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A B S T R A C T

Energy Systems Modelling is growing in relevance on providing insights and strategies to plan a carbon-neutral
future. The implementation of an effective energy transition plan faces multiple challenges, spanning from the
integration of the operations of different energy carriers and sectors to the consideration of multiple spatial
and temporal resolutions. In this review, we outline these challenges and discuss how they have been tackled
by the current literature, as well as pointing at directions for future research. Many of the existing reviews
identify a list of challenges common to most models, but they tend to be grouped according to type or energy
carrier. Here we take a new approach and structure both well-established models and solution approaches
along with the main challenges that energy modelling will have to deal with in the near future. We focus
on four main current challenges that energy system models face: time and space; uncertainty; multi-energy;
energy behaviour and energy transition. The main findings suggest that: demand-side management applied to
multi-carrier energy system models lacks; prosumers is explored only in a limited manner; general, multi-scale
modelling frameworks should be established and considered both in the dimensions of time, space, technology
and energy carrier; long term energy system models tend to address uncertainty scarcely; there is a lack of
studies modelling uncertainties related to emerging technologies and; modelling of energy consumer behaviour
is one of the major aspect of future research.
. Introduction

The adoption of the Paris agreements by a large part of industrial-
zed nations has raised the call for drastic cuts in greenhouse gas (GHG)
missions in the near future. Among the sectors involved, the energy
ystem represents one of the major challenges for this green transition
ue to its heavy reliance on fossil fuels. The challenges featured in
his sector need to be considered in future approaches on modelling
he energy system in order to adequately support policy making. The
irst systematic energy system model was presented by Barnett in
950 [1]. Nowadays, a large body of literature testifies the emphasis
hat has been placed over the years on this subject. See Table 2 for

non-comprehensive overview of reviews. Nevertheless, this arsenal
f models and modelling frameworks has not proved mature enough
o cover the possible future challenges that the energy system will be
acing, such as the management of multiple carriers or the integration
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of multiple sectors. The increased pressure in decarbonizing the energy
system has renewed the interest in energy system modelling, with
several reviews trying to convey a comprehensive description of the
utilized methodologies as well as providing new insights on how they
can be used to answer new questions. Pfenninger et al. [2] group
available models into four categories, ‘‘energy systems optimization
models, energy systems simulation models, power systems and elec-
tricity market models, and qualitative and mixed-methods scenarios’’,
discuss a set of challenges these models are facing and identify future
research needs. Hall and Buckley [3] provide an overview of the
prevalent energy models used in the last decade in the United Kingdom
(UK). They develop a classification scheme with the aim to make the
model landscape more perspicuous and use it to classify 22 models
for the UK. A similar approach is taken by Lopion et al. [1] who
characterize 24 national energy system models. They identify trends
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Table 1
List of abbreviations.

Abbreviations

CCS Carbon capture and storage
CCUS Carbon capture, usage and storage
CHP Combined heat and power
DSM Demand-side management
EV Electric vehicle
EVPI Expected value of perfect information
GHG Greenhouse gas
IRES Intermittent renewable energy sources
MCA Monte Carlo analysis
MGA Modelling to generate alternatives
MES Multi-energy systems
MILP Mixed integer linear programming
ML Machine learning
PV Photovoltaic (solar)
RES Renewable energy supply
RO Robust optimization
STET Socio-technical energy transition
SP Stochastic programming
VVS Value of stochastic solution

and challenges in energy system modelling, with decarbonization and
renewable integration seen as the major drivers. Ringkjøb et al. [4]
review a large number of currently used modelling tools, ranging from
small-scale power system models to global long-term energy system
models, concluding that there are still various challenges when it comes
to modelling future interconnected energy systems. Fattahi et al. [5]
assess emerging challenges in the modelling of low-carbon energy sys-
tems resulting from the increasing share of variable renewable energy
sources, increased complexity, and the demand for system integration.
The review by Wiese et al. [6] also aims at providing an evaluation
scheme for energy system modelling frameworks relative to a set of
modelling challenges.

The interaction between multiple energy carriers is increasingly
important, a perspective that is particularly emphasized in multi-energy
systems (MES) modelling [10], which can be seen as a direction within
energy system modelling. Multi-energy systems approaches seek to cap-
ture several energy sectors within the system boundaries. Mancarella
[15] provides a solid introduction to the concept and a comprehensive
overview of available models as well as assessment techniques to
analyse them. In a second review, the authors point out some of the
modelling challenges, particularly emphasizing multi-criteria decision
making, spatial and temporal dimensions, and data management [14].
Both these reviews point at energy hubs, introduced in Favre-Perrod
et al. [16] and analysed in [17], as an important concept in the
multi-energy perspective. A comprehensive review on energy hubs is
provided by Mohammadi et al. [13], while Reynolds et al. [12] reviews
operational optimization of multi-vector district energy systems. In
addition to energy hubs in the context of multi-energy systems, Hosseini
et al. [8] review the role of multi-energy networks in providing flexi-
bility of operation, security of supply and affordability in future energy
systems. Kriechbaum et al. [11] evaluate three open-source modelling
frameworks considering electricity, natural gas and district heating
networks under five modelling criteria (modelling scope, model formu-
lation, spatial coverage, time horizon and data) and three grid-specific
modelling criteria (level of detail, spatial resolution and temporal
resolution). While Kriechbaum et al. [11] take an integrated model
perspective, Guelpa et al. [10] present technologies and modelling
techniques for each of these three energy carriers and discuss trends to-
wards integrated systems which drive a need for more research on new
modelling methods. Groissböck [9] puts further emphasis on the open-
source perspective, by assessing 31 different energy system modelling
frameworks and concluding that open source models are not in general
less mature in terms of functionality than proprietary or commercial
models. The recent review by Prina et al. [7] identifies resolution, both
2

in time, space, techno-economic detail and sector coupling, as the main
challenge in bottom-up energy system modelling. They conclude that
the simultaneous achievement of high resolution in all these fields is
not yet reached by any of the 9 long-term modelling frameworks they
analyse.

Nine of the listed reviews identify important challenges for energy
system or MES modelling, either as a corner-stone of the review like
in Pfenninger et al. [2], Wiese et al. [6] or as part of the motivation
or discussion as in Lopion et al. [1], Groissböck [9]. Despite minor
deviations in the exact phrasing used, the reviews show wide consensus
on the major challenges for energy models ahead, see Table 3 for an
overview. A successful transition to a low carbon energy future requires
a good understanding of the dependencies of the different energy
carriers and their integration, which is further complicated by systems
operating at different scales, both time and space-wise. As a mention,
electricity needs to be balanced on a very short timescale, while natural
gas transport is typically modelled on lower time resolution. Likewise,
different energy carriers might be modelled using different spatial res-
olutions, depending on their geographical availability or consumption
pattern. Uncertainty poses another major challenge in energy systems
modelling. The different drivers affecting the supply and demand of
energy carriers have uncertain developments over long time spans.
Forecasts only offer a mild idea of how the future key parameters
may unravel. Therefore, special attention needs to be put on including
uncertainty in energy systems models if they are to be used in long-term
policy-making and investment planning. Finally, important changes
in the energy system are likely to reverberate into society. For this
reason, when modelling the future energy system, it is important to
incorporate social aspects and behavioural elements which strongly
affect the energy system development and energy transitions.

Although many of the reviews identify these challenges, they mostly
focus on classifying a given selection of modelling frameworks or
review trends and modelling techniques presented in the literature.
Such reviews adopt a traditional approach, by grouping modelling
frameworks according to the type of energy carrier. The review pro-
posed in this paper aims at identifying four main modelling challenges
that energy system models face: a) the handling of several energy
carriers within the system analysed, both regarding sector coupling
as well as multiple carriers at end-use level, b) the integration of
different scales regarding time and space, c) how uncertainty is dealt
with and d) the integration of energy transition dynamics and energy
behaviour in models. This review analyses how these challenges have
been addressed in the literature, and discusses which gaps should be
covered and what is needed to advance the energy systems modelling
research. The focus on modelling challenges as a way to classify the
available literature and discuss the existing gaps, is novel compared
to the traditional approaches. In addition, the holistic approach to
address and interconnect four challenges within the same review is
novel compared to the more specific approach adopted by other works
that focus only on individual challenges. If energy systems modelling
is to support the transition to a greener economy, these challenges
need to be addressed. It is important to delve deeper into the sea
of modelling techniques and solution approaches used to address the
aforementioned challenges. This review aims at providing an extensive
overview of models, modelling frameworks and methods dealing with
these major challenges in different ways to enable model developers as
well as analysts to advance energy systems modelling beyond today’s
state of the art. The main focus is bottom-up models and modelling
frameworks for energy systems in developed countries. We will not
discuss transparency issues, as this aspect is not only related to energy
system modelling, and hence is outside the scope of this work. In
addition, there is scientific literature which already discusses such
issues in depth, such as [18,19]. In the remainder, Chapter 2 discusses
models, modelling frameworks and new approaches to deal with multi-
energy systems and flexible end-use, Chapter 3 provides insight into
how different scales in time and space can be addressed and which

models have successfully done so, Chapter 4 reviews four different
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Table 2
Relevant reviews in the literature.

Prina et al. [7] Challenges related to resolution in energy system models
Hosseini et al. [8] Multi-energy networks
Fattahi et al. [5] Modelling challenges in low-carbon energy systems
Groissböck [9] Open source energy system models
Guelpa et al. [10] Infrastructure for MES
Kriechbaum et al. [11] Grid-based MES modelling
Lopion et al. [1] Classification of energy systems models and discussion of trends and challenges
Reynolds et al. [12] Modelling techniques for operational optimization of district MES
Ringkjøb et al. [4] Classification of energy and electricity system models with high shares of RES
Wiese et al. [6] Evaluation approach for energy system modelling frameworks
Mohammadi et al. [13] Energy hubs for integrated management of MES
Hall and Buckley [3] Review and categorization of energy system models in the UK
Mancarella et al. [14] Drivers, requirements and opportunities in MES modelling
Mancarella [15] MES models and assessment techniques
Pfenninger et al. [2] Trends and challenges in energy system modelling
Table 3
Challenges in energy systems or MES modelling according to nine
existing reviews, with an indication of the number of reviews mentioning
each challenge. Challenges suggested by a single review not listed.

Time & space 9
Uncertainty 6
Multi-energy 6a

Energy behaviour and energy transitions 5
Transparency 4b

aAdditionally two reviews on MES have multi-energy as an underlying
assumption for the whole review.
bAdditionally two reviews discuss the more limited topic on the openness
of data collection and management.

pproaches on how uncertainty can be addressed in energy systems
odelling and Chapter 5 elaborates on the ways that social interactions,

nergy transition dynamics, and energy policies and politics can be
ntegrated into energy systems modelling. The insights are discussed
n the light of what is needed to advance energy systems modelling
o be fit for the transition to a clean future energy system. A list of
bbreviations used in the paper is provided in Table 1.

. Multi-energy systems

Providing successful strategies to the energy transition requires a
epresentation of the inter-dependencies among multiple energy car-
iers. Fig. 1 depicts key technologies and coupling points in modelling
ulti-energy systems. For example, the joint modelling of electrical and

as networks synchronizes peak loads in the power system with gas-
etwork operations, resulting in more intensive use of the gas network.
n this review, we define a model or modelling framework to be multi-
arrier if it represents not only energy sources as primary inputs but
lso models the conversion and the end-use. Specifically, a multi-carrier
odel should represent at least two carriers at the end-use. Based

n this definition, well-known modelling frameworks that cover three
arriers (gas, electricity, and heat) are for example GENeSYS-MOD [20,
1] and TIMES [22]. These modelling frameworks provide a long-term
erspective of Pan-European energy-transition strategies considering
eneration and transmission expansion but have an aggregated repre-
entation of short-time resolution and technological details. This is a
ontrast to the METIS model [23] which provides a more detailed short-
erm analysis and better technological representation of the carriers but
o long-term endogenous capacity options. The EnergyPLAN [24] and
eMOD [25] modelling frameworks also feature strong technological
etail and multiple modelling capabilities while taking into account
ong-term investment decisions. However, EnergyPLAN and ReMOD
re better suited for national energy systems compared to the PRIMES
odel [26] which has equal capabilities and slightly less technological
etail. PRIMES covers multiple end-use sectors as well as carriers
3

n detail and represents the Pan-European energy-economic system.
Lastly, the ESME modelling framework [27] provides a new dimension
of capabilities: such as uncertainty modelling considerations, a higher
level in the disaggregation of the energy sectors, details in network
transmission assumptions and certain aspects of system security.

All in all, multi-carrier models have a trade-off between the level
of engineering technological detail and temporal resolution (long term
perspective for capacity expansion vs short-term representations of
hourly supply–demand operations). Fathtabar et al. [28] find a bal-
ance in representing more detailed characteristics of power systems
(e.g. AC load flow) coupled with gas and heat energy systems. There, a
commonly applied approach to model such couplings in multi-energy
system models is through the use of energy hubs, e.g., [13,29,30]. The
hub typically receives energy through a set of carriers and contains
conversion and storage facilities used to cover (by means of least-cost
generation) the demand for, e.g., heat, electricity and natural gas for
a certain region over a time period. However, the concept of energy
hubs is more frequently used in local or district scale contexts compared
to models and modelling frameworks with intercontinental or national
coverage (e.g. METIS or ReMOD).

2.1. Modelling heat-electricity systems coupling

Coupling heat and electricity occurs at specific conversion points,
identified as combined heat and power (CHP) power stations, elec-
trical boilers, storage, or similar (see Fig. 1). It takes mainly into
account the possibility of delivering heat, alongside electricity. For
example, Konstantakos et al. [31] analyse policy incentives for CHP
investments by looking at fluctuations in natural gas prices and cal-
culating revenues from heat and electricity delivery. The IMAKUS
modelling framework [32] accomplishes a heat-electricity coupling by
having a unit commitment model combined with the use of CHP plants
and electrolysers to transform geothermal fuels, biomasses, oil, gas,
coal and lignite into electricity and heat. Similarly, the BALMOREL
modelling framework [6,33] considers various fuels such as biomass,
municipal waste, geothermal energy, and hydrogen in the production
process, and defines a combined output of electricity and heat. Another
alike model, Dispa-SET model [34], applies also a unit-commitment
model to the power system while coupling heating constraints for
CHPs, heat storage, and power-to-heat options. Likewise, the Oemof
modelling framework [35] considers the same features but has the
additional option to consider investments. These are ‘single’ period in-
vestments compared to other approaches that have multiple investment
periods. For example, the ENERTILE model [36] includes decentralized
heat pumps and district heat grids for long-term analyses of the Pan-
European energy system. It provides more insights by incorporating
heat grids that have the option to invest in heating technologies,
hence corresponding decisions in line with the power system capacity

expansion.
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Fig. 1. Overview of modelling multi-carrier systems, main components and features.
Fig. 2. Key energy system models considering at least two carriers.
2.2. Modelling gas–electricity systems coupling

Energy systems dealing with a high gas demand are typically
modelled in much detail regarding engineering properties. For exam-
ple, [37,38] study the optimal operation of gas-fired power plants while
assessing the security of energy systems and the effects of natural gas
networks on the optimal operation of gas–electricity systems. Aside
from reliability or engineering perspectives, recent models have ad-
dressed long-term planning dimensions in gas–electricity systems [39].
For example, the structure of the RAMONA [40], GGM [41] or the Cal-
liope modelling frameworks [42] features long term planning aspects
of the gas infrastructure, but the models do not encompass a detailed
technological representation of the gas system as such. In contrast, An-
tenucci et al. [43] provides a more engineering-wise detailed, coupled
electricity–gas model which is linked to a long-term capacity expansion
4

model. The authors consider gas storage such as line packs and other
gas flow modelling features. Also, they perform an N-1 system analysis
to check the failure in both energy system components. This is applied
to the UK system where gas compressors play a role in coupling the
carriers as they use electricity for gas operations. Similar methods on
combining mathematical models of both systems are explored in [44–
46] where the usual approach is to model gas–electricity network
systems by representing the gas flow and DC power flow equations.
In these papers, the inter-dependency assessment indicates that the
consequences of failures in the power system could cause much more
damages to the gas network than vice versa.

Overall, most of the gas–electricity models tend to focus on inter-
dependency issues under a system security perspective and are lim-
ited on representing investment decisions (long-term). Modelling ap-
proaches are typically applied to IEEE test cases with a focus on
short-term operations at the national level. In contrast, Deane et al.
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[47] focus on policy and market implications based on an integrated
electricity and gas model for the EU-28. There, various scenarios test
the potential economic impacts of gas markets limitations (also refer
to [48] for a perspective on combining gas and electricity markets). In
short, when coupling both carriers the link (coupling point) is weak
from the power system perspective while gas is more dependent on
power system operations. Fig. 2 illustrates prominent energy system
models covering heat, gas and/or electricity in terms of technological
detail versus the capabilities on time resolution. Note that the positions
of the models in the figure is approximate and that the list is not
exhaustive.

2.3. Hydrogen and natural gas with carbon capture and storage

The design of nation-wide carbon capture and storage (CCS) value
chains to curb gas CO2 emissions has received considerable attention.
The model by Klokk et al. [49] analyses the CO2 value chain on the Nor-
wegian continental shelf storing CO2 in both aquifers and oil fields for
enhanced oil recovery. The model finds an optimal CO2 transportation
network from a fixed set of CO2 emission points and a set of potential
njection sites. The arcs between the nodes are predefined and the
odel decides on pipeline size and investment year. Similarly, Hasan

t al. [50] develop a model for developing a carbon capture, usage and
torage (CCUS) network. However, contrary to the study by [49], it
oes not consider CO2 hubs and transport from the sources to the hubs
nd from hubs to the storage. Hasan et al. [51] develop the framework
n [50] further using a multi-scale approach for choosing the optimal
aterials and processes for the condition of each individual CO2 source.

Regarding hydrogen value chains, Seo et al. [52] investigates the
2 infrastructure for fuel-cell electric vehicles. They focus mostly on

torage and transport of hydrogen using different transport means like
ompressed H2, liquid H2 in pipelines, trains or trucks while the energy
arriers for production were assumed to be available only at certain
odes. Tso et al. [53] develop a multi-carrier energy model comparing
ifferent options for energy storage and transport of electricity through
ydrogen. Their model includes ammonia and methanol as additional
ydrogen carriers. It decides if it is beneficial to generate renewable
lectricity in regions with poorer yield and direct usage and storage
ithout transport, or in regions with higher yield and long-distance

ransport. Similarly, Reuß et al. [54] look at a hydrogen supply chain in
ermany. There, hydrogen production from renewable energy sources
t the German coast is combined with demands in regions without the
ossibility of large-scale renewable energy generation.

A research gap in this stream of the literature is that combined
atural-gas and CCS value chains, together with H2, is less explored.
oreover, there is a lack of integration of such value chains within
ES models. As one of the few examples, Sunny et al. [55] develop
H2–CCS value-chain modelling framework based on the concept of

esource task networks. It allows for the specification of exogenous end-
se demand that can be satisfied using hydrogen and other alternatives.
t determines the optimal H2 and CO2 infrastructure, including the
roduction of hydrogen. CO2 and H2 hubs can exist, and the mod-
lling framework investigates the optimal hub location. Differentiating
etween investment periods and standard periods, demand variations
epending on, for example, seasonal or daily requirements can be
ncluded.

.4. Demand representation

Long-term energy demands drive investment decisions in energy
nfrastructure and technologies. The quality of the results from energy
ystem models thus relies on demand projections and their spatial and
emporal features. End-use of energy is most commonly represented
n energy system models through a set of nodes with a demand for a
ertain energy carrier or as an energy-service demand, e.g., [11,56].
hese nodes arise from the spatial resolution in the model, selection
5

g

f sectors included such as the residential, commercial, industrial and
ransport sectors, and the diversity of energy carriers absorbed in the
onsidered sectors.

In this body of the literature, demand-side management (DSM) has
een recently included due to its importance for accommodating inter-
ittent renewables [57]. Sectors with DSM potential include residential

nd commercial buildings with heating and cooling demands, plug-
n electric vehicles (EVs) [58] and power-intensive industries [59].
hese sectors have gained relevance to balance RES and, along with the

ncreasing integration of multiple energy carriers create new opportu-
ities for DSM and load flexibility. One example is DSM for industrial,
ommercial and residential heat supply which may be provided by
everal energy carriers, including heating grids, which is commonly
ot modelled in MES models. MES systems with end-users that can
witch between heat provision from different carriers can thus broaden
emand-side services and accommodate curtailments in supply by sev-
ral carriers. This could promote a low-carbon heat supply, particularly
or heavy industries. Even though DSM has been explored for multi-
nergy systems, the research in this area appears more focused on
echnological feasibility and at the local scale [60], typically resorting
o an energy-hub approach [61].

In general, DSM is mostly applied to power system models. Zerrahn
nd Schill [62] present a linear model for DSM with maximum hourly
oad shifts based on the ELIN modelling framework developed by [63].
t requires coverage of the total demand over the considered time
indow but resolves the issue of overestimated DSM effects observed

n the DSM implementation in [63]. The latter was caused by allowing
SM units to shift demand up and down at full capacity at the same

ime. The DSM representation in [62] is implemented in the DIETER
odelling framework by Zerrahn and Schill [64] to explore optimal

torage capacity and flexibility options in Europe in 2050. Babrowski
t al. [58] consider DSM with load shift by EVs in the PERSEUS-NET-
SS model, allowing charging of a certain share of the EV fleet to be
hifted within a single day, but requiring that electricity needed for
riving at a given day has to be charged on that very day. Marañón-
edesma and Tomasgard [65] implement DR in the EMPIRE modelling
ramework [66,67], distinguishing between partially flexible loads,
hiftable loads whose total energy over a certain horizon must be
etained, curtailable loads and interruptible loads. Johnston et al. [68]
mplement DSM in the Switch model as price-driven inter-hourly load
hifting. Panos et al. [69] include DSM in the Swiss TIMES model
tudying shifts of electricity demand for water heaters and heat pumps.
hey also allow load flexibility only on an hourly intra-day basis. This

s also the case for [70] that incorporates DSM in the TIMES model
or the French power system, distinguishing between residential-type
evices that can be curtailed for short sub-hour periods and industry
rocesses and EV loading that can be shifted between hours. Li and
ye [71] implement a rather comprehensive DSM representation for
Vs and smart electric appliances in the UK TIMES model. They use a
arameterized representation of shiftable potential for different appli-
nces, with constraints on intra-day load shifting, allowing the load to
e shifted up to given capacities and between permitted hours.

Compared with DSM with load shifting and possibly curtailment,
ome end-users of energy may also sell and supply surplus energy back
o a local energy market. This type of prosumage is most commonly
ddressed for electricity, particularly from solar panels, and industrial
ites engaging in energy arbitrage options. Integration of prosumage is
enerally lacking in most long-term energy system models [65], while
few exceptions exist. [72] includes an implicit prosumage concept

rom PVs in the DESSTINEE model, incorporating residential batteries
hat are charged once generation from the PVs exceeds household
onsumption and discharged otherwise, i.e., no electricity is exported to
he grid. [73] incorporates prosumers with surplus electricity from PVs
n the DIETER model ling framework. By including prosumer battery
torage together with PVs, they enforce energy balances that allow

enerated electricity to be self-consumed, stored or sent to the market.
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In summary, short-term volatility in loads, for instance by regions
with a dense population of EVs or harbours with electric charging of
ferries, are important aspects to consider in multi-carrier energy system
modelling. The challenges are naturally connected to the time-spatial
resolution representation in long-term planning models.

While the main advantage of modelling multi-energy systems is the
possibility to include and compare several technologies at once, the
main disadvantage is linked to the computational complexity that arises
when different technological details have to be modelled. This leads
to the challenge of finding a suitable trade-off between the in-depth
representation of certain technical details and the approximation of
other ones.

3. Time and space

Several trends in the energy system development challenge both
spatial and temporal resolution of energy systems models that often
have a wide spatial and temporal coverage to support analysis of poli-
cies and investments. Generation from intermittent renewable energy
sources (IRES) can be variable during short time intervals, requiring a
fine time resolution. Both distributed IRES generation and demand-side
management give a decentralization trend that drives a finer spatial
resolution. Furthermore, different energy carriers have different ranges
and variability, e.g. the global commodity natural gas versus the local
commodity heat, so that the modelling of multi-carrier systems involves
handling different needs in resolution and coverage. These simultane-
ous needs for both high resolution and coverage impacts model size and
computational tractability.

Various approaches to resolve this tension between model detail
and computational tractability have been devised in the literature.
Nevertheless, the trade-offs made in the treatment of data and mod-
elling choices can impact the model results, as shown by Merrick
[74], Shirizadeh and Quirion [75] with analyses of different ways to
model different temporal scales. In this section, we discuss different
approaches to model different temporal and spatial scales. In energy
systems modelling, a sharp line between modelling and data can some-
times be hard to draw, however we will discuss matters primarily
related to the treatment of input data in Section 3.3 and matters
concerting modelling choices in Section 3.4.

3.1. Spatial resolution in energy system models

Most energy system model reviews provide information on the
spatial coverage but neglect information on the spatial resolution, with
the only exception of Lopion et al. [1] which classifies the models based
on their flexibility in including a variable number of spatial nodes. In
this review, we are interested in typical resolutions commonly used, as
summarized in Fig. 3.

Single region models are relatively common [71,76–79], while mod-
els with more than a single region are categorized according to different
division criteria. Many of these models have well established spatial
divisions, often defined by public institutions, therefore forming what
we define as energy system independent divisions. Examples of these sorts
of divisions can be found in quite a large body of literature which, using
different drivers, all come to a predefined division of the geographical
scope [34,36,52,58,66,80–82]. These spatial divisions are typically
not designed for energy system purposes, and do not necessarily fit
well to energy system properties. Another strand of literature defines
the spatial resolution based on energy system driven divisions, i.e. in
relation to energy systems phenomena or properties, such as price
zones [83], mixture of price zones and hydropower availability for the
Nordic market [84] or onshore and offshore regions to capture the
different resources availability [27]. [6,33] combine national resolution
for overall economic aspects with regional (sub-national) resolution
for the electricity system and area (sub-regional) resolution for the
heat system. Other models, primarily focusing on the power system
6

Fig. 3. Main approaches for defining spatial resolution, including model examples.

combine a regional division with unit level representation of power
plants [34,58,84], or consider a multicarrier expansion combining
regionally divided demand with unit-level expansions Unsihuay-Vila
et al. [39]. Recent literature suggests defining a division based on the
clustering of renewable resources [85,86] or demand [85–87]. Some
authors discuss criteria for the definition of the spatial division of a
model, each coming with different key dimensions [86,88], agreeing
on some drivers such as the availability of natural resources, the cost of
technology and the location of demand. Most importantly, geographical
divisions should be made in order to obtain areas that should be
internally homogeneous and externally heterogeneous. Case studies
tend to support this claim. As a mention, Dorfner [89] provides analyses
based on these data-driven spatial divisions and compares them with
model results with country division. The authors point out that the
choice of data for clustering influences what part of the energy system
is represented the best, and recommend using transmission bottlenecks
as clustering criteria for transmission infrastructure studies. Jalil-Vega
and Hawkes [82,90] perform a set of analyses on the different results
obtained with varying granularisation of the spatial scale. They observe
that the results on heat network uptake differ up to 30% between the
finest and coarsest spatial resolution, and that the largest differences
were observed in heterogeneous areas. Shivakumar et al. [91] propose
a clustering methodology for land use analysis in integrated land-
energy-water modelling using the open-source framework OSeMOSYS.
The purpose is to better explore the inter-sectoral linkages between
the energy, land-use, and water sectors. Another relevant case in the
spatial resolution domain is the model proposed by Moksnes et al. [92],
which combines geospatial electrification algorithms (from OnSSET),
with long-term spatially-aggregated bulk electricity supply modelling
in OSeMOSYS. Simoes et al. [93] study the importance of spatial
resolution for renewable sources integration. They observe that the
spatial resolution has small effect on the whole energy system, but does
affect the amount of wind and solar generation in relation to their cost-
effectiveness and to the climatic conditions in the region where they are
installed. A quite dissonant opinion is the one raised by [94], which
questions whether the increased level of detail translates into a higher
descriptive accuracy. They analyse a linear transshipment grid model
with no time-linking constraints and conclude that complexity can be
reduced by applying unit clustering followed by temporal and spatial
aggregation without substantial losses in accuracy.

3.2. Temporal resolution in energy system models

The integration of multiple temporal resolutions in energy system
models is as challenging as integrating multiple spatial resolutions.
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The granularity of the multiple temporal scales depends on the tech-
nological characteristics of the energy system and the time horizon of
the analysis. Temporal granularity is often overlooked by traditional
reviews. As for spatial resolution, a high temporal resolution over a
considerable time frame often punishes performances. This leads the
modellers to a trade-off challenge.

Several models have an hourly resolution. ENERTILE and ReMOD
model every hour of each analysed year [36,76]. METIS [80] contains
different modules with different time steps, one for electricity and one
for natural gas. Dispa-Set Kavvadias et al. [34] uses as its standard case
single hourly time steps. The model is solved using a rolling horizon
approach. EnergyPLAN [79] is a modelling framework designed for
regional/national integration of intermittent renewables and conducts
analysis based on hour-by-hour steps. H2RES [79] models the integra-
tion of renewable into a stand-alone energy system. It balances the
renewables on an hourly basis over a user-defined time period. Using
representative periods to integrate different modelling elements with
different temporal resolutions is a common approach to temporal reso-
lution handling in energy systems modelling, e.g. Loulou and Lehtila
[95]. Merrick [74] investigates how the additional uncertainty from
renewable generation increases the number of time periods needed
to represent the variation. A visual representation of this approach
is displayed in the upper part of Fig. 4. Different approaches may
also be used in combination, and Glanzer and Pflug [96] for example
classify models in two types: multiperiod models and multistage mod-
els. Babrowski et al. [58] use the PERSEUS-NET-ESS model to analyse
the future electricity storage systems by first using a rolling horizon ap-
proach and then using representative daily timeslots. EMPIRE [66,67]
is a capacity expansion modelling framework with a medium to long
term time horizon. It considers five year time steps instead of yearly
time steps for investments and also accounts for short term stochastic
behaviour, as shown in the lower part of Fig. 4. In this case the Multi
Horizon approach considers different types of decision in different time
resolutions, whereas a Single Horizon approach would collapse every
decision into a single time resolution, greatly increasing the size of
the problem. Also in this case, representative time slots are used in
place of using 8760 h per year. The approach of representative periods
is also adopted by Li and Pye [71] for the UK-TIMES. They use 16
representative time-slots to model a year, four for the seasons and four
for different parts of the day. A similar approach is used in both TIMES-
Oslo and TIMES-NORWAY [78]. The JRC-EU-TIMES model [93] uses
representative time steps to keep computational requirements at bay.
Each year is modelled as 12 time slices, representing an average day,
average night and peak demand, for each of the seasons. Time-slices are
also used by the HIT modelling framework [82], which minimizes costs
for electricity and heat supply within a specified area for a time-frame
up to 2050 and by ESME [27], which models the major energy flows
in the UK for a given demand over a short or long-term time frame.
Finally, the Balmorel modelling framework [33] analyses the power
and CHP sectors in the Baltic Sea Region and provides the possibility
to divide each year that is to be analysed in either two, four or twelve
seasonal parts and to further divide these parts into two, four or 24
time-slots. This offers the possibility to have a maximum temporal
resolution of one hour for one representative day a month.

3.3. Data and resolution

Data management represents an important challenge for energy
system modelling because data needs to be sampled from different
sources and with different resolutions. As a mention, demand data is
often available as aggregate numbers based on publicly available census
data as in Druckman and Jackson [97]. Often, some form of aggregation
technique is used to achieve computational tractability as proposed
by Pfenninger [98] and Merrick [74].

Data aggregation is one of the main techniques employed to re-
7

store tractability. The aggregation approaches differ depending on the s
Fig. 4. Examples of different time resolutions and combinations thereof. Mix illustrates
a combination of Decreasing time resolution over time for Technology 1 with Adaptive
resolution for Technology 2. The lower panel illustrates a combination of Strategic
time periods (5 years steps) combined with representative Operational periods, to be
contrasted with a Single resolution over the full-time horizon.

characteristics of the data. Pfenninger [98] reviews methods to reduce
time resolution and consider the use of three possible techniques –
Resampling, Clustering and Heuristics – with the choice depending on
the application.

Resampling amounts to establish representative values such as time
periods in the time domain and model regions in the spatial domain.
This is done when data displays a high resolution level. Clustering aims
at reducing the number of data points by aggregating the initial ones;
one of the most utilized clustering methods is the k-means, a technique
that seeks to group a set of data points into k internally homogeneous
clusters. Several studies suggest the use of k-means to describe highly
dense data such as buildings or wind generators [86,87]. Various
enhancements have been proposed for the k-means methods, such as the
p-max regions [86], which allows at the same time to seek contiguous
and homogeneous clusters. Siala and Mahfouz [86] use p-max regions to
cluster wind and PV generation using a measure based on variability in
wind potential, PV potential or load density as a threshold, and thereby
seeking homogeneity in one of those properties. Another method, the
G-statistic method provides means to identify hot-spots, which in our
context might be a region that is statistically significantly different
from the overall covered area for a given property. Rauner et al. [85]
use this method for German power supply and demand. For some
specific applications, it is advised to use tailor-made techniques, such
as the one, based on Integer Programming, used by Unternährer et al.
[87] to select clusters of buildings with heat demand while taking
into account the heating resource availability. A substantial amount
of research has addressed the problem of improving the quality of the
approximations. These methods can be roughly classified as hierarchical
statistical methods and sampling techniques. The former attempt to exploit
ierarchical structures to better estimate variation between and within
ubgroups. They can be used when the data is structurally related.
ome relevant methods are Bayesian models, e.g. Wikle et al. [99],
achine learning (ML) Baño-Medina et al. [100] and multilevel or
ixed models, see e.g. Sharimakin et al. [101] for application in energy
emand. The latter aim at capturing the multivariate dependencies
f the data, while still maintaining computational tractability. Seljom
nd Tomasgard [102] propose a structured sampling regime where the
tatistical properties are evaluated to make sure the samples capture
ypical time periods. This work is extended by Kaut [103].

.4. Modelling

Apart from the handling of data, various modelling techniques have
een devised to resolve the coexistence of multiple scales in time and
pace within the same modelling framework. As a mention, hybrid

patial division considers different spatial characteristics and applies to
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each of them tailored constraints. As pointed out by Jalil-Vega and
Hawkes [90], demand can be disaggregated into urban or rural with
different constraints on which technologies can serve the demand,
while [93] simulating different resolutions of wind and solar resources
on the supply side. Such approaches have the strength of allowing
a representation of the different parts of the energy system without
largely increasing the model size.

The modelling complexities introduced with the usage of different
time scales are often handled by using rolling horizon approaches,
where one analyses one subset of the full-time horizon at a time. By
moving the set of time periods forward by a number of time steps,
typically with some overlap between iterations, consistency between
results is ensured. Marquant et al. [104] provide an example of rolling
horizon methodology applied to energy hub analyses. Other methods to
integrate long and short time scales is proposed by Parpas and Webster
[105] (singular perturbation theory) and Glanzer and Pflug [96] (multi-
scale (stochastic) modelling), but these techniques do not seem to be
widely applied for energy system models. A rather important aspect
of addressing multi-scale modelling in time is the inclusion or use of
extreme events as suggested and analysed by Kaut et al. [106] and
Merrick [74]. Adaptive time resolution is an alternative to relying on
fixed and/or heuristic techniques for reducing the resolution, where the
time resolution is chosen to best represent the need for detail. Vom
Stein et al. [107] use an optimization model to determine the time
resolution that best fit a predetermined criterion, while Bonami et al.
[108] and Baño-Medina et al. [100] use machine learning, in order
to select between alternative modelling choices. Pulsipher et al. [109]
present a new modelling abstraction framework based on automatic
discretization of infinite-dimensional problems (such as time and space)
with an example application to event-constrained optimal power flow.
An interesting approach to combine models with different representa-
tions of both the time and space scale is model linking, which is based
on the mutual exchange of information between models in order to
improve inter-model coherency. Linking energy system models with
macroeconomic general equilibrium models is quite an established ex-
ercise, early examples are the works by Helgesen and Tomasgard [110]
and Helgesen et al. [111], while a more recent example is the work
proposed in Korkmaz et al. [112]. The model families have gradually
expanded to include, among others, models with different temporal
or spatial scales. For example, Verburg et al. [113] analyse land-use
change with a multi-model framework ranging spatially from global
to local by linking the computational generalized equilibrium model
GTAP and the integrated assessment model IMAGE. Similar approaches
have been used, albeit to a more limited extent, also within energy
systems modelling. Some of these approaches include disaggregation,
as is the case in the linking of the integrated assessment model GCAM
and the power system modelling framework EMPIRE [67,114]. Haller
et al. [115] discuss the need to supplement the traditional dichotomy
between long term and short term models with models that integrate
both aspects, and point to a few papers, e.g. Möst and Fichtner [116]
which soft-link use of investment and dispatch models. Mancarella
et al. [14] point at soft-linking as a possible method to coordinate
different time resolution within the same model. A promising modelling
approach to facilitate linking and decomposition in time and space as
well as between different technologies is demonstrated by Jalving et al.
[117,118], while an application to integrate planning and scheduling
can be found in [119].

Closely related to the concept of linking models is the approach of
decomposition. In this case, the main problem is split up into several
smaller sub-problems which are more tractable than the full problem.
For a recent example putting several of the techniques discussed above
together, consider Lara et al. [120]. Finally, one broadly used tech-
nique, drawn from process systems engineering is that of approximate
modelling, exemplified in Biegler et al. [121] and Tso et al. [122].
In each step, the model representation is extended with a reduced
8

odel approximating the resolution of the previous model. While the
original detailed model typically has non-convexities and complex
differential and partial differential equations, the reduced model uses
large-scale sets of algebraic equations. The inherent trade-off between
accuracy and tractability pointed out by Vom Stein et al. [107] can
be gradually improved as the modelling techniques are refined. As an
example, Kazda and Li [123] follow the method developed by To-
riello and Vielma [124] to apply mixed-integer linear programming
(MILP) following to determine the most accurate approximation of the
nonlinear relationships for natural gas transport.

In energy systems modelling, there is an inherent tension between
high fidelity and computational tractability and data quality, and trade-
offs need to be made in order to resolve this. Several new approaches
to abstraction, linking and decomposition, as well as data-driven mod-
elling and discretization have the potential to improve these trade-offs.
These new approaches also increase modelling complexity, however,
and work remains to make them simple and robust to be applied at
scale.

3.5. Systems with high penetration of renewable sources

The modelling of energy systems with high penetration of variable
renewable sources, as well as net-zero or island energy systems are all
challenges continuously mentioned in the agendas of energy system
modellers nowadays. Variable renewable energy requires advanced
modelling to capture unique features. Temporal resolution and plan-
ning horizons in particular are among the main challenges that are
frequently addressed in literature with regard to the integration of
renewable energy within energy systems models. The importance of
temporal resolution in modelling deep decarbonization of the electric
power sector is discussed in [125]. The study indicates that higher
temporal resolution is increasingly important for both technical and
economic analyses. A review of optimization models for power sys-
tem planning with increasing variable renewable energy is proposed
in [126] where the authors discuss strategies and requirements for
resolution and planning horizon that are necessary to match con-
straints and time steps in optimization models. A review of models
for integrating renewable energy in generation expansion planning is
proposed in [127]. Models are classified into three categories, (op-
timization, general/partial equilibrium, and alternative models), and
their properties, advantages, and disadvantages are compared. A more
specific review of modelling approaches focused on power-to-heat for
renewable energy integration is proposed in [128] where the authors
propose a classification of existing models based on temporal scope, as
well as geographical coverage, and included technologies. A classifica-
tion is proposed that categorizes the most relevant models according
to the general method, the type of program, model name, time res-
olution, endogenous investments, and whether they provide explicit
formulations for power-to-heat and heat storage equations. From a
geographical point of view many applications focus on northern and
western Europe, while in terms of time horizon, most of the studies
have a long-term time horizon, often the years 2030 and 2050. Even
though there is a rich literature in terms of models tackling high
penetration of renewable energy, the number of studies that derive
the electrical energy storage capacity for Europe with an adequate
spatial resolution is limited. To fill this gap authors in [129] propose
and apply the linear, cost-minimizing optimization modelling frame-
work REMix (Renewable Energy Mix) to tackle the dependency of
the spatial distribution of storage with the regionally predominant
renewable technology. A survey of modelling approaches for variable
renewable energy and storage in long-term electric sector models is
proposed in [130]. An example is discussed showing that models with
lower temporal resolution can dampen variability, which can cause an
underestimation of both variable renewable energy technologies and

the role of energy storage.
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4. Uncertainty

The inclusion of IRES is not only challenging the modelling of
the temporal and spatial dimensions. A further complication of the
new generation of energy system models is the inherent uncertainty
that needs to be taken into account when considering IRES, alongside
other aspects. Long-term energy system models usually consider a time
horizon of 20 to 50 years and therefore rely on long-term forecasts
for important parameters. New modelling approaches can no longer
rely on a deterministic representation of the future. There is broad
agreement that long term decision making for energy systems is subject
to deep uncertainty [131], i.e. there is limited knowledge on the key
riving forces that will shape the future, the probability distributions
or key parameters and the political desirability of certain outcomes.
s for the temporal and spatial aspects, handling of data and scenario
eneration is of primary importance. Several authors analyse available
etrospectives on long term energy models [132], concluding that
orecasting models tend to fail to account for pivotal events [133–
35]. The most difficult parameters to estimate remain, to date, the
rice fluctuations of oil and gas [136,137]. Despite this unreliability
f long term forecast, Goel and Grossmann [138] note that only a few
pproaches account for this aspect. The problem of quantification of
ncertainty has been tackled by various approaches, spanning from
he usage of well known continuous probability distributions [132,
39] to the definition of discrete scenarios or ranges [83,102,140]; a
ather comprehensive overview of this strand of research can be found
n [132], which also introduces a methodology for the characterization
f uncertainty. The methodology is based on the preliminary definition
f five criteria that can be followed to understand which parameters to
e modelled as uncertain and which ones need to be kept deterministic.
hese criteria are constructed to answer a set of sequential questions
elated to the necessity of modelling a parameter as uncertain and
hether it is possible to quantify its randomness, as well as which
ethods could be used to proceed with the quantification.

.1. Methodologies to tackle uncertainty

The problem of including uncertainty in energy system modelling is
pproached utilizing different methodologies. Yue et al. [141] identify
our prevailing techniques that address uncertainty in this class of
odels: Monte Carlo analysis (MCA), stochastic programming (SP), robust

ptimization (RO) and modelling to generate alternatives (MGA). As [141]
oints out, only a fraction1 of the studies on energy system modelling
dopt some approach to address uncertainty, while the majority of
he analyses employ simple sensitivity analysis or alternative scenarios
o evaluate the effects of uncertainties. Scenario analysis has recently
tarted assuming a significant role in providing policy insights by
xploring small groups of what-if narrative based scenarios as methods
or analysing robust policies in presence of long-term uncertainty [142–
44]. This approach has anyway been largely criticized as it fails to
rasp the complexity of a problem with inherent uncertainty and to
nticipate the real-world developments in energy systems [145,146]. A
imited set of storylines underestimates the range of possible outcomes
nd produces a bias towards the described scenarios, which will appear
ore plausible than unexplored ones [147].

Monte Carlo analysis represents a popular approach to tackle uncer-
ainty among the energy system studies. The principle of MCA is to
imultaneously perturb multiple uncertain parameters and statistically
valuate the results provided by the analysis under each ‘‘roll’’ of
he uncertain parameters. For examples of analyses based on different
ethodologies see e.g. Alzbutas and Norvaisa [148], Pye et al. [149],
ue et al. [150], Lehtveer and Hedenus [151], De Feber et al. [152],

1 Around 34% of the energy system optimization models considered by the
uthors address uncertainty in their analyses.
9

Hedenus et al. [153]. MCA for energy system modelling was first
introduced in Seebregts et al. [154], while its large scale application
was developed for the MARKAL modelling framework in [152]. Nowa-
days, several applications of MCA focused on energy transition and
decarbonization can be retrieved in the literature [148,151,153,155].
Applying MCA requires hundreds of runs and typical energy system
models entail thousands of variables, which makes this technique quite
impractical for this class of problems. These limitations are often
overcome by using sampling techniques to reduce the number of runs
necessary to perform a satisfactory analysis [156,157], as demonstrated
in [158].

Stochastic programming is the most used technique to tackle un-
certainty in energy system models. The idea underlying stochastic
programming is to obtain a solution that strikes a balance between
immediate optimality and the possibility to adopt adjustments with-
out incurring in large penalties. SP has been applied to extend both
MARKAL and MESSAGE modelling frameworks [159,160] and later
used to enhance the TIMES modelling framework [95] mainly to ac-
count for uncertain capacity shortages [161], the impacts of demand
and fuel prices development in selected sectors [162,163], the impact
of different fossil fuels [164] and the potential for GHG reduction [159,
165–167]. Uncertainty has also been included in the TIAM modelling
framework using a stochastic programming approach to evaluate the
impact of climate change on the economic assessment of long-term
energy policies [164,168], to assess the role of CCS in climate mit-
igation [169] and to analyse the climate stabilization strategies and
the effect of climate sensitivity uncertainties in the long-run [170,
171]. [102] use SP to integrate short term uncertain behaviour of IRES
in a long term energy system planning model. Dreier and Howells
[172] propose and test the modification of the OSeMOSYS modelling
framework into a stochastic modelling framework by use of Monte
Carlo analysis. The problem of integrating IRES in long term energy
models has been also tackled by [66], which consider uncertainty
introducing a so-called multi-horizon scenario tree approach. The meth-
ods decouple strategical and operational uncertainty by assuming that
operational information does not affect subsequent strategic decisions.
The method reduces substantially the computational burden featured
in models based on a multistage representation. Quantitative metrics
such as the expected value of perfect information (EVPI) or the value
of the stochastic solution (VSS) are sometimes used to assess the
importance of flexibility in providing stronger hedging options against
uncertainty. [167] use EVPI to evaluate the costs of uncertainties in
fossil fuel prices. VSS is used in [163] to quantify the costs of ignoring
uncertainty in GHG reduction policy. This methodology is affected by
issues related to the often high computational burden. The scenario
structure of this approach leads to an exponential increase of memory
requirements with the number of considered scenarios. These problems
can be partially overcome by utilizing decomposition techniques and
parallel computing.

When the computational burden might be too high to adopt SP,
robust optimization represents a computationally cheaper alternative.
This paradigm considers uncertain parameters equipped with geomet-
rically based ranges of variation but in general, models are solved
using a conservative approach. The first to propose the utilization of
this framework in the analysis of long-term energy system planning
was [173], with a focus on inter-regional pollutant transfer rates.
Robust optimization was then used by [174,175] to analyse the impacts
of the transport sector and fuel costs on the energy system. A large scale
application of robust optimization in the analysis of energy security at
a European scale was provided by [176], using the TIAM modelling
framework. Robust optimization offers a computationally treatable al-
ternative to more heavy techniques such as SP. However it is mostly
targeted to the analysis of the worst-case scenario, and it is bound to
only use a limited number of uncertainty sets, whereas SP and MCA

both can use any possible distribution for the random parameters.
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Fig. 5. Guidelines in the selection of methodology to tackle uncertainty in energy system modelling. The orange boxes depict methodologies fit to model cases with large numbers
of random parameters.
The fourth modelling technique, modelling to generate alternatives
is used to analyse political and decisional uncertainty [150,177]. As
described in the beginning of the section, energy system models are
subject to deep uncertainty; it is simply impossible to model the reality
as such in a perfect way. Therefore, solutions lying in a neighbourhood
of the optimal solution might, in reality, be more desirable than the
optimal solution itself. MGA is based on using a modified model
formulation to search the near-optimal solution space for alternative
solutions. These solutions are supposed to perform quite similarly with
respect to the known modelling features, yet they should behave very
differently with respect to any unknown, unmodelled and/or unquan-
tified aspect of the problem. This method was first introduced in the
analysis of energy system models by [178], which later applied the
same method to the TEMOA modelling framework to analyse alterna-
tive future developments of the US electric and light duty transport
sector [179]. In [180,181], the EXPANSE (Exploration of Patterns in
Near-optimal energy ScEnarios) methodology is used to evaluate the
profitability of renewable energy sources to cover heat demand and
for the analysis of possible pathways for the UK power sector. MGA is
not to be considered a methodology to tackle uncertainty in a classical
sense, as it is used for analysing structural and political uncertainties
rather than parametric uncertainties.

Fig. 5 displays a visual representation for the trends related to
the selection of a modelling approach to tackle uncertainty in energy
system modelling. The light red squares depict methodologies fit to
model cases with large numbers of random parameters, while the light
blue square considers methodology which might have issues when
considering a high number of random parameters. As those models
tend to be large-scale the number of uncertain parameters that need to
be modelled highly influences the approach that is usually selected. In
fact, Stochastic Programming is a good choice only when the additional
complexity brought into the modelling framework is limited. In other
words, the approach is suitable only with a limited number of uncertain
parameters. In cases with a large number of uncertain parameters, the
choice of modelling framework is based on the knowledge of the drivers
that exert the largest impact on the solution. If we do not know much
about the possible impact that the random parameters might exert on
the solution and therefore we do not have a predefined policy to test,
the possible approaches could be Robust Optimization or Modelling to
Generate Alternatives, where the first approach is more suitable if there
is particular need to hedge for undesired outcomes. In case we know
which parameters are the most impactful and we already have a policy
that we want to test, then Monte Carlo Analysis is a good candidate.
10
When dealing with uncertainty, a special emphasis should be put
on the dramatic climatic changes that are happening, raising interest
in the ability of models to deal with extreme events. From this point
of view, there has been a call for models to deal better with different
types of extreme events, as these are likely to become more frequent. A
review discussing the impact of climate change on the energy systems
was proposed in [182] where the authors examine the ways in which
the impact of climate change has been represented within models of
the electricity or energy system. Another review of current practices in
modelling extreme events for resilience evaluation and enhancement
of power systems is proposed in [183]. A review on how energy
systems models and scenarios have been used to capture disruption and
discontinuity is proposed in [184]. The main finding is that the most
frequently used methods are qualitative, exploratory foresight scenarios
or agent-based models. Several recent works in literature have made
a significant effort to tackle the challenges of extreme events within
models of energy systems. A framework to manage the operation of
hybrid renewable energy systems under extreme events and disasters
is proposed in [185]. Here optimal systems configurations are gen-
erated for different extreme events, with key criteria of minimizing
the number of blackouts. A statistical approach to identify extreme
events for multi-regional energy system models is presented in [186].
The authors show that extreme events are extremely important to be
included in the input dataset, to improve the output accuracy of the
model. A modelling framework for extreme events with a focus on
power grids is developed in [187]. The authors focus on the operation
of multi-time scale power systems to reproduce cascading outages and
calculate resilience in extreme events. A stochastic-robust optimization
method to consider extreme weather events induced by climate change
is developed and tested in [188], by considering 13 climate change
scenarios. Other recent studies discuss scenario generation and input
dataset definition to better catch the representation of the extreme
events. An example is given in [189] where the aim is to identify
extreme events in meteorological time series relevant for renewable
energies. This approach would lead to an improvement of both weather
and climate predictions and therefore a better quality dataset for energy
systems models.

While the inclusion of uncertainty allows for a better representation
of variables and parameters (such as demand, renewable production
and electricity prices) and therefore a more consistent decision making
process, it also affects the computational complexity of the models.
Therefore additional approaches such as cluster computing, parallel
computing, decomposition techniques, heuristics algorithms, and ma-
chine learning have to be investigated on top of the models to tackle
such challenges.
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5. Energy behaviour and energy transitions

Even the most comprehensive of the models could fail to predict
the future developments of the energy system. A very important, and
often neglected or oversimplified, aspect of both decision making and
the resulting technical and economic impacts are energy behaviour
and the dynamics of the energy transition. The modelling of social
and human aspects of energy transition and energy use is a challenge
because of various reasons. First and foremost, long term planning
literature often assumes consumers and producers to be economically
rational actors that maximize their utility and profits respectively. The
issue that this generates has been known by economists for decades
and was summarized by Sterman [190], who states that ‘‘people do
not optimize or act as if they optimize, . . . (and) even if they had the
computational power necessary, they lack the information needed to
optimize’’. This point on real decision-makers – whose decisions rest on
routines and reduction of complexity more than complex optimizations
– is met with a more recent concern when the energy transition is at
stake. McDowall [191] discusses the difficulties of modelling such an
environment. The reason for these difficulties can be mainly traced to
the fact that energy transitions involve a change in the rules, technolo-
gies, and organizational structures of the energy system and the actors
that are involved, but many energy systems models assume the system
to be rather static [192]. Past studies confirm that many modelled
energy forecasts such as those used in the UK have been shown to be
consistently outside of the scope of real-world events [193].

This section presents a set of new models that rise to the challenge
of representing consumer behaviour and energy systems in transition
in greater depth. Most parts of these models consider a combination
of quantitative and qualitative data and outputs [191]. Namely, a
critique of existing energy systems models and a focus on human and
behavioural issues and energy transition does not mean abandoning
quantification as a research objective, quite the contrary: the objective
is to bridge the gap between the convenient but often too simplistic
assumptions utilized in standard energy models and produce a leap
forward in the representation of energy transitions, society, the role
of politics and policy, and everyday behaviour.

A great diversity of modelling techniques and approaches are used
for energy behaviours and transitions, drawing on different academic
disciplines: from statistics and economics to sociology, computer sci-
ence, mathematics, psychology, and marketing [194]. Following [195],
a model is a representation that formalizes, simplifies, and stylizes a
part of reality. We consider three areas that models of energy transition
and energy behaviour should touch upon in order to perform a compre-
hensive analysis of the energy transition. For each of these areas, we
will consider the models that nowadays are providing a contribution to
the analysis. These areas reflect challenges that these models are subject
to in terms of understanding the energy transition and its impacts in
everyday life and for various stakeholders related to energy systems.

5.1. Actors, agents, and practices

Modelling of demand is one of the main contributions that be-
havioural models can provide to the analysis of energy transition
patterns. The premise for the usage of these models is that behavioural
patterns linked to energy usage are affected by a great number of
factors, from lifestyle choices to household economics [196]. This has
called for an ‘‘integrated approach’’ to model behavioural patterns
which has been met by several different kinds of models, many of them
drawing from complex systems thinking and advancing the capabilities
of conventional modelling tools [197]. ’Non-optimal’ energy-related be-
haviour is modelled by [198]. This model produces important outputs
– including probability densities of carbon emissions and technol-
ogy portfolios (in percentages of different technologies) – to carbon
emissions strategies that correspond with findings from behavioural
11

economics and political science. Fragnière et al. [199] develop a similar
new method that takes ‘‘real consumer behavior’’ into account in plan-
ning models for future energy systems. The modelling of ‘non-optimal’
behaviour has been most developed under the auspices of agent-based
modelling (ABM) [197]. ABMs are computational models that sim-
ulate the interactions and actions of what are termed as ‘‘agents’’.
These simulated agents – which can be individuals, households, or
broader organizations – can be assumed to be perfectly rational, but
do not have to be. Rather, an ABM creates the rules that these agents
follow. ABMs are not only used in forecasting electricity prices in
electricity markets, but also for simulating quantitative trends in con-
sumer behaviour: for example, representing energy demand and its
complexity, such as the impacts of social interactions and space more
appropriately than conventional energy models and reflecting on social
theories [200]. Higginson et al. [201] expand this premise on actors
and decision-making and conduct an experiment to construct energy
models that would acknowledge new social science theories of everyday
practices in households, with a focus on energy demand modelling.

5.2. Energy sustainability transitions

Even though addressing the importance of accounting for
behavioural effects in energy system modelling, many of the tools
available to integrate such dimension are focused on real-time inter-
actions rather than transitions that happen over several decades. They
tend to take the transition as given and ignore its dynamics [192].
Therefore these models are currently more suitable for being utilized
through a model linking approach, similar to how it is often done to
integrate different time and space scales, as explained in Section 3.
In this respect, Holtz et al. [195] argue for the creation of a research
community that would adopt energy models and use them toward an
enhanced understanding of energy transitions, including in support
of active transitions management. Parts of this research community
have affirmed the use of formalized models to understand energy
transition, especially in order to develop a structured view into what
are essentially highly complex and multi-dimensional transitions [202].
Moreover, in order to avoid oversimplification, [191,203] claim that
there should be more room for interdisciplinary dialogue between
qualitative and quantitative approaches, where quantitative models and
qualitative studies can clearly complement each other even if they are
not tightly coupled. Li et al. [192] bring many of these themes together
in their review, where they detect an emerging paradigm of energy
models that combine quantitative approaches with conceptual insights
arising from energy transitions, named socio-technical energy transition
(STET) models. They outline three requirements to qualify as such a
model: (1) techno-economic detail in the model, (2) heterogeneity of
actors that influence the transitions in the model, (3) key transition
dynamics included by the model, such as ‘radical innovations’ that
disrupt incumbent regimes, or landscape pressures that happen over
several decades. This important study confirms that modelling of social
aspects of energy cannot be achieved by a single approach but is likely
to be a combination of models with different strengths and weaknesses.

Finally, the still ongoing COVID-19 pandemic has had visible effects
on energy demand, prices, public policy and the energy sector globally
(see e.g. [204,205]), though the long-term impacts on energy transition
remain to be seen. Here, we merely note that relevant studies are
emerging, and some modelled scenarios (e.g. [206]) have suggested
plausible effects to energy demand reduction toward 2030. Overall,
however, we cannot address the long-term implications of the pan-
demic on the energy transition in this review, but our paper suggests
that several integrated models are beneficial to address the complex
cross-sectoral impacts as they unfold.
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5.3. Energy policy and politics

The final, and particularly important element of energy transitions
that needs to be taken into account in models is the role of energy
policy and politics. According to the literature, most energy transitions
must be actively managed by long-term thinking among governments
and by using practical policy processes [207]. There are at least two
ways to respond to this importance of policy and politics in modelling:
loose and tight coupling of models and policy. The first approach means
acknowledging that policy-problems should drive modelling analyses,
including what models are selected to do these tasks [208,209]. For
example, Strachan et al. [210] devise an approach to improve this
interface which relies on several elements: including coupling models
with policy cycles and funding cycles, development of new modelling
platforms, and various forms of increased accountability such as ex-
ternal review of models by wider stakeholders and quality assurance.
The second approach means an attempt to model the policy process
itself. Li and Strachan [211] used BLUE (The Behaviour, Lifestyles and
Uncertainty Energy model) to focus on government-led and societally-
led energy transitions. Their model produces profiles of carbon taxation
and statistical distributions of energy-using social groups and accounts
for societal and political drivers of energy transitions and their het-
erogeneity and co-evolution. Fortes et al. [212] link socio-economic
storylines of energy futures with a planning model (TIMES). By this
integrated approach, they recognize several limitations: quantitative
models provide cost-effective solutions that may not match the expecta-
tions of different stakeholders and impacts of long-term policy, whereas
socio-economic storylines have too little consideration for complex
variables and interdependencies over the long period. Anable et al.
[213] also model transport energy demand by combining a qualitative
scenario exercise with whole quantitative systems models. By reviewing
planning tools for renewable energy systems, Cuesta et al. [214] argue
that current tools largely lack integration of socio-economic objectives
such as job creation or increasing acceptance into the optimization.
This shows further potentials of meeting the expectations of various
stakeholders in an integrated modelling process.

As these studies demonstrate, there is no single approach to inte-
grate models with the impact of energy politics and policy choices.
The most appropriate approach could benefit from linking different
approaches [191]. An indication of the main approaches is given in
Fig. 6, showing complementarities and differences between the three
key areas that were reviewed.

The clearest advantage of taking a wider perspective on society to
modelling is contained in the assumption of these models reviewed: the
models developed should be more sensitive to the dynamics of every-
day behaviour, the effects of the energy transition, and the manifold
impacts of political and policy decisions. That said, as this section has
shown, modelling these aspects of society is far from a paradigmatic
practice, and a scholar on this area still has to navigate between
multiple approaches and disciplinary orientations. The disadvantage of
these modelling approaches thus may be the same as the challenges of
interdisciplinary working in general: that is to say, the active need to
coordinate between academic disciplines and demanding questions on
which aspects of social science data can ever by ‘translated’ to mod-
elling inputs and outputs. Scholars on this area should be encouraged
to keep their research practice reflective by attuning to different kinds
of research knowledge and the limits of its integration in designing
models.

6. Conclusions

Despite a large body of ongoing research within the energy systems
modelling field, there are many aspects that are yet to be covered or
that have been only marginally considered. This paper has addressed
four main challenges, which the authors believe will be key drivers for
the future development of energy systems models. The trends, gaps and
suggested research directions for each of them, can be summarized as
12

follows.
Fig. 6. Three main approaches in modelling energy behaviour and energy transitions.

Multi-energy systems

Modelling cross-sector interdependencies among energy carriers
will be central to ensure efficient integration of large shares of variable
RES with minimal curtailments. Most importantly, the coupling of elec-
tricity and heat should be an inherent part of the analyses of any energy
transition pathway. In this realm, both short-term operations and long-
term modelling considerations on infrastructure investments are crucial
to catalyzing synergies and coupling points in multi-energy systems.
In addition, other concrete modelling frontiers are the integration of
key emerging decarbonization technologies such as H2 value chains
and CCS infrastructure needs, and stronger representation of demand
sectors and demand-side management. Regarding the latter, the focus
on electric vehicles and household appliances is, for the time being,
higher than for industrial demand-side management in key energy
system models. Overall, there is a lack of demand-side management
applied to multi-carrier energy system models and the inclusion of
prosumers (e.g. flexible local markets) is explored only in a limited
manner.

Time and spatial resolution

Time and spatial resolution are prominent aspects of modelling
new generation energy systems, featuring local generation and large
renewable sources integration. The need of modelling multiple time
resolutions is generated by the interplay between long term expansion
planning and the short term behaviour of renewable sources. A coarse
representation of the behaviour of these sources might over- or under-
estimate their contribution to the overall system, and therefore lead to
a biased evaluation of the necessary capacity investments.

Many attempts to combine fine resolution with long time horizons
and large spatial coverage have been adopted, with the use of represen-
tative time periods and geographical aggregation being the dominating
approaches. New approaches are tested, such as data-driven methods,
adaptive resolution methods, and structured sampling methods.

Future research should focus on more transparent choices and vali-
dation of approximation and data processing in order to support the
process of adding more advanced methods to the ‘‘standard tools’’.
Moreover, there is ongoing research to establish general frameworks for
multi-scale modelling that should be considered in several dimensions,
time, space, technology and energy carrier.

Uncertainty

The effects of the integration of intermittent renewable energy
sources in the energy system are not limited to the need to account for
multiple temporal and spatial scales, as it also introduces uncertainty
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into the short term behaviour of the system, whereas long term electric-
ity demand and fuel prices development, as well as political decisions
about climate control measures, introduce stochasticity in the long run.
Energy system models need to account for this uncertainty in order to
avoid adopting biased policies. Different approaches have been used in
literature, which differentiate on the type of output that they provide
and the level of computational complexity.

However, uncertainty is often a neglected aspect of long term energy
system models, which only focus on few parameters in every study,
neglecting cumulated effects of all the possible random parameters
at once. There is a lack of studies modelling uncertainties related to
emerging technologies, as well as the projected cost-effectiveness of
technologies that are currently not profitable.

Future research should extend the consideration of uncertainty in
energy system models, to incorporate possible unilateral policy changes
by other actors.

Modelling energy behaviour and energy transitions

The dynamics of energy transitions and activities by various actors
– including policy makers, companies, and consumers – are often over-
looked or simplified in modelling energy systems. In recent research,
a set of new models have risen to face the challenge of representing
transitions of energy systems and societies towards a low carbon future.
These models span from detailed consumer decisions and interactions
to long-term transition dynamics. Some models even integrate energy
policy requirements and political decisions as part of their design.

Developing such models especially those that represent society,
governments, and their relationships, is a challenging issue. While
appropriate modelling methodologies are part of this problem, this
development needs to be informed by advancements in political and
social theory, so that the models do not end up reifying outdated or
overly simplistic conceptions about governance.

The modelling of energy consumer behaviour is also clearly one,
if not the only, aspect of future research. Here, it can be expected
that more complex theories about this behaviour – such as social
practices and collective rather than individual decision making – will
be attempted to be integrated into energy modelling. When looking
further into the future, the modelling of long-term uncertainty will be
an integral element of the modelling of societal transitions. In doing
so, the integration of qualitative scenarios to challenge formal energy
models has seen considerable development, but will undertake more in
terms of appropriate methods and integration of different knowledge
bases (e.g. qualitative vs. quantitative data).

In addition to the challenges outlined above, it is worth mentioning
that collaborations between modellers, empirical researchers, policy
makers, and different academic disciplines need to be developed to
advance model building and the maturation of theory. While some
models will be built anew, the urgency of energy transition means that
the use and integration of existing models should be supported in this
field. The validation of the models in this field is work-in-progress, and
modellers should be wary of possible over-simplifications of complex
transition processes and social practices of energy use and policies as
part of their models.
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