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ABSTRACT Probabilistic forecasts of electrical loads and photovoltaic generation provide a family of
methods able to incorporate uncertainty estimations in predictions. This paper aims to extend the literature
on these methods by proposing a novel deep-learning model based on a mixture of convolutional neural
networks, transformer models and dynamic Bayesian networks. Further, the paper also illustrates how to
utilize Stochastic Variational Inference for training output distributions that allow time series sampling,
a possibility not given for most state-of-the-art methods which do not use distributions. On top of this, the
model also proposes an encoder-decoder topology that uses matrix transposes in order to both train on the
sequential and the feature dimension. The performance of the work is illustrated on both load and generation
time series obtained from a site representative of distributed energy resources in Norway and compared to
state-of-the-art methods such as long-short-term memory. With a single-minute prediction resolution and a
single-second computation time for an update with a batch size of 100 and a horizon of 24 hours, the model
promises performance capable of real-time application. In summary, this paper provides a novel model that
allows generating future scenarios for time series of distributed energy resources in real-time, which can be
used to generate profiles for control problems under uncertainty.

INDEX TERMS Deep learning, generation forecasting, load forecasting, neural networks, probabilistic
methods, renewable power.

NOMENCLATURE
Index

t periods
B batch

Functions

f generic function notation
relu rectified linear unit activation function
dense fully connected linear layer
concate- nate concatenation (i.e. ’stacking’) of tensors
tanh tangential hyperbolic activation function
σ sigmoid activation function
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softmax normalized exponential function
softplus softplus activation function
F one-dimensional dilated convolutional

kernel
KL Kullback Leibler divergence
ELBO Evidence LOwer Bound

Parameters

θW linear weights
θb linear biases
θ̄W linear weights (multiple channels)
θ̄b linear biases (multiple channels)
θ̄ res convolution weights (residual branch)
θ̄fil convolution weights (filter branch)
θ̄gate convolution weights (gate branch)
a series coefficients
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Variables

Y ′ historical time series
X ′ exogeneous variables of historical time series
y′ time series sample
x ′ sampled exogeneous variables
v generic tensor notation
s generic matrix sequence notation
z′1 sequential encoding
z2 encoding of period t + 1
g distribution parameters of period t + 1

Distributions

p generic distribution notation
N Gaussian distribution
B Bernoulli distribution

I. INTRODUCTION
Increasing shares of renewable energy in the global mix of
power generation lead to changes in the landscape of methods
required to analyze and predict them. Whereas a classical,
fossile fuel based power system behaves more static and gives
more control over output levels to the power producer, more
renewable generation means flexibility and thus more uncer-
tainty. Such uncertainty is also amplified by another ongo-
ing transition in power systems: increasing decentralization
decreasing forecasting accuracy. This comes as individual
loads or generation profiles of e.g. specific households or
solar panels are harder to forecast than aggregates of several
sources over larger areas [1], a result of higher variation
on the individual level [2]. The result of these changes is a
conceivable shift in the methods dealing with prediction of
distributed energy resources from traditionally deterministic
methods to methods incorporating uncertainty [3].

Methods accurately describing uncertainty are therefore
at the center of the operational problems, be it optimization
of storage under solar generation or utilization of shift-able
loads as flexible assets [4], [5]. However, distributed energy
resources do not only add to the growing importance of uncer-
tainty, they also affect the time frames under which the mod-
els operate. Centralized energy systems offer large ranges
of flexibility in production (e.g. in the form of thermal or
hydropower plants), whereas the margins of such are smaller
for distributed resources, thus also reducing the time horizons
of the control problems [6]. An example is that of electrical
storage: for large-scale, i.e. hydropower, the storage cycles
range from days to months or years [7], where for distributed
storage in form of batteries the operational cycles typically
lie within single days [8]. This means that where large-scale
storage allows for ’over-night’ calculations of the operational
decisions as well as the associated predictions [9], distributed
energy resources are more sensible to computational times as
they have to be applied in real-time [10].

Apart from a push towards incorporating uncertainty and
real-time applications of forecasting of distributed energy
resources, another trend is that of using highly non-linear over

linearized prediction models. Amplified by recent achieve-
ments in machine learning, deep learning based methodolo-
gies have prevailed amongst these non-linear methods [11],
[12]. This trend can also be attributed to new specialized hard-
ware that allows scalable and parallel ’training’ (i.e. finding
the optimal parameters) of such models via batches of data.
Amongst those deep-learning models, recurrent neural net-
works, specifically long-short-term memory neural networks
have established themselves as the recent standard in load
prediction, both for short-term [13]–[15] as well as long-term
[16] applications. In addition to deterministic point-forecasts,
these models have also been applied probabilistically [17],
[18]. Another example of such is provided by [19] which
shows how to train an autoregressive, non-linear quantile
regressor based on long-short-term memory in order to pro-
vide probabilistic load flows. [20] provides a quantile regres-
sion example from PV prediction that uses a Lasso regressor.
However, the output of such quantile regression methods is
only represented via - as suggested by the name - quantiles.
Thus, albeit probabilistic, the outputs of quantile regression
do not provide the possibility to have individual samples
drawn from as they only provide ranges and not distribu-
tions to sample from [21]. This is a problem that has been
approached by [22], which presents a method to train deep
learning models for load forecasting in form of distributions.
However, in turn this presented model is an implementation
of an auto-regressive neural network and thus does not incor-
porate temporality (i.e. the effects of state transitions over
the time periods) with similar quality to the recurrent neural
networks. With this current state of literature, readers are thus
forced to choose between accurate representation of the mean
or the ability to take samples from the distribution. In recent
work, [23] approaches this issue via Bayesian regression,
which in the here presented work is extended by replacing
the non-linear decision tree approximator with deep neural
networks, similar to the generative model presented in [22]
but extended to auto-regression.

This is implemented via Stochastic Variational Infer-
ence [24], a method that can be utilized to train any parame-
terized distribution (in the here presented case a Gaussian and
Bernoulli mixture model) via back-propagation, a technique
that has been previously been applied in the domain of power
systems to fit distributions in probabilistic optimal power
flows [25] or make predictions in outlier events with data sets
of small sample size [26].

To add to this contribution, the paper also analyzes the
potential of convolutional neural networks as a replacement
for recurrent neural networks in load forecasting. A similar
model has been discussed in [27], however again with quan-
tile losses and not considering temporality (the connection
between periods in the input sequences), which recurrent
neural networks do. Compared to this paper using traditional
convolutional kernels, however, dilated convolutional neural
networks have proven their capabilities in temporality, specif-
ically in language prediction [28] and similarly applied in
deterministic price forecasting within the power system [29].
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Thus, the proposed model will build on these dilated convo-
lutional kernels.

In recent literature on probabilistic load and genera-
tion forecasting tasks convolutional neural networks have
been demonstrated to outperform recurrent neural networks.
As such, [30] shows single-period forecast results for resi-
dential sites that match the analysis of convolutional neural
networks provided in the multi-period case study below. Sim-
ilar is done in [31]. Another example is provided by [32]
where the authors propose a combination of recurrent and
convolutional neural networks for the task of photovoltaic
forecasting. Similar performance has been shown for quantile
regression problems utilizing convolutional neural networks
in [33] and [34].

In addition to an in-depth analysis on the state of the art of
convolutional neural networks, this paper also illustrates how
to incorporate attention mechanisms in such deep learning
models. These attention mechanisms have been previously
applied within the mentioned recurrent neural networks,
whereas [35], [36] provide examples of such on the topic of
load forecasting.

To incorporate this mechanism into temporal convolutional
neural networks, the model presented in this paper will uti-
lize a novel neural network layer, here titled a ’temporal
convolutional attention’ layer, which uses a similar topology
to [37] mixed with the model from [28]. A similar idea has
been previously proposed (deterministically and without the
specific application on load forecasting) in [35], but the here
presented model simplifies this attention mechanism to be
more akin to the self-attention mechanism used in recurrent
neural networks, thus reducing the amount of linear layers
required to a third.

On top of these contributions, the paper also deals with
an issue from the practical side of load forecasting - missing
data. It does so by proposing an encoder-decoder architecture
that encodes exogeneous variables within every time period
and uses matrix transposes in order to propagate both over the
dimension of variable and the dimension of sequence at the
same time.

In summary, the contributions of this paper are to:

1) give an introduction of Stochastic Variational Inference
as a method to train probabilistic load forecasts that
allow taking individual samples from.

2) present a novel model that is a mixture between
traditional convolutional neural networks, transformer
models as presented in [37] and dynamic Bayesian
networks. For the sake of simplicity1 the model is from
here on referred to as an Attention-based Temporal
Convolutional Neural Network.

3) propose an encoder-decoder structure which uses
matrix transposes to filter over sequential and fea-
ture dimensions in order to incorporate exogeneous

1and to avoid confusion with electrical engineering terminology caused
by phrases such as ’transformers’.

FIGURE 1. Comparison of auto-regression models.

variables into this network and more efficiently deal
with missing input data.

In addition, the paper illustrates how to generate proba-
bilistic load forecasts for multiple periods in advance and
demonstrates this by predicting three heterogeneous time
series obtained from a demonstration site representative of
the Norwegian power grid.

By these contributions, the paper not only concludes
in showing that Temporal Convolutional Neural Networks
outperform other state-of-the-art techniques in probabilistic
forecasting, it does so by providing a new state-of-the-art
topology itself. Applications of the model are various, exam-
ples of which are solving load scheduling and coordination in
distributed energy resources [4], [5], both competitive [18] or
cooperative multi-agent problems [38] as well as stochastic
energy management systems [39], [40].

Further, the model might also be combined with other
models from literature into ensemble models [41] and/or even
applied on a more granular level within individual buildings
or on individual assets [42].

II. METHOD
Using the notation of ′ to mark sequential data and assum-
ing inputs consisting of historical values of the data series
denoted as vector Y ′ = [. . . , yt−1, yt ] and exogeneous
variables denoted as matrix X ′ = [. . . , xt−1, xt ], the ARX
(autoregressive model with exogeneous variables) predicting
the next future value can be defined similar to [43]:

yt+1 = fθ (X ′,Y ′) (1)

In comparison to this deterministic problem, the proba-
bilistic equivalent aims to fit a parameterized distribution p
instead of a function f :

yt+1 ∼ pθ (yt+1|X ′,Y ′) (2)

As such, a probabilistic model is not only making a single
point prediction, but defining a range of outcomes. A com-
parison of the proposed probabilistic generative model to the
deterministic and the probabilistic quantile regression models
is provided in Fig. 1.

Therefore, the probabilistic regression problem is to first
find an accurate model for approximating this distribution
p and then apply a method that finds the best numerical fit
for the parameters θ of the given model. These two problems
will be approached successively, starting with presenting the
proposed deep learning model first (forward pass) and then
presenting the algorithm utilized to find themodel parameters
afterwards (backward pass). Contribution 3 is introduced in
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FIGURE 2. Proposed model structure.

the forward pass section, contribution 1 in the backward pass
section and contribution 2 is demonstrated later together with
the results in the case study section.

As all available input data Y ′ and its corresponding exo-
geneous variables X ′ will here be assumed too large for the
model to consider as a whole, the model instead will utilize
sampled batches from the given data sets. Sampling can be
conducted by choosing a batch length B, a sample length τ
and randomly sampling a number of time periods t1, . . . , tb:

y′ =


[
[yt1−τ ], . . . , [yt1−1], [yt1 ]

]
,[

[yt2−τ ], . . . , [yt2−1], [yt2 ]
]
,

. . .[
[ytB−τ ], . . . , [ytB−1], [ytB ]

]


x ′ =


[
xt1−τ , . . . , xt1−1, xt1

]
,[

xt2−τ , . . . , xt2−1, xt2
]
,

. . .[
xtB−τ , . . . , xtB−1, xtB

]
 (3)

It has to be noted that the dimension of y′ is increased by
one here. The reason for this is to fit the input dimension
of this batch of vectors with the batch of matrixes that is
x ′ (with the most inner vector xt presenting the features).
This is discussed in the overview of the tensor shapes in the
Appendix.

1) FORWARD PASS
The schematic for the proposed deep learning model consists
of three main parts and is presented in Fig. 2.
These parts fulfill the following functions:

Temporal Encoder - this network encodes the temporal
information provided by the exogeneous variables (i.e.
the feature dimension of x ′). This not only deals with
missing data2 but also incorporates long-term periodic-
ity provided by the exogeneous variables into the input
to the temporal convolutional network.
Temporal Convolutional Attention Network - this
network is used to identify the patterns within the
sequences of its input z′ provided to it.
Decoder - this network generates the parameters utilized
in the distribution to be sampled from.

As it can be observed from this illustration, the temporal
encoding network and the output network are feed-forward

2In traditional temporal convolutional neural networks, the missing data
would have to be replaced with zeros. This however can lead to issues in case
of toomanymissing values, which is the case in the provided case study.With
this temporal encoder, however, missing values can be omitted as the position
of a given yt value in the input sequence y′ is encoded via the corresponding
exogeneous variables xt .

FIGURE 3. Forward flow (batch dimension for tensors omitted).

neural networks mostly consisting of fully connected linear
layers wrapped in ’rectified linear unit’ activation functions:

vout = relu(denseθ (vin)) = relu(θW vin + θb) (4)

The only differences are that in the temporal encoder, the
inputs x ′ and y′ are concatenated (i.e. ’stacked’) along the
feature dimension. Further, the last layer of the decoder
consists of several parallel layers (one for each distribution
parameter).

The concatenation operation, together with the neural net-
work applied on the feature dimension, allows to encode
the information of the exogeneous variables (such as time
stamps) into every single sequential step. This was done as
inputs to traditional sequential networks (such as the here
utilized temporal convolutional attention network or recur-
rent neural networks) have difficulties coping with missing
values. In traditional auto-regressive networks utilizing only
y′ as input, a longer sequence of missing values would distort
the input. By encoding the historical values y′ with the exoge-
neous variables x ′, the missing values can instead be omitted.
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Compared to the temporal encoder, the temporal convolu-
tional attention network operates in the sequential dimension.
A more intuitive illustration is presented in Fig. 3 which
describes the entire forward flow of the neural networks.
This also illustrates why the encoder and decoder are for-
mulated as dense layers. The reason is that the encoder
resembles a traditional regression problem and thus does
not consider sequentiality, whereas the decoder resembles a
mapping to the parameters of the output distribution and thus
also operates in the feature dimension instead of the sequence
dimension.

The utilized temporal convolutional attention network is
derived from an extension to the ’wavenet’ model presented
in [28]. A similar network has previously been implemented
underutilization of attention as shown in [35]. However,
this formulation utilizes three dense layers (referred to as
’key’/’query’/’value’) using the topology proposed in [37].
Here, instead, a single self-attention layer equivalent to the
attention mechanism used traditionally in recurrent neural
networks and as originally presented in [44] is applied, thus
reducing the number of dense layers required to a third over
the formulation presented in [35].

The temporal convolutional attention network is formu-
lated as a series of temporal convolutional attention (tca)
layers wrapped in rectified linear units:

sout = relu(tcaθ (sin)) (5)

Using the notation from [28], i.e. � to represent
element-wise multiplication and ∗ to represent convolution,
a single tca layer can be described the following:

tca(sin) = Fθ̄ res ∗
(
softmax(θ̄W sin + θ̄b)� sin

)
+ tanh

(
Fθ̄fil ∗

(
softmax(θ̄W sin + θ̄b)� sin

))
+ σ

(
Fθ̄gate ∗

(
softmax(θ̄W sin + θ̄b)� sin

))
(6)

This is also graphically displayed in Fig. 4. Here it has to be
noted that both the dense layers as well as the convolutional
kernels have multiple channels (thus using the notation of
θ̄ ), which, as also illustrated previously in Fig. 3, correspond
exactly to the number of channels derived by the temporal
encoder.

Using T to denote the matrix transpose, the forward flow
of the proposed model can thus be formulated as shown in
Algorithm 1.

For simplification and similar to Fig. 3, the batch dimen-
sions have been omitted here. For the same reason, the
weights θ have not been numbered. Nonetheless, every
instance of θ represents an individual set of weights (or
biases).

Further, the chosen distribution of p(yt+1|g) might vary
depending on application and, similarly to other probabilis-
tic models, has to be chosen dependent on the application.
Usually, due to the central limit theorem, the most suitable
distribution for an application with no further information on

FIGURE 4. Temporal convolutional attention (tca) layer.

Algorithm 1: Forward Flow of yt+1 ∼ pθ (yt+1|x ′, y′)

sample: y′ and x ′ from Y ′ and X ′;
v′ = concatenate(y′, x ′) ;
for number of encoder layers −1 do

v′ := relu(denseθ (v′)) ;

z′1 = denseθ (v′) ;
s = z′T1 ;
for
√
τ − 1 convolutional attention layers do

s := relu(tcaθ (s) ) ;

z2 = tcaθ (s) ;
v = zT2 ;
for number of decoder layers −1 do

v := relu(denseθ (v)) ;

g = θ̄W vin + θ̄b ;
sample: yt+1 ∼ p(yt+1|g);

Algorithm 2: p(yt+1|g) Used in Case Study

sample: yNt+1 ∼ N (g1, softplus(g2));

sample: yBt+1 ∼ B(σ (g3));
yt+1 = yNt+1 � y

B
t+1 ;

the real distribution can be assumed to be that of a Gaussian.
This is also the case for the here proposed application of
electrical load and generation forecasting. However, as also
generation stemming from solar panels were analyzed, it was
chosen to add a Bernoulli distribution to accurately model
the day and night cycles. This additional information can be
added via formulating the chosen distribution the following:

VOLUME 9, 2021 147033



M. Löschenbrand: Temporal Neural Network Model for Probabilistic Multi-Period Forecasting

Assuming there was no output distribution but instead
deterministic outputs as in Eq. (1), these models could be
trained via finding the mean squared error (or a similar loss
measurement), backpropagation (i.e. finding the gradients)
and applying an optimizer (i.e. a method such as stochastic
gradient descent that updates the weights and biases). How-
ever, as the outputs are samples from a distribution instead
a bounding function, namely the Evidence Lower BOund
(short: ELBO), is applied here.

2) BACKWARD PASS
Assuming the measurement is the distance between the
parameterized distribution pθ from Eq. (2) and the real dis-
tribution p, the ELBO can be derived from the Kullback
Leibler divergence (a distance measure for two distributions)
as shown in [45]:

KL
(
pθ (yt+1|v′), p(yt+1|v′)

)
=

∫
yt+1

pθ (yt+1|v′) log
(pθ (yt+1|v′)
p(yt+1|v′)

)
=

∫
yt+1

pθ (yt+1|v′) log
( pθ (yt+1|v′)
p(v′|yt+1)p(v′)

)
+ log

(
p(v′)

)
= −ELBO(θ )+ log

(
p(v′)

)
(7)

Algorithm 3: Backpropagation to Update θ
sample and fix: noise in Algorithm 2;
conduct: forward flow from Algorithm 1;
calculate: ∇ELBO(θ);
update: θ ;

Algorithm 4:Multi-Period Multi-Batch Prediction
initialize: current time period as t
for number of prediction periods do

set:

y′ =


[
[yt−τ ], . . . , [yt−1], [yt ]

]
,[

[yt−τ ], . . . , [yt−1], [yt ]
]
,

. . .[
[yt−τ ], . . . , [yt−1], [yt ]

]


x ′ =


[
xt−τ , . . . , xt−1, xt

]
,[

xt−τ , . . . , xt−1, xt
]
,

. . .[
xt−τ , . . . , xt−1, xt

]


;

sample: yt+1 ∼ pθ (yt+1|x ′, y′);
set: t:= t+1;

Note that, for simplification, this equation considers a
single input series v′ = concatenate(y′, x ′). Due to log

(
p(v′)

)
being a constant, an ELBO of 0 thus means a perfect fit for
the Kullback Leibler divergence and thus a perfect fit of the
output of the neural network based on the historical values
y′, x ′ on the distribution pθ of the future data yt+1.

[46] shows that for a model with a similar encoder-decoder
architecture training can be accelerated by fixing the errors

prior to obtaining the gradients of this ELBO function. Doing
so, the process of Stochastic Variational Inference [24] for
the given deep-learning model thus becomes the following
step-wise updating process:

The optimization algorithm utilized for the weight update
steps chosen in the following case study was a batch opti-
mization algorithm that can be found in [47].

For training this model the process of updating the param-
eters is repeated for a given number of episodes (or until
a satisfying ELBO is reached). After this, and similar to
the model presented in [28], the network can be used over
a rolling horizon to predict multiple periods in the future.
This, as previously shown in Fig. 3 is realized via applying
Algorithm 4.

The output of this process is a batch of sequences which
represent samples of future expectations. In the following
section this model is demonstrated by a case study of three
heterogeneous time series and compared to other state-of-
the-art models.

III. CASE STUDY
The endogeneous data Y for the given case study was
obtained from a test location designed to represent timely
issues in the Norwegian power grid. At the core of the
application stands the modeling of battery energy storage
systems and load shifts in HVAC systems under consider-
ation of three distinctively heterogeneous time series, two
consumption time series - a residential load (C1) and an
office building connected to a football stadium (C2), as well
as a time series of photovoltaic generation with a capacity
of 800kW (PV). Even though commercially run, the test
site is designed to accurately represent greater challenges in
the Norwegian power grid, such being strong reactions to
temperature changes, highly fluctuating weather conditions,
seasonal as well as other patterns and stochastic events of
increased consumption.

The available resolution of 1 minute from the sensors was
kept, whereas the sensors where not operational continuously
during the measurement period, leading to the previously
discussed missing values with frequent outage sequences of
up to 60 minutes. Fig. 5 gives a visual overview of two
months of the data series (in its entirety 305 days long). The
electrical demand of series C1 shows day and night consump-
tion patterns with occasional low-amplitude outliers. Series
C2 shows conceivable weekday/weekend patterns with high
amplitude outliers due to operation of the stadium (mainly
caused by floodlights) in addition to these cycles from C1.
Series PV shows periodicity due to day/night differences and
cloud patterns during the days. Consistent with the require-
ments expressed by the test site owners the prediction hori-
zon was selected to be 1440 minutes, with the model being
updated by the sensors in real-time, i.e. in 1 minute tacts.

The exogeneous variables X for the given case study
were derived solely on these presented time series with
no additional information such as weather or temperature
supplied, a result of the lower resolution of the available
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FIGURE 5. Case study: data set excerpt.

FIGURE 6. Average root mean squared error per minute.

FIGURE 7. Average Pearson correlation coefficient per minute.

weather data over the 1 minute resolution of the electrical
loads.. Specifically, the additional exogeneous variables were
a linear trend line, the day of the week, a binary series
separating between weekdays and weekends, the quarter of
the year, the hour, the minute, the day of the year and the
month. In addition, Fourier series were added as exogeneous

variables representing periodicity:

X ′ sina =

[∑
sin(

π

a
t) ∀t

]
X ′ cosa =

[∑
cos(

π

a
t) ∀t

]
(8)
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FIGURE 8. Average ‘‘R-squared’’ metric.

FIGURE 9. Visual results for the proposed model.
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FIGURE 10. Single sample taken from proposed model.

The coefficients chosen for these series where 5, 10, 15,
30, 60, 120, 720 minutes (a = 5, 10, 15, 30, 60, 120, 720),
a day (a = 1440) and a week (a = 10080).
In addition to this, both X ′ and Y ′ were standardized before

feeding it to the model and batch normalization layers were
added (behind all the linear layers, except the output layers)
in order to support convergence of the model.

In the case study, the following models were compared:
ARIMA - an auto-regressive moving average model,
as presented e.g. in [12],
ResNet- a residual neural network, as shown
in [22], [48],3

3An in-depth discussion on why generative adversarial neural networks as
presented in [22] generalize to the encoder-decoder structure presented here
is found in [49].

LSTM - a long-short-term memory neural network,
as shown in [13], [14], [16], [18], [50],
LSTM_attention - a long-short term memory neural
network utilizing attention, as presented in [36], [51],
TCN - a temporal convolutional neural network, as pre-
sented in [35] and [30],4

TCN_attention - the model as proposed in this paper.

For the case study, each input data set was split into three
equally sized chunks indicated by *_1, *_2, *_3, with the last
day (=1440 periods) of each data set selected as the prediction
target.

For the sake of comparison for all of these models, except
for the ARIMA model the encoder and decoder section of

4Using the original wavenet block implementation from [28].
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FIGURE 11. Quantile analysis.

FIGURE 12. Training set loss curves.

the original model were kept intact and Stochastic Varia-
tional Inference was utilized to train all models. The encoder
layer size (channels) was kept at 50, the linear decoder layer
size (nodes) at 500. As the model is probabilistic, dropout
layers were not considered to be required. Further, the given
parameters were arbitrarily selected, under consideration of
the number of features and available GPU capacity.

Each model was trained on a Nvidia Quadro P2000 and
trained for 1500 episodes with a batch size of 100 and a
training time of around 1 sec per episode for each model.
An input time series length of five days was utilized (in order
to capture weekend/weekday changes in the time series), but
these input sequences were down-sampled to 100 periods
each. For the channel size 50 layers was chosen (similar for
the hidden size of the long-short-term memory models) and
all linear layers were set to a size of 500 nodes. The AR

and MA components of the ARIMA model were selected to
be 60 periods each.

The root mean squared errors averaged over the 1440 test
periods and all taken samples are given in Fig. 6. As it can
be observed the proposed model performs either the best
or amongst the best in all given data sets. Similar can be
observed comparing the correlation coefficients between the
samples and the real data points in Fig. 7. It has to be noted
that these values are not calculated based on the mean of
the samples but instead are calculated individually for each
sample and then averaged. Further, the coefficient of deter-
mination as shown in Fig. 8 also supports the performance of
the proposed model.5

5with the sole outlier of the series PV1, where the LSTM performs the
best despite the highest RMSE on the similar series.
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The capabilities of the model are also further outlined in
the visual results provided by Fig. 9. As discussed before,
as a generative model, this technique allows drawing sin-
gle samples, an example of such is presented in Fig. 10.
These samples come in form of time series and represent the
distribution if drawn infinitely. Further note that the model
indicates to capture variance as well as trends, both non-linear
and periodical, even with a relatively small training set of
3.5 months. The main issues the model encounters in the test
set are the following:

C2_1 - correctly anticipates the ’step’, but does so too early.
C2_3 - does not anticipate the large outlier (this outlier is

also presented in the last day shown in Fig. 5, which
shows that it is in fact a rare occurrence).

PV_1 - overestimates the amplitude wrongly after 8:00am.
PV_3 - underestimates the amplitude of the peak around

noon.

This synapsis is also supported by the quantiles shown in
Fig. 11, which summarizes the number of the real outcomes
found within the given quantiles which shows C2_1 to be the
best performer of the outliers.

Nonetheless, and as shown in Figs. 6 and 7, the
TCN_Attention model in general mostly outperforms the
tested alternatives, even in the discussed outlier situations.

This is also supported by the training set losses as shown
in Fig. 12 which shows generally more robustness to outliers
in training on TCN.

Thus, in summary it can be stated that even though the
model fails to capture unforeseen, rare events it still man-
ages to accurately represent the underlying distribution of
the time series better than the current state-of-the-art models.
In addition to that, the results also indicate that even though
the proposed attention mechanism improves the performance
of the model significantly (and should thus be advised to be
utilized), the temporal convolutional network still manages to
compete with current state-of-the-art algorithms without this
adjustment.

IV. CONCLUSION
This paper proposes a novel multi-period probabilistic load
and generating forecasting model for distributed energy
resources based on convolutional neural networks and a
transformer-like stacked self-attention mechanism. Further,
it also introduces Stochastic Variational Inference as a
method to train probabilistic forecasting models that allows
training any selected output distribution. As a generative
method, it allows for taking samples of the output, a possi-
bility not provided by other models based on mechanisms
such as quantile regression. In addition to that the model also
proposes an encoder-decoder structure in order to ’fill’ the
gaps of missing sensor data in the input.

The proposed model is then trained on chunks of data
sets obtained from a site representative of the Norwegian
power system - two consumer and one producer load series.
The case study not only demonstrates the better performance

of the proposed models compared to current state-of-the-art
models but also highlights the performance of the temporal
convolutional neural network being on-par with the state-of-
the-art without applying the proposed attention mechanism.

In summary, this paper does not only introduce two prin-
ciples that will aid future probabilistic load prediction - the
encoder-decoder structure as well as the Stochastic Varia-
tional Inference for back-propagation - it also discusses the
application of a novel neural network model on such tasks.

For future work, focus on more efficient generation of out-
put sequences can be proposed, as well as larger case studies
including weather and other exogeneous data can be sug-
gested. As the outputs are generated auto-regressively, gener-
ating larger batches of samples can become time-inefficient
for long prediction sequences.

In summary, it can be stated that the proposed probabilis-
tic model provides an efficient method to generate samples
of sequences for distributed energy resources in real-time,
whose performance against several error measures is demon-
strated in the context of representative datasets from the
Norwegian power system.

APPENDIX
TENSOR SHAPES
Here, the dimensions of the tensors used in the model are
listed. Please note that albeit x ′ is referred to as a matrix
and y′ is referred to as a vector, both of these variables are
represented via tensors (due to the batch dimension):

y′ - batch, sequence, 1
x ′ - batch, sequence, feature
z′1 - batch, sequence, channel
z2 - batch, 1, channel
g - batch, distribution parameter, 1
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