this approach, 
operational and investment analyses are decoupled. The decoupling 
implies that it is possible to have a more complicated description in the 
operational analysis without problems associated with the computa-
tional cost. In addition, it allows non-linear, non-convex optimization 
problems for the investment analysis. As an example, Integrate (former 
name eTransport [10]) uses a (mixed-integer) linear programming 

Fig. 3. Piecewise linear interpolation of the unit cost C and the cumulative cost 
y as a function of the cumulative capacity x, adopted from Heuberger et al. 
[25]. The figure also includes the breakpoints of the linear segments and 
highlights important parameters for line segment 3. 
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approach for solving the operational problem and dynamic program-
ming for the investment analysis [10]. To this end, it utilizes investment 
packages of a specific size (e.g., 5 GW). Each investment package has a 
specific cost associated to invest into a technology. For each technology, 
there can exist several investment packages with a reduced cost asso-
ciated to the subsequent investment package due to learning-by-doing. 
Integrate has a constraint implemented that avoids investment in sub-
sequent investment packages before the initial investment packages, e. 
g., it cannot invest in package 3 of a technology before it has invested in 
packages 1 and 2. 

When using investment packages, learning effects can be incorpo-
rated through two different approaches:  

1. The cost of an investment package p corresponds to the unit cost Cp 
before the investment multiplied with the size of the investment 
package. This approach implies that there is no learning within the 
package.  

2. The cost of an investment package p corresponds to the average cost 
Cp within an investment package multiplied with the size of the in-
vestment package. Hence, learning can also occur within the 
package. 

For a concrete example, consider a large investment in solar panels in 
2020. The first option would then price every solar panel at their 2020 
cost, corresponding to an instant purchase with no learning effects. This 
is a reasonable approach if the investment occurs on a short enough time 
scale (e.g., 1–2 years). The second option is to assume that each solar 
panel purchased reduces the price of the next and include the associated 
learning effects into the cost estimates. This is more realistic for say a 
decade-long investment period that spans 2020–2030. 

Let us define the capacity up until package p as xp,s, where the 
subscript s stands for start. In the first approach, Eq. (1) can be directly 
used with this capacity to calculate the corresponding cost Cp: 

Cp = C0

(
xp,s

x0

)b

(18) 

However, if we choose the second approach, it is necessary to modify 
Eq. (18). The average cost of an investment package is calculated by 
integrating the traditional learning curve from the installed capacity at 
the beginning of an investment package, xp,s, to the end of an investment 
package, xp,f , and dividing it by the invested amount. This results in the 
following average cost Cp in an investment package p: 

Cp =
1

xp,f − xp,s

∫xp,f

xp,s

Cn dxn =
C0

a

(
xp,f
x0

)a

−

(
xp,s
x0

)a

(
xp,f
x0

)

−

(
xp,s
x0

) (19)  

with the helper variable a = b+ 1. The installed capacity before and 
after purchasing an investment package p are then given by: 

xp,s = x0 +
∑p− 1

k=1
xinv,k (20a)  

xp,f = xp,s + xinv,p (20b) 

Fig. 4 illustrates the concept of investment packages for a case study 
where the initial capacity x0 corresponds to the installed solar PV ca-
pacity in Europe and 6 investment packages are applied for incorpo-
rating learning-by-doing-effects. Note that this corresponds to pure 
regional learning. The applied learning rate is LR = 20%. The green 
boxes correspond to using the initial cost Cp in each investment package, 
and hence, do not consider learning within an individual investment 
package. The blue boxes assume that each investment package is also 
affected by learning effects, corresponding to a reduction in the overall 
costs of an investment package through the utilization of an average cost 

Cp. Neither of these two approaches considers the effect of global 
learning and may result in an overestimation of the learning effect in the 
early stage through investments into a technology in a European model. 

3.2. Inclusion of global learning effects 

Global learning effects can be included in discrete investment models 
by making the investment package costs dependent on the investment 
period. This implies that if the model does not invest in a certain package 
in the first investment period, its price is decreased in the next period 
due to the learning that is happening in the rest of the world. It can be 
implemented using Eq. (4) and substituting xn,i with xp,s. 

Cn,p = C0

(
xn,o + xp,s

x0,o + x0,i

)b

(21) 

It is also possible to calculate the average cost of an investment 
package based on the investments in Europe. This approach utilizes the 
same equation as in the regional learning implementation, see Eq. (19). 
However, for each investment period n and investment package p, both 
xn,p,s and xn,p,f include the global capacity at the start of the investment 
period xn,p,s,o: 

xn,p,s = xn,p,s,o + x0,i +
∑p− 1

k=1
xinv,k,i (22a)  

xn,p,f = xn,p,s + xinv,p,i (22b)  

Furthermore, it is possible to utilize the average costs occurring in the 
world within an investment period n. Here, xn,p,f has to be further 
adjusted to account for the changes happening in the world in the in-
vestment period: 

xn,p,f = xn,p,f,o + x0,i +
∑p

k=1
xinv,k,i (23)  

The latter will reduce the costs in each investment package even further. 
Note that this approach can also incorporate exclusive regional cost 

reductions as outlined in Section 2.2. To this end, the cost function is 
split into two parts that can be integrated independently with different 
initial and end capacities: 

Fig. 4. Example for investment modules in Integrate for a learning rate of LR =

20% with the initial cost (green) and the average cost (light blue) used as the 
investment package cost. The initial cost C0 = 671 €/kW is taken from the Net 
Zero by 2050 report [36] The continuous cost line illustrates the calculation of 
the average costs. 
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Cn,p
(
xn,i

)
=

C0α
ao

(
xn,p,f

x0

)ao

−

(
xn,p,s

x0

)ao

(
xn,p,f

x0

)

−

(
xn,p,s

x0

) +
C0(1 − α)

ai

(
xp,f,i
x0,i

)ai

−

(
xp,s,i
x0,i

)ai

(
xp,f,i
x0,i

)

−

(
xp,s,i
x0,i

)

(24)  

with x0 = x0,o + x0,i and 

xp,s,i = x0,i +
∑p− 1

k=1
xinv,k,i (25a)  

xp,f,i = xp,s,i + xinv,p,i (25b) 

xn,p,s and xn,p,f are defined in Eqs. (22) and (23) and either way can be 
used for xn,p,f . 

The introduction of investment packages results in the cumulative 
installed capacities xp,s,i and xp,f,i being independent of the investment 
period. Fig. 5 shows the dependency of the package price as a function of 
both installed capacity in Europe and the investment year using the 
same parameters as in Fig. 2 b). It utilizes the average cost of the in-
vestment package as the continuous lines corresponding to the respec-
tive learning curves cross the investment packages in the center. In 
addition, it uses the average price from international investments, that is 
using Eq. (23) for the end capacity for the contribution from interna-
tional capacity expansions. When comparing this Figure with Fig. 2 b), 
we can see that the costs of the investment packages in each year 
correspond to costs represented by the continuous description in this 
Figure and the vertical contour lines in Fig. 2 b). An investment algo-
rithm is free to move both downwards (skip to next period) and to the 
right (purchase an investment package this period) within this plot. 

4. Case study 

4.1. Case study design 

In a case study, we used Integrate for analyzing the impact of 
combining endogenous and exogenous cost reductions. To this end, we 
created a model with six investment packages each for onshore wind 
power and solar PV. In addition, there is unlimited electricity storage as 
well as a pre-defined demand for electricity. Fig. 6 illustrates the case 
study. The electricity demand and its profile is adapted from the work in 
the Hydrogen4EU study [14]. Hence, the investigated region corre-
sponds to Europe. In addition, there is a node corresponding to other 

power generation with a flat marginal electricity price. This “other” 
node is only able to satisfy 95%, 90%, 85% and 76% of the electricity 
demand in 2020, 2030, 2040, and 2050 respectively. Therefore, the 
model must invest in either onshore wind power, solar PV, or a com-
bination of both. The chosen initial costs, learning rates, and production 
profiles for both onshore wind power and solar PV were also taken from 
the Hydrogen4EU study [14]. The total possible capacity investments 
for solar PV correspond to 2000 GW while for wind power they corre-
spond to 1000 GW. With the given profiles, both capacity investments 
provide roughly the same amount of electricity as can be seen in Fig. 6. 
The distribution of total possible capacity between the six packages for 
each technology are given by the shares 1/36, 1/18, 1/12, 1/6, 1/3, and 
1/3 respectively for package 1–6. This implies that the combined ca-
pacity of packages 1–4 equals the individual capacities if packages 5 and 
6. The data for international capacity expansions for wind- and 
solar-power were taken from the Net Zero by 2050 report [36]. 

In total, three different approaches were compared:  

1. purely exogenous cost reductions in which future costs are calculated 
using learning rates outside the model;  

2. the proposed combination of exogenous and endogenous cost 
reductions;  

3. and purely endogenous cost reductions. 

The proposed approach utilized the initial global capacity for each 
investment period as starting point for optimization. As the aim of this 
case study is to highlight the differences in capacity investments 
depending on the chosen implementations of cost reductions, we had to 
scale the learning rate for both case 1 (exogenous, decrease to account 
for exclusive local learning) and case 3 (endogenous, increase, to ac-
count for global capacity expansions) so that the costs are comparable to 
case 2 (exogenous and endogenous). However, case 3 still utilizes the 
concept of composite learning rates for balance of system and module 
costs as this concept does not require the incorporation of global 
learning effects. 

4.2. Results 

The investment pathways of the three optimizations can be found in 
Fig. 7. From this figure, we can see that the different cost calculations 
result in significantly different chosen technologies, although the in-
vestment costs for the individual packages are comparable. In the 
exogenous case (Case 1), the model invests in wind power in the first 
three investment periods (2020–2040) followed by a heavy investment 
in solar PV in the final investment period (2050). On the opposite – using 
the purely endogenous approach (Case 3) results in exclusive in-
vestments in solar PV due to the higher learning rate. The proposed 
approach in case 2 keeps this balanced, as it invests in wind power in the 
first investment period (2020) and switches to investments in solar PV in 
the remaining investment periods. 

Case 1 (only exogenous learning) can be explained by the initially 
high investment costs for solar PV which reduce significantly up to 2050 
due to the large-scale capacity expansion outside of the modeled region. 
Before 2040, wind power is hence cheaper for investments. This in-
vestment pathway is typical for a model with significant decreases in 
costs for one technology over the simulation horizon. However, it fails to 
acknowledge that these cost reductions require investments in either 
R&D or capacity expansions where only the latter is implemented in the 
model. Similarly, case 3 (only endogenous learning) is not unsurprising 
as purely endogenous models tend to invest mostly into technologies 
having the highest learning rates to reduce the overall system costs. 
Hence, building rate constraints are frequently utilized to constrain 
models into more balanced solutions. This is in this case however not 
necessary, as the model instead chooses to invest only as much as 
required to satisfy the demand. Case 2 (the proposed method) however 
utilizes a more nuanced approach. As wind power is cheaper in 2020, it 

Fig. 5. Example for the development of the costs of individual investment 
packages. The assumed global learning rate is LRo = 20%, the initial cost C0 =

671 €/kW, taken from the Net Zero by 2050 report [36], α = 0.5, and LRi =

13% corresponding to BOS. 
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invests similarly to case 2. However, the cost reductions due to learning 
allow the model to invest in solar PV from 2030 onwards. In the context 
of the danger of applying endogenous cost reductions in energy system 
models as described by, e.g., Nordhaus [28], we argue that comparing 
Case 2 and 3 illustrates how the proposed approach may avoid these 
pitfalls. As shown, including a time dependent part in the cost calcula-
tion avoids the favoring of single technologies to obtain high cost 
reductions. 

Note, that this case study is purely illustrating the impact of the 
chosen strategy for calculating future costs. It neglects potential re-
quirements of electricity storage, which would affect the chosen in-
vestment pathways. 

5. Discussion 

5.1. Inclusion of global learning 

Global learning effects exist independently if they are included in a 
regional model or not. However, including global learning effects in a 
regional energy system model may still increase the uncertainties in the 
results. This is because one key input to such a model is a set of tech-
nology deployment predictions outside the investigated area, which is 
generally produced by another energy system model with potentially 
inconsistent assumptions and data. Hence, it may result in inconsistency 
in the results of the model. As an example, investment costs for elec-
trolysers outside the considered area may correspond to 300 EUR/kW in 

2050. If the inclusion of global effects will result in investment costs in 
the model area of 200 EUR/kW in 2050, we would implement a 33% 
reduction in investment costs compared to the source for global in-
vestments. If the investment costs in the global model would be 200 
EUR/kW, it would correspondingly have a potentially larger investment 
in electrolysers, and hence, potentially larger investments within 
Europe. This is a common problem when models are linked in only one 
direction and could be solved by including two-way linking. However, 
this problem is not relevant if the global model uses endogenous cost 
reductions with the same learning rate assumptions. 

Similarly, incorporating global learning effects into a local model 
assumes implicitly that there is no learning spillover from the investi-
gated region to the global model as it uses a one-way linking. This can be 
considered as an extreme assumption. However, depending on the size 
of the investigated region, capacity investments in the investigated re-
gion may only marginally affect capacity investments outside of the 
investigated regions. As an example, the Net Zero by 2050 report [36] 
reports a weighted average of 75% for solar PV and 68% for wind power 
capacity expansions in emerging markets and developing countries while 
the remaining advanced economies correspond essentially to the OECD. 
In that respect, even when looking at the European Union, it may be 
assumed that the resulting feedback from the investigated region is 
small compared to the feedback from the rest of the world to the 
investigated region. 

Another problem associated with this approach is that the imple-
mentation of piecewise linear constraints is more complex as the cost is 
both a function of installed capacity and time. The introduction of global 
effects does not necessarily increase the problem size significantly, as 
outlined in Sections 2.3 and 3.2, but it may increase the complexity of 
the problem. It can indeed be implemented with a single additional 
variable and constraint per technology and investment period, as shown 
in Section 2.3. Still, this approach may lead to a higher computational 
cost due to a more complex objective function. One solution to this 
problem is to limit inclusion of learning-by-doing effects (and global 
effects) to selected technologies, while continuing using exogenous costs 
for the remaining technologies. This would correspond to introducing 
subsets for which different cost descriptions are implemented. This 
approach is implemented in the ESO-XEL model [25] although without 
future cost reductions. One alternative is to use discrete investment 
packages as outlined in Section 3. However, then there may be still is-
sues with a curse of dimensionality resulting in a potentially large in-
vestment problem. 

One advantage of implementing global learning is the possibility to 
distinguish between global and regional effects. Certain factors of in-
vestment costs are mostly depending on regional cost reductions. As an 
example, it is suggested that the balance of system in solar PV is 
depending on regional effects [35], as used within the examples 

Fig. 6. Design of the simplified case study. The provided energy numbers correspond to the total energy/year that either can be provided by a given technology node 
or the energy demand/year. 

Fig. 7. Results of the simple case study showing the investments into the 
different packages in the three different learning models. 
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presented in this paper. The incorporation of regional learning may 
significantly affect the cost as shown in Fig. 1. Other factors that may 
affect regional costs are construction costs and regulations that affect the 
construction. 

5.2. Different implementation of global investments 

The combination of both exogenous and endogenous cost reductions 
as proposed in this paper has received little attention. To our knowledge, 
only Heuberger et al. [25] considered global cost reductions in the 
calculations of their learning rates while continuing to use Eq. (1). 
However, our approach differs significantly. We combined both 
endogenous and exogenous cost reductions instead of adjusting the 
learning rates for considering cost reductions from global investments. 
Correspondingly, the form of the learning curve changes as seen from the 
regional model. The second major difference is that there are several 
learning rates calculated for the piecewise linear interpolation, as 
highlighted in Section 2.3. 

The key advantage of the proposed approach is that it avoids prob-
lems associated with scaling the learning rates. As mentioned in the 
introduction, scaling requires additional assumptions regarding the 
share of investments in the investigated area compared to the global 
investments. These may be based on previous data. However, using 
previous data may be especially problematic when modelling the future 
energy system of a developed economy as it is likely that developing 
countries will account for the majority of capacity investments in energy 
technologies. Furthermore, the approach of scaling implicitly assumes 
that the global capacity investments are occurring simultaneously with 
the investments in the regional model. This can be contradictory to the 
data source as it may result in a situation where the cost reductions 
would imply higher capacity investments in the world than the original 
data source predicts. Hence, this approach may lead to a significant 
overestimation of the cost reduction potential in early investment pe-
riods. Correspondingly, implementation speed constraints are crucial. 
Alternatively, it is necessary to iterate to adjust the fraction of in-
vestments. The proposed approach does not require any assumptions 
regarding the share of investments. It also allows investigating cost 
ranges in the different investment periods with the potential to identify 
overestimation of learning rates, and hence, a bias towards a technology. 
Furthermore, it is expected that implementation speed constraints are 
less crucial as the majority of the cost reductions may stem from global 
capacity investments. 

5.3. Different options in implementation of learning-by-doing 

In Section 3, we introduced 3 different approaches for quantifying 
the average cost for each investment package in the different investment 
periods:  

1. The average unit cost of an investment package is calculated using 
the cost of the first unit in the investment package. Global capacities 
are included with the initial capacity at the beginning of the in-
vestment period.  

2. The average unit cost of an investment package is calculated by the 
average cost of the units built in Europe excluding any changes in the 
worldwide deployment. Global capacities are included with the 
initial capacity at the beginning of the investment period.  

3. The average unit cost of an investment package is calculated by the 
average cost of the sum of units built in the world and the capacity of 
the investment package without assuming a uniform global cost for 
the technology. This implies that only capacity expansions in the 
world are considered, while the costs are representing a regional 
cost. 

Each approach has a different philosophy, and therefore, advantages 
and disadvantages. The implementation of approaches 2 and 3 in a 

continuous investment model was described in Section 2.3. Approach 1 
could be implemented through a shift in the learning curve, if desired, to 
account for the omission of spillovers between investments. 

The first approach can be considered as a conservative approach. It 
assumes that there is no learning within an investment package and the 
package cost is calculated using the initial costs without any capacity 
investments. The main reasoning for this approach is that technologies 
built simultaneously do not experience any cost reduction which may be 
based on learning in other constructions. As an example, consider the 
EPR nuclear reactor. There are currently constructions in Finland, 
France, and the United Kingdom while two units are finished in China. 
Utilizing approach 1 would therefore say that the learning obtained in 
the other construction sites do not affect the cost of a specific con-
struction site. Any cost reductions in the construction in Finland does 
not affect the costs of the construction in the United Kingdom. One 
argument for this approach is that there may be no experience transfer 
with simultaneous constructions. However, it may be still feasible to 
reduce costs for simultaneous investments as cost reduction through 
improvements may be feasible, if the construction is slightly staggered. 

Approach 2 assumes on the other hand, that there is a learning 
spillover within the investigated area for constructing technologies at 
the same time. Hence, the unit costs of an investment package are 
depending on the overall size of an investment package. This approach 
may be potentially useful for technologies where a lot of small-scale (kW 
and MW range) units are manufactured, e.g., wind turbines or solar PV 
cells. Similarly, if the chosen length of the investment periods is rather 
long. Considering the cost reductions seen in both solar PV and wind 
power within the last 10 years, it would be surprising to assume a 
constant price within an investment period. Approach 2 for discrete 
investment packages tries to mimic the cost reductions given by the 
piecewise linear approach outlined in Section 2.3. 

Approach 3 is an extension of approach 2. The global deployment in 
an investment period is taken into account when calculating an average 
unit price of an investment package. Again, the production of PV mod-
ules and wind turbines can be seen as an example for this approach as 
most of the PV modules are currently manufactured in China. That im-
plies that the unit costs for solar modules are also depending on the unit 
costs in the global perspective in a given investment period. One can 
argue that the data sources for global capacity investments use the same 
investment periods as the chosen energy model. Hence, using the 
average cost results in an overestimation of the cost reduction through 
global investments. However, capacity expansions are not instantaneous 
as it is in general the case in energy system models. Using the average 
cost could then be seen as an improved approximation of the reality. 

As shown in Sections 2.3 and 3.2, all approaches can be implemented 
in the same fashion in continuous and discrete investment models. 
Hence, the difference between the approaches is given through the 
chosen parameters. Therefore, we consider the different approaches to 
be complimentary and not exclusive. Due to the different nature of 
technologies within an energy system model, it may be therefore 
beneficial to combine the different approaches. Nuclear power plants as 
an example may not experience a learning spillover due to the long 
construction time, while solar PV cells will most likely experience 
spillover during an investment period, both from global and regional 
capacity investments. Consequently, we think that each approach may 
have its advantageous and may be beneficial in its applications. 

5.4. Policy implications of learning effects 

The existence of learning effects has several policy implications. 
Firstly, legislation, e.g., on the EU-level, is typically based on systematic 
energy system analysis. It is therefore essential that the corresponding 
models include all important mechanisms, including an appropriate 
description of how future cost reductions are achieved through tech-
nology learning – at least when they are significant. In a global world, 
this requires accounting for learning stemming both from within and 
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outside of the region, as it was shown for solar PV cost reductions 
through investments in Germany [39]. Secondly, private investors do 
not put any value on how others benefit from their investment through 
shared learning. As a result, the total learning typically becomes less 
than optimal for society in the absence of active governmental policy, e. 
g., subsidies, support, or regulation. 

6. Conclusion 

In this paper, we presented a mathematical formulation for the in-
clusion of cost reductions through global capacity investments in a 
regional energy system model. Mathematically speaking, this approach 
corresponds to combining exogenous and endogenous cost reductions in 
a model. We show that the implementation is possible in both models 
with continuous and discrete capacity investments where the latter is 
represented through investment packages. The methodology may help 
to improve the estimation of future costs within an energy system model, 
and hence, increase the reliability of the results. Specifically, the in-
clusion of exclusive regional learning is becoming more and more 
important due to the change in cost distribution for technologies like 
solar PV and wind power. The mathematical formulations in Eqs. (7) and 
(24) furthermore allow the combination of purely time-dependent cost 
reductions with endogenous learning as the costs depend on the in-
vestment period n. 
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