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Abstract

High-utility itemset mining (HUIM) is considered as an emerging approach to detect the high-utility patterns from databases.
Most existing algorithms of HUIM only consider the itemset utility regardless of the length. This limitation raises the utility
as a result of a growing itemset size. High average-utility itemset mining (HAUIM) considers the size of the itemset, thus
providing a more balanced scale to measure the average-utility for decision-making. Several algorithms were presented to
efficiently mine the set of high average-utility itemsets (HAUISs) but most of them focus on handling static databases. In the
past, a fast-updated (FUP)-based algorithm was developed to efficiently handle the incremental problem but it still has to
re-scan the database when the itemset in the original database is small but there is a high average-utility upper-bound itemset
(HAUUBI) in the newly inserted transactions. In this paper, an efficient framework called PRE-HAUIMI for transaction
insertion in dynamic databases is developed, which relies on the average-utility-list (AUL) structures. Moreover, we apply
the pre-large concept on HAUIM. A pre-large concept is used to speed up the mining performance, which can ensure that if
the total utility in the newly inserted transaction is within the safety bound, the small itemsets in the original database could
not be the large ones after the database is updated. This, in turn, reduces the recurring database scans and obtains the correct
HAUIs. Experiments demonstrate that the PRE-HAUIMI outperforms the state-of-the-art batch mode HAUI-Miner, and the
state-of-the-art incremental IHAUPM and FUP-based algorithms in terms of runtime, memory, number of assessed patterns
and scalability.
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1 Introduction

Association-rule mining (ARM) [1, 6-8, 15] is the most
popular method to discover the relationship among the
itemsets from databases, where the potential and implicit
information can be discovered and revealed. Several
algorithms of ARM were developed and most of them
rely on the generate-and-test approach, which is the same
as the traditional Apriori algorithm [I]. It uses two
thresholds to verify whether an itemset is a frequent
one in the first stage under the support threshold and
generate the set of association rules in the second stage
under the confidence threshold. This approach needs higher
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computational cost to generate the candidate set in a level-
wise manner. Also, this process has a significant memory
cost by keeping the promising candidates. To mitigate this
limitation, the FP-growth [15] was presented to build the
Frequent-Pattern (FP)-tree structure and developed an FP-
growth mining approach to discover the frequent itemsets
without candidate generation. Several variants were also
respectively studied and discussed to efficiently mine the
desired information from static databases.

ARM only treats the database as a binary one, there-
fore ignoring the other factors such as interestingness or
weights. This situation may cause information loss since
the database may come from a heterogeneous environment
and each transaction may consist of several factors. High
utility itemset (pattern) mining (HUIM or HUPM) [19,
38] is a variant of the ARM, which focuses on consid-
ering unit profit and quantity of the items to mine the
set of high utility itemsets (HUIs). The user first defines
the threshold and if the utility of an itemset is greater
than the threshold, an itemset is treated as a HUI. This
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approach ignores the frequency factor but brings more prof-
itable itemsets to the retailer or decision-maker, which is
more suitable in real-life applications. Since the traditional
HUIM cannot obtain the downward closure property, many
candidates should be generated for obtaining the actual
HUIs. To overcome this drawback, a two-phase approach
called TWU model [20] was presented, which utilizes the
high transaction-weighted utilization itemsets (HTWUIs)
by maintaining the transaction-weighted downward clo-
sure (TWDC) property. Since the upper-bound value of a
HTWUI was estimated, the size of the candidates can be
greatly reduced as compared to the traditional “combina-
tional generation”. Lin et al. then developed the HUP-tree
structure [25], which keeps the 1-HTWUISs in a compressed
tree, thus speeding up the mining performance. Liu then
proposed a novel utility-list (UL)-structure [27] to effi-
ciently mine the HUIs from the databases based on the TWU
model. The UL-structure uses the join operation to produce
the k-itemsets for HUIM. The experimental results illustrate
that the UL-structure has better performance than that of the
Aprori-like or pattern-growth models. Several extensions of
the TWU model were presented and some of them are still
work in progress [26, 30, 35, 39].

Although the HUIM uncovers a more realistic problem
and highlights worthy itemsets for decision-making, it still
suffers from a major problem. A larger itemset will have
a higher utility. Thus, an itemset is considered as a HUI
if its subset contains an item with a very high utility
value; any combinations with this high-utility item (i.e.,
diamond or caviar) will be treated as the HUIL. To solve
this limitation, a more balanced scale called high average-
utility itemset mining (HAUIM) [17] was developed, which
detects the average-utility of an itemset irregardless of
its size. An average-utility of an itemset calculates the
ratio of the utility over the number of items. This method
creates an alternative choice for decision-making with the
consideration of the itemset size. Hong et al. designed the
TPAU algorithm [17] to identify the set of high average-
utility itemsets (HAUIS). It uses the average-utility-upper-
bound (auub) model to estimate the upper-bound value on
the high average-utility-upper-bound itemset (HAUUBI),
thus maintaining the downward closure property which
reduce the size of the candidates. Lin et al. then designed
a HAUP-tree framework [24] that keeps the I-HAUUBISs in
a condense tree form. This approach is capable of mining
the set of HAUIs without creating new candidates. It is
based on the pattern-growth approach but each node in
the tree structure keeps an additional array for further
information, i.e., the quantity values of its prefix items in
the path. The computational cost of the multiple database
scans can thus be reduced. An efficient average-utility
(AU)-list framework [31] was also developed to speed up
mining performance of the HAUIs. Based on the simple join

operation ,the required information of HAUISs can be easily
retrieved and discovered without candidate generation.
Many extensions were also discussed to efficiently mine the
set of HAUISs [32, 40, 41].

The aforementioned approaches consider the problem
of mining from a static database. Traditional algorithms
handle dynamic databases in a batch manner. For example,
as the database grows and transactions are concatenated
to the original database, the updated database should be
processed. The database will go through re-scanning and
the up-to-date knowledge should be re-mined. Cheung et al.
developed a fast updated (FUP) concept [5] which stores
the frequent itemsets in a dynamic database. With a
change in the database, their framework considers four
scenarios, and each scenario treats the update differently
following a prescribed approach. In the past, the FUP-based
concept was utilized in the ARM [5, 16], HUIM [22, 23],
and HAUIM [33, 36], but those approaches still face a
limitation such that some itemsets are still required to be
re-scanned and an additional database scan is necessary
for maintaining those itemsets. Wu et al. [37] presented
a level-wise approach by adopting the pre-large concept
for incremental mining in HAUIM. However, this model
lacks of the theroical proofs to show that the pre-large can
successfully hold the correctness and completeness of the
maintained HAUIs. Moreover, this level-wise approach still
requires a huge number of computational cost. This research
applies the pre-large concept [14] for maintaining the
itemsets in the dynamic database with transaction insertion
for HAUIM. An algorithm called PRE-HAUIMI is designed
for transaction insertion. The major contributions of this
paper include the following.

e We first propose the theoretical definitions, theorems
and proofs to show that the pre-large concept (pre-
large average-utility upper-bound itemsets, PAUUBI)
can be greatly utilized in the high average-utility itemset
mining (HAUIM) by holding the completeness and
correctness to maintain the discovered high average-
utility itemsets.

® The average-utility-list (AUL)-structure is applied to
obtain the 1-HAUUBISs, and a new AUL-structure is
also used to keep the 1-PAUUBIs for the maintenance
purpose. Thus, the simple join operation can be easily
applied to generate the k-itemsets of the HAUIS,
outperforming the level-wise approach. Moreover, an
enumeration tree is built to determine whether the
supersets of a tree node should be explored, thus
reducing the join operation performing on the AUL-
structures of the unpromising candidates.

e Extensive experimentation is performed to measure
the effectiveness of the proposed PRE-HAUIMI as
compared to the state-of-the-art HAUI-Miner in the

@ Springer



3790

J.C-W.Linetal.

batch mode, and two state-of-the-art IHAUPM and
FUP-based algorithms running in the incremental
maintenance. The performance is measured in terms
of runtime, memory, number of assessed patterns, and
scalability.

2 Literature review

In this section, existing works related to high average-utility
itemset mining and incremental mining are studied and
reviewed as below, respectively.

2.1 High average-utility itemset mining

Traditional association-rule mining (ARM) considers the
occurrence frequency of the itemsets only to mine the
relationship of the itemsets in the binary databases. Apriori
is the fundamental algorithm that applies generate-and-test
approach to level-wise mine the association rules (ARs)
based on the minimum support and minimum confidence
thresholds. Furthermore, the Apriori algorithm maintains
the downward closure (DC) property to keep the correctness
and completeness of discovered ARs. This DC property is
also applied to many other tasks of knowledge discovery
such as sequential pattern mining (SPM) [11] or weighted
pattern mining (WPM) [13]. To improve the mining
performance, the frequent-pattern (FP)-tree structure was
presented to keep only the frequent 1-itemsets in the tree
structure. A recursive FP-growth mining algorithm was
then implemented to mine the frequent k-itemsets from
the FP-tree. Since the DC property is utilized in the FP-
tree structure by keeping the frequent 1-itemsets, thus the
completeness and correctness can be held and maintained.
However, the relevant works of ARM or frequent itemset
mining only consider the frequency of the itemsets, thus
may mislead the decision-making due to the insufficient
information.

High utility itemset mining (HUIM) [19, 38] is gaining
popularity as it takes into account the unit profit as well as
the quantity of the items as the major factors to discover the
set of HUIs. An itemset is considered to be a HUT if it meets
the condition of having a higher utility than a set threshold.
Traditional algorithms of HUIM face the “combinational
explosion” problem since the naive HUIM does not hold the
downward closure property. Thus, the transaction-weighted
utility (TWU) model was proposed to solve this limitation
by taking an upper-bound value to evaluate the set of high
transaction-weighted utilization itemsets (HTWUISs) against
the required high-utility quantity, thus the downward closure
property to ensure the completeness and the correctness
of the discovered HUIs can be maintained. Lin et al.
then presented the high-utility-pattern (HUP)-tree [25] to
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speed up the mining performance based on the FP-tree
structure. An extra array of each tree node is then built
to keep the quantity values of the prefix path, thus the
mining performance can be greatly improved. However,
this progress needs more memory usage to keep the extra
information, which is not sufficient to handle a big dataset.
Tseng et al. then presented the UP-growth+ [35] to build
the similar structure as FP-tree but applied several pruning
strategies to early reduce the unpromising candidates in the
search space. This algorithm showed better performance
than the standard TWU model. To better improve the mining
performance, Liu et al. [27] then developed the utility-
list (UL)-structure to keep the necessary information based
on the TWU model. The UL-structure adopts a simple
join operation to produce the k-itemsets, and since the
I-HTWUIs are kept in the UL-structure, the correctness
and completeness can thus be maintained by the HUI-
Miner. Several extensions [3, 4, 26, 30] based on the TWU
model were respectively developed and the state-of-the-
art approach for HUIM is called EFIM [42] that relies
on two new upper bounds to reduce the search space of
the unpromising candidates,. Moreover, a new array-based
utility counting technique was investigated to calculate the
upper bounds, and the projection and merging techniques
were also developed to improve mining performance.
Besides the above mining algorithms that were developed
for standard HUIM, the varied knowledge based on the
utility-oriented pattern mining were also developed and
discussed. For example, the top-k HUIM [18] is used to
mine the top-k HUIs instead of mining the complete HUIs
from the database; closed HUIM [10, 34] is used to mine the
closed HUIs from the database; and CoUPM [12] is used
to consider the correlation of the HUIM. Those algorithms
were developed to provide fewer utility-oriented patterns
for decision-making, which is more effective for on-line
decision-making.

High average-utility itemset mining (HAUIM) [17]
extends HUIM on the itemset length for evaluation. This
is because most algorithms of HUIM under-perform when
both the size of an itemset and the utility of an itemset
increase. Thus, for example, a bread may be considered as
a HUI if it always appears with caviar in basket analytics.
The TPAU algorithm [17] was the first algorithm in HAUIM
and it is based on the Apriori. It uses the (auub) framework
to keep a downward closure property. Lin et al. developed
the HAUP-tree [24] to maintain the satisfied 1-itemsets in
the tree structure. An array to keep the quantities of its
prefix items in the path is also attached to each node in
the HAUP-tree, thus speed up the mining performance by
reducing the multiple database scans. Although this method
is more efficient than that of the traditional generate-and-
test approach [17], it still needs to keep a huge memory
usage for the mining progress. Thus, a HAUI-Miner [31]
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was presented to adopt the average-utility-list structure
to mine the HAUIs without generating new candidates.
This is the state-of-the-art model to efficiently mine the
HAUISs from the static databases. Several extensions such as
PBAU [28] and HAUI-Tree [29] were respectively studied
and most of them rely on the auub model to find the HAUI
set.

2.2 Incremental mining

Traditional association-rule mining (ARM) [1, 15] aims at
mining the set of association rules from a binary database
and only considers a static database, which indicates that
the size of the database is unchanged. Many extensions
of ARM are presented [6, 7, 21, 39], which emphasize
on improving the mining performance in static databases.
However, in a realistic environment, the database size is not
stable; as new transactions are added. In this situation, the
already discovered information or rules should be updated
since some rules may be arisen or missed. Adding the new
information is critical since it sometimes influences the
decisions or strategies of a company/industry in a significant
manner. Traditional algorithms in pattern mining handle
this situation using a batch approach. This re-scans the
new database with a addition or removal of data point.
This progress is a computational cost, and the discovered
information in the past becomes useless.

To better use the discovered information, Cheung et al.
developed the Fast UPdate (FUP) concept [5] to deal with
transaction updates for transaction insertion and thereby
keeping the frequent itemsets in a dynamic database. The
FUP concept divides the itemsets into four subsets with
respect to the original database and new transactions. Each
case has its own developed model to efficiently update
and maintain the discovered frequent itemsets according
to whether it exists or not in the original database or in
the newly inserted transactions. This approach has been
utilized to ARM [5, 16], HUIM [22, 23], and HAUIM [33,
36]. However, some itemsets are required to be assessed
since they were not kept from the original database. For
example, if an itemset exists in case 3 that indicates this
itemset was not a frequent itemset in the original database
but is considered as the frequent itemset in the newly
inserted transaction, the original database is required to be
rescanned to keep the integrity of the knowledge, especially
in maintaining the correctness for the updated databases.
Thus, this approach showed lower efficiency when many
itemsets in case 3 are required for maintenance.

To address this shortcoming, Hong et al. applied the
pre-large concept [14]. The pre-large concept utilized two
thresholds for maintaining large and pre-large itemsets.
This way, the original database and the new transactions
are divided into nine cases, and several procedures were

developed to handle the itemsets of each case. The pre-
large itemsets play the role of a placeholder to avoid the
direct transition of an itemset to/from large to small. An
equation was also designed to ensure that as long as there is
a change in size within a threshold, there is no need for re-
computation (case 7) and the correctness and completeness
of the discovered frequent itemsets can still be obtained. The
summary of the pre-large concept with transaction insertion
is shown in Fig. 1.

Cases 1, 5, 6, 8, and 9 would not change the results in a
meaningful way as a result of the weighted average of their
frequencies. Some rules may be removed if they appear in
cases 2 and 3, and some rules may be arisen if they appear
in cases 4 and 7. Since we keep large and pre-large itemsets
from the original database, the itemsets in cases 2, 3 and 4
are easily handled. Based on the defined equation for the
safety bound, case 7 itemsets are always smaller than the the
threshold. The safety bound (f) is shown as:

L (Su—S) x D]
e e (1)

where f indicates the safety bound, S, is the upper bound, S;
is the lower bound, and | D| is the size of the initial database
(number of transactions).

3 Preliminaries and problem statement

Let D contain n transactions where D ={Ty, T», ..., T, }, and
d is the set of new transactions. Each transaction 7, in D or
d contains several distinct items such that 7, = {i1, i, ...,
ir}, and [ is defined as the collection of all items appearing
in D and d such that I = {iy, iy, ..., i }. Therefore, i; € I,
and T, € D or T, C d. A profit table is defined as utable
={p(i1), p(i2), ..., p(i;m)}, which contains the item profit
values. A minimum HAU threshold is represented with §,
set by the user. Tables 1 and 2 illustrate an example of the
initial dataset and profit table, respectively.

Table 1 A running example of the original database

TID Items:quantities

T a:l, b5, ¢2,d:3,f:6
T b:2,c:3,e2

T3 al,b:2,d:1,f:1

T4 a:l,c:3,d:2

Ts al,e:l

Ts b:7,d:1,f:2

T7 a:3, b9, c:3,d:1
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Table 2 An unit profits of the items

Item a b c d e f

Profit 4 1 5 7 6 3

Definition 1 The average-utility of an item i; in a
transaction T, can be represented by au(i;, T):

q(ij, Tg) x p(j)

l 9
where ¢ (i;, T;) is the quantity of i; in T, and p(i;) is the
unit profit value of i;.

@)

au(ij, Ty) =

For example, the average-utility au of an item (a) in T}
isau(a, ) = 22 (= 4).

Definition 2 The au of a k-itemset X in a transaction 7} is
represented by au(X, Ty):

> qlij, Ty) x p(ij)

i CXAXCT,
au(X,Ty) = x|
> q;, Ty x p(ij)
ijCXAXCT,
= 3 ) 3

where k is the number of items in X.

For example, the au of the itemset (ab) in Tp is
au(ab, T) = 231 (= 4.5),

Fig.1 Nine cases of the
pre-large concept

.. Prelarge
Original databases < c
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Definition 3 The au of an itemset X in D is represented by
au(X):

au(X)= >

XCTynT,eD

au(X, T,). “

For instance, the au of the itemset (ab) in D is calculated
as au(ab) = au(ab, Ty) + au(ab, T3) + au(ab, T7) (=4.5 +
3+ 10.5)(= 18).

Definition 4 The transaction utility of a transaction 7 can
be represented by tu(7y):

tu(Ty) = Z u(ij, T,). 5)

ijCTy

For instance, the transaction utility of 7} is calculated as
(Ix4+5x 1+2x5+3x7+6x 3)(=58).

Definition 5 The total utility 7U of a database D can be
represented by TUP:

TUP = Z tu(Ty). (6)

T,€D

For example, TU of Table 1 is TUP (=58 +29 + 16 +
33 + 20 + 43)(= 209).

Definition 6 An itemset is defined as a HAUI if its au
meets:

HAUI < {X|au(X) > TUP x §}. (7

New records

A

/ Large  Prelarge
Itemsets Itemsets Itemsets

a )

Case1l Case2 Case3

Small \

Large
Itemsets

Case4 Case5 Case6

Itemsets

Small

itemsets | Case 7 Case 8 Case 9
NN _J
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As an instance, suppose the § is 20%, then the minimum
au is calculated as (209x 0.2) (= 41.8). In this example, (c)
and (cd) are considered as the HAUI since u(c)(= 55), and
u(ac) = % (= 41), but (a) is not since its average-utility is
calculated as u(a) (= 28).

To calculate the downward closure property for removing
the unlikely ones, the (auub) model [17] over-estimates the
itemsets utility.

Definition 7 The transaction-maximum utility ¢tmu of a
transaction Ty is represented by tmu(T):

tmu(T,) = max{u(i;)li; € X A X C T,}. ®)

As an instance, the tmu of Ty is max{4, 5, 10, 21, 18}
(=21).

Definition 8 The average-utility upper-bound auub of an
itemset X from the initial database can be represented by
auub(X)P:

auub(X)P = Z

XCT,AT,eD

tmu(Ty), 9)

where tmu(T,) is the maximum utility of transaction 7
giveni; CXAX CT,.

For example, the auub value of an item (a) is calculated
as auub(a)(=21+7+ 15+ 6 + 15)(= 64).

Property 1 (Downward closure of auub) For an itemset Y
as the superset of an itemset X under X C Y, we have:

auub(Y)? < auub(X)P. (10)

Therefore, if auub(X)? < TUP x § then auub(Y)P <
auub(X)P? < TUP x § is true for all supersets of X.

Definition 9 (High average-utility upper bound itemset,
HAUUBI) Anitemset X is a HAUUBI given that:

HAUUBIP < {X|auub(X)? > TUP x §}. (11)

As an example, the itemsets (a) and (ad) are considered
as a HAUUBI since their auub values are respectively
calculated as auub(a)(= 64 > 41.8), and auub(ad)(= 58 >
41.8), but the itemset () is not considered as HAUUBI since
auub(e)(=21 < 41.8).

For incremental mining, let us consider the case where
there are several addition to the database (see Table 3). With
this, the problem is defined as:

Problem statement In reality, the size of the historical
data may exceed a million zeta-bytes, for example, a
supermarket with an annual record of the purchase products
from customers. However, a newly record for a month

3793
Table3 A new inserted database
TID Items:quantities
T3 a:1, e:10, f:5
Ty c:1,d:3
Tio b:1

is going to be merged with the past records forming an
updated database. In this situation, the generic and batch-
mode approach is to directly integrate those two databases
and re-mine the updated records again for retrieving
the up-to-date information. This is not reasonable since
the past computational cost and discovered information
become useless. We are interested in efficiently holding
and appending the initial database with the new additions,
without re-scanning the new database. In this paper, we
focus on maintaining the discovered HAUISs for transaction
insertion, which is a real case in the retail industry. For the
incremental HAUIM, it is necessary to design an efficient
algorithm for transaction insertion to maintain and update
the discovered information, and the multiple scans of the
updated database should be avoided. Accordingly, an HAUI
itemset is:

HAUI <« {X|lau(X)V = (TUP + TU?) x S,}, (12)

where au(X)Y indicates the updated average-utility of X,
and TU? as the total utility in the inserted database d.
Moreover, S, is a user-specified upper-utility threshold, and
is adjustable by domain experts.

4 Proposed PRE-HAUIMI framework for
transaction insertion

Traditionally, various frameworks were designed to speed
up the process of finding HUIM, and the well-known
structure is called utility-list (UL)-structure. The HAUI-
Miner [31] was developed to find the HAUIS by utilizing the
UL-structure, and presented an average-utility-list (AUL)-
structure, running in the batch mode. Lin et al. developed
the FUP-based approach [36] by using the AUL-structure,
but it still needs, however, multiple database scans if some
itemsets belong to the Case 3. In this paper, we adopt the
AUL-structure and utilize the pre-large concept for handling
the incremental problem of HAUIM. Based on the utilized
pre-large concept, the designed PRE-HAUIMI handles the
sets of 1-HAUUBIs pre-large average-utility upper-bound
1-itemsets (1-PAUUBISs) efficiently by adopting the AUL-
structure, and the 1-PAUUBIs can successfully play as
the buffer to reduce the condition such as from HAUUBI
directly to small and vice versa. An upper-utility threshold
is set as S, and the lower-utility is set as S; for the designed
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Fig.2 A sample enumeration
tree

d ¢ a b 1-level
RN

e da db e 2level
AN

dea dcb e 3level

dcéy 4-level

PRE-HAUIMI. Notice that the S, is equal to the high
average-utility threshold used in traditional HAUIM. The
details of PRE-HAUIMI are described below:

Definition 10 (Pre-large average-utility upper-bound item-
set, PAUUBI) An itemset X is a pre-large average-utility
upper-bound itemset (PAUUBI) in the initial database given:

PAUUBIP « {X|SxTUP < auub(X)? < S,xTUP}.
(13)

For instance, suppose the S, and S; are respectively set
as 21% and 16% in the running example. The itemset (ab)
is PAUUBI with an au of 34, which lies between S; (= 209
x 16%)(= 33.4) and S, (=209 x 21%) (=43.9).

4.1 The Average-Utility-List (AUL)-structure

The HAUI-Miner algorithm [31] uses AUL-structures to
keeps three fields for later mining progress. The first field
is the transaction ID (#id). The utility of an item i; of each
tid is shown as iu, and the transaction-maximum-utility of

an item i of each fid is stated as tmu. The AUL-structure in
the designed PRE-HAUIMI keeps not only the 1-HAUUBIs
but also the 1-PAUUBISs. Although this process requires the
extra memory usage, it reduces the need for re-scans and the
completeness and correctness can be exactly obtained. For
the construction progress of the AUL-structure, if auub is
not more than the upper-utility threshold, it can be denoted
as 1-HAUUBI, and if the auub is less than the upper-utility
threshold but greater than the lower-utility threshold, it is
then considered as the 1-PAUBBI.

To create the k-itemset (k > 2) of the potential HAUTIS,
an enumeration tree is then explored by the depth-first
search (DFS). DFS decides between proceeding with the
superset (k+1)-itemsets of k-itemsets or skipping it. For
supersets that meet the requirement, an iterative join process
creates the AUL-structures of k-itemsets. This is done for
all remaining candidates. Finally, the final HAUIs can be
revealed by scanning the database. From the given example,
the enumeration tree is shown in Fig. 2.

Property 2 All the satisfied 1-HAUUBIs in the initial
database are put into an ascending order based on their auub.
This facilitates the transition to the AUL structures.

1
i} {c} {a} {b} | i
1
) o1 | 21 1] 10 | 21 1 4 21 1 5 21 f1p 8] 2
3 7 7 2 15 15 3 4 7 2 2 15 : 3 3 7
4 | 14 | 15 4115 | 15 41 4 15 3 2 7 | Le ] 6 7
5 4 6 7 9 15 |!
6 7 7 Z 15I 15‘ |
7 7 15 / \l' \ 7 12 15 :
. 1
TID  iu tmu 1-HAUUBIs 1 1-PAUUBIs

Fig.3 The constructed AUL-structures of the original database
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Property 3 In order to efficiently hold the correctness and
the completeness of the discovered HAUUBIs and HAUIS,
every item should go through the AUL-structures. The
negligible size of this process as compared to the initial
database in real-world scenarios creates an advantage.

Property 4 The ordered 1-HAUUBIs and 1-PAUUBIs in
the new database is closely related to the sorted order from
the initial database. This is rooted in the smaller size of the
new one as compared to the initial dataset. Consequently, the
order stays in tact for the most part throughout the process.

Due to the preservation of 1-HAUUBIs and 1-PAUUBIs
in the formation of the AUL-structures, the proposed PRE-
HAUIMI is capable of mining HAUUBIs and HAUISs
while bypassing the candidate generation. The correctness
and completeness of the updated sets remain complete.
The results of the AUL-structures of 1-HAUUBIs and 1-
PAUUBISs are illustrated in Fig. 3.

4.2 The utilized pre-large concept

The developed PRE-HAUIMI divides the itemsets into nine
cases based on the utilized pre-large, as adapted from [14].
Through further procedure, 1-HAUUBIs and 1-PAUBBIs
are identified and kept in store. Figure 4 gives an overview
of the nine cases of the utilized pre-large concept.

e (Case 1: Given a HAUUBI that is present both initial data-
base and updated transaction, the HAUUBI stays as is.

® C(Case 2: Given a HAUUBI that is present in the initial
database but become a PAUUBI in updated transaction,
the HAUUBI may stay in tact or transform as a PAUUBL

e (Case 3: Given a HAUUBI that is present in the initial
database but a small itemset in the updated transaction,
the HAUUBI may stay in tact or transform as a PAUUBI
or a small itemset.

e C(Case 4: Given a PAUUBI that is present in the initial
database but become a HAUUBI in updated transaction,
the PAUUBI may stay in tact or transform as a
HAUUBI.

e (Case 5: Given a PAUUBI that is present both initial
database and updated transaction, the PAUUBI stays as
is.

e (Case 6: Given a PAUUBI that is present in the initial
database but a small itemset in the updated transaction,
the PAUUBI may stay in tact or transform as a small
itemset.

e C(Case 7: Given a small itemset that is present in the
initial database but a HAUUBI in the updated transac-
tion, the small itemset may stay in tact or transform as a
PAUUBI. The latter occurs when the total utility in the
inserted transactions is less than the threshold.

e Case 8: Given a small itemset that is present in
the initial database but a PAUUBI in the updated
transaction, the small itemset may stay in tact or
transform as a PAUUBI.

e (Case 9: Given a small itemset that is present both initial
database and updated transaction, the small itemset
stays as is.

Accordingly, the theoretical foundation of the safety bound
is defined by:

S, —S) x TUP
f _ ( u l) X (14)
1- Su
Thus, case 7 cannot become a HAUUBI after the update
if (TU?) stays under (f).

Theorem 1 Consider S; and S, as the lower-utility and
the upper-utility bounds, and TUP and TU? be the total
utility in the initial database and the updated one. Thus, if

TU? < f(= W), case 7 holds true.

— D .
Proof From TU¢ < %, we can obtain that:
d ~ Su=SpxTUP
TUS = =9t

=TUx(1-S8,)<(S,—8)xTUP

=TU-TU% xS, <TUP xS, —TUP x §

=TU'+TUP x 8§ <8, x (TUP +TU?)
TU+TUP x5

= “rgperge =S . .

For an itemset X in case 7, if it is a small itemset in the

initial database, we have:
auub®(X) < §; x TUP. (15)

Also, it holds the following equation in the new
transactions as:

TU? > auub(X)? > S, x TU? > §; x TU“. (16)

Thus, for an itemset X, its utility ratio in the new database

Uis 2wbX)7 aso expanded as:

TUDP+TU
auub(X)V  auub(X)P + auub(X)? S x TUP + TU!
TUD +TU — TUD +TU TUD +TU

a7

From the above equations, we can conclude that:

auub(X)V S x TUP +TU?
< <
TUD +TU4 TUD +TUd —
Thus, the auub of an itemset X is small in the new

database as long as the updated total utility is not larger than
(Su=S)xTUP =
-5, :

Sy (18)
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Based on the above theorem and proof, we can ensure
that the multiple database scans can be greatly avoided if the
total utility in d is no larger than the safety bound (f). Thus,
Case 7 holds true.

For this example, let us consider the upper-utility
threshold as S, (= 21%), and lower-utility threshold as
S; (= 16%), respectively. The TUP is calculated as
209. The safety bound (f) can be measured using: f =
Q2101030 (= 13.22). Thus, if the total utility in the
inserted transactions is below 13.22, it would be redundant
to re-scan the initial database since they would definitely not
be the HAUUBI in the new database.

4.3 Proposed PRE-HAUIMI algorithm

Before processing the PRE-HAUIMI algorithm, the AUL-
structures of 1-HAUUBIs and 1-PAUBBIs are initially
constructed in the initial database. With the availability of
all AUL-structures in the added transactions, the correctness
and completeness hold true for the proposed framework.
With the addition of new transactions, the PRE-HAUIMI
algorithm analyzes the various cases, and the procedure
follows. The pseudo-code for PRE-HAUIMI is given in
Algorithm 1.

In Algorithm 1, the buffer (buf) is set as 0 by default
for the first round (Line 1 in Algorithm 1). The safety
bound (f) and the new total utility d are then respectively
calculated (Lines 2 to 3 in Algorithm 1). After that, the
AUL-structures of all 1-items in d are constructed (Lines
5 to 8 in Algorithm 1). This process is to ensure the

Fig.4 Nine cases of the utilized
pre-large concept

Original databases

@ Springer

correctness and the completeness of the final HAUISs and it
is a reasonable process since in real-life situation, there is
only a small number of transactions in d compared to the
original database D. The constructed AUL-structures in D
and d are then merged together by the sub-procedure (Line 9

Algorithm 1 Proposed PRE-HAUIMI.

Input: D, the original database; utable, an unit profit table; d,
insertion transactions; S,,, upper-utility threshold; S,
lower-utility threshold; D.AULs, the AUL-structures of
D; TUP, total utility in D.

Output: the set of high average-utility itemsets (HAUISs).

set buf < 0;

calculate the safety bound f

calculate total utility in d as TU¢;
buf < buf + TUY;
for each T, € d do
for each X € T, do
|_ X.AUL < {Ty,iu, tmu};
8 d.AULs < UX.AUL;

9 Merge(D.AULs, d.AULs, U.AULs);
1w TUY :=TUP + TUY,
11 for each X € U.AULs do

N M A W N =

12 ifX""”%zTUUxSuthen

13 | HAUIs < UX;

14 if X.tmu.sum > TUY x S, then

15 extAULs < null,

16 for each Y after X in U AULs do

17 |_ extAULs < extAU Ls + Construct(X.AULs, Y);
18 PRE-HAUIMI(X, extAULs);

19 D.AULs < U.AULs;
20 return HAU Is, U.AULs, buf

New records

N

-

HAUUBIs PAUUBLs omall
1temsets
/
HAUUBIs [ Case 1 Case2 Case3
pPAUUBIs | Case4 CaseS Case 6
Small
iemsets | Case7 Case 8 Case9
N N
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in Algorithm 1). The total utility of the merged databases D
and d is then calculated (Line 10 in Algorithm 1). Following
this, the updated AUL-structures are then maintained, and if
the auub value of an itemset X is not larger than the upper-
utility, a HAUI is found (Lines 11 to 13 in Algorithm 1),
and the supersets of the X verifies the need for scan the
supersets (Lines 14 to 17 in Algorithm 1), and the designed
PRE-HAUIMI uses recursion for the continuation of the
procedure. Then, the updated HAUIs set is maintained and
the PHAUISs is set for the buffer (Line 20 in Algorithm 1).
Furthermore, the AUL-structures are then updated and kept
for the next maintenance (Line 19 in Algorithm 1).

For the Merge procedure, if X exists in d and is
considered as a HAUUBI, but it does not appear in the
AUL-structures of D, the original database D is required
to be re-scanned to obtain its AUL-structure (Lines 4
to 6 in Algorithm 2). This approach is to ensure the
correctness and completeness of the developed algorithm
for the maintenance procedure. In this situation, the buffer
is then set as O (Line 7 in Algorithm 2); otherwise, the buffer
is updated by the total utility in d. Thus, this value is then
used for the next maintenance procedure of the new coming
transactions. The AUL-structures of d is then merged and
updated with the AUL-structures in D (Lines 10 to 15 in
Algorithm 2). In this process, a simple join operation for the
new built AUL-structures in d is the performed to directly
inserted to the corresponding itemset of AUL-structure in D.
After that, the Construct function presented in Algorithm
3 verifies the need to scan the supersets considering the
tids set for combination (Lines 1 to 3 in Algorithm 3).
The information of utilities (Lines 4 to 6 in Algorithm 3)
are recomputed, and the results form the updated AUL-
structures (Lines 7 to 8 in Algorithm 3). This process has a
similar complexity to the UL-structure [27] except the pre-
large part of 1-PAUUBISs for the PAUL-structure is also built
here for maintaining the integrity of the final HAUISs.

Algorithm 2 Merge(D.AULs,d.AULs, U.AU Ls).

1 set X.AUL < null;

2 set U.AULs < null;

3 for each X € d.AULs do

4 if Lamgsun > 74 5 S, AX ¢ D.AUL then
5

6

7

if TU? > buf then
L scan D to obtain X.AU L from D;

buf < 0;
8 else
9 |_ buf <—buf+TU‘l;
10 if 3X € D.AULs A X € d.AU Ls then
11 for each element Ej € X.AUL do
12 X.iusum < X.iu.sum + E;.iu;
13 update X.AU L.tmu;
14 X.AUL < Ej;
15 U.AULs < UX.AUL;

Algorithm 3 Construct(X.AUL, Y).

Input: X.AU L, the AUL-structures of X; Y, the itemset Y after
Xin X.AUL.
Output: XY.AU L, the AUL-structures of XY.
XY.AUL <« null;
if3E € Y. AUL A X.AUL.tid == Y.AUL.tid then
Exy. AUL.tid < X.AUL.tid,
Exy.iu < (X.AUL+Y.AUL)/2;
update Exy.tmu;
Exy << Exy.tid, Exy.iu, Exy.tmu >;
XY.AUL < UExy.

8 return XY .AUL;

N U R W N e

4.4 Complexity analysis

The complexity of the designed PRE-HAUIMI algorithm to
maintain the AUL-structure for further mining is analyzed
as follows. Again, assume that n is the number of
transactions in d , that the number of items in the largest
transaction in d is m, it thus requires O(m X n) time for
the first database scan in the worst case. After that, the total
utility is calculated by the sum of the transaction utilities
in d, which requires O(n). The equation is then used to
calculate the safety bound to determine the itemsets, and for
each satisfactory case to be examined based on the safety
bound, the AUL-structure is then built that requires a linear
time O(m) in the worse case if it is implemented as a two-
way or three-way search. Assuming that there are k-itemsets
of each case in the original database D, a simple operation
to join two AUL-structure whether for the original D and
the inserted transactions d is O (k x N) time, where N is the
number of the cases for maintenance. Thus, the maintenance
part of the AUL-structure in the designed PRE-HAUIMI
algorithm is calculated as O (m xn+n+m-+k x N) at most.

5 A running example

Here, we examine PRE-HAUIMI for incremental mainte-
nance. Before adding the new transactions in the initial
database, the AUL-structures of all 1-HAUUBIs and 1-
PAUUBIs from the original database were first built. Here,
the initial database, the profit table, and the updated trans-
actions are presented in Tables 1, 2, and 3, respectively. The
built AUL-structures from the original database was seen
in Fig. 2. In this example, let us consider the case where
the upper-utility thresshold is configured as S, (= 21%),
and the lower-utility threshold is configured as S; (= 16%),
respectively. The total utility for the initial database and new
inserted ones are 209 and 110, and the updated total utility
is calculated as (209 + 110) (= 319). In this example, the 1-
HAUUBIs and 1-PAUUBIs are shown in Table 4 and their
AUL-structures were shown in Fig. 3.
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Table 4 The sets of 1-HAUUBIs and 1-PAUUBIs in the original
database

Two sets 1-items auub
1-HAUUBIs a 64

b 58

c 66

d 68
1-PAUUBIs f 27

In this example, the auub values of all 1-items are given
in Table 5.

After all 1-items are obtained from the new transactions
forming as the AUL-structures, the elder database and new
transactions are then merged together. For instance, the
auub(a) is (64 + 60)(= 124). The other 1-items are easily
updated since the auub values of (b), (¢), (d), and (f) were
kept in Table 4. In this sample example, the safety bound is
calculated as f = 225918 5209 (= 13). Thus, the original
database of the 1-item (e¢) should be re-scanned to obtain
auub, and the result of (e) in D is auub(e)(= 21). After the
updating process, the 1-HAUUBIs are {a, c, d, e, f}, and
no 1-PAUUBISs in the running example. The enumeration
tree of those l-items are then built and shown in Fig. 2.
The supersets of those 1-items are verified for the AUL-
structures to be generated using the simple join operation.
For example, the generated AUL-structures for 2-itemsets
are illustrated in Fig. 5. This procedure is then repeated until
all the required HAUISs are then maintained and updated.

From Fig. 5, it is obvious to see that the AUL-
structure of (f) is removed in the updated progress. This is
reasonable since after the updating progress, the item (f)
becomes a small utility pattern, which is then discarded
for next generation. Based on the join operation of the
TIDs (transaction IDs) in the AUL-structures, it is easy
to generate the supersets without a huge computational
cost; the maintenance performance can be greatly reduced.
Moreover, since the complete information of 1-itemsets is
kept in the AUL-structure, it is unnecessary to rescan the
database for the 2-itemsets based on the downward closure

Table 5 The auub values of all 1-items in the new transactions

1-items auub

60

S
N

66
68
60
60

~ o o o
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property. Thus, the designed model has better benefit than
that of the Apriori-like approach. After all progresses of the
designed PRE-HAUIMI, the results of the HAUIs can be
then easily obtained.

6 Experimentation and findings

Here, we analyze the effectiveness and efficiency of
the proposed incremental PRE-HAUIMI algorithm with
transaction insertion as compared with FUP-based [36],
IHAUPM [33] and the HAUI-Miner [31] algorithms on
multiple datasets. The FUP-based ones are considered as
the predominant incremental algorithm for updating the
discovered HAUISs, and the HAUI-Miner is the predominant
approach for the batch progress. All the experiments were
carried on Intel(R) Core(TM) i7-6700 4.00GHz processor
with 8 GB main memory, with a 64 bits Microsoft Windows
10 OS and implemented in JAVA language. Experimentation
was performed on six datasets [9] including four real
datasets and two artificial ones, and the artificial datasets
were generated using the IBM Quest Synthetic Data
Generator [2]. The foodmart dataset contains the quantity
and unit profits but for the other datasets, we used
synthesis to supplement these values for the datasets. The
characteristic of the six datasets used in the experiment are
shown in Table 6. The datasets have the following features:
the #|D| shows the number of transactions; #|I| shows the
quantity; AveLen and MaxLen show the average length
and maximum length of the transactions, respectively; and
Type is a Boolean value that represents the datset is whether
sparse or dense.

The results were measured for runtime, memory usage,
the number of assessed patterns and scalability. Notice that
the upper-utility threshold (the same as the high average-
utility threshold in traditional HAUIM) is represented as UT
for the designed PRE-HAUIMI algorithm. The LT is defined
as the lower-utility threshold used in the designed PRE-
HAUIMI. The insertion ratio is represented as IR. The IR
shows the percentage for the number of inserted transactions
from the initial dataset. Notice that the batch model
algorithm such as HAUI-Miner should re-scan the updated
database to identify the required HAUIs as long as the
size of the dataset is updated. The other three incremental
algorithms including the developed PRE-HAUIMI only
handles the incremental parts for the maintenance since
the original dataset was already maintained in the main
memory.

6.1 Runtime

Our runtime results for the four algorithms with varying
UT and a constant IR (= 1%) are given in Fig. 6. Different
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Fig.5 The AUL-structures of 2-itemsets

datasets may apply different UTs due to the varying
specifications for each dataset.

Figure 6 demonstrates that an increase in the upper-
bound threshold results in a reduction in the execution
time. This can be explained as an increase in the upper-
bound value causes the shrinkage of the search space for
HAUISs. In most cases, the HAUI-Miner algorithm takes
the most computational cost since it performs as the batch
model while the size of the transactions is updated with
transaction insertion. The IHAUPM uses the tree-based
structure, which requires more computational time when
compared to the FUP-based approach with list structure.
For the designed algorithm, it takes less computational
cost for the incremental mining, since it relies on the
efficient AUL-structure and the pre-large concept. For cases
with a smaller total utility in the initial database than

Table 6 Dataset specifications

the set safety bound, there is no need to scan initial
database again but the completeness and correctness of the
discovered HAUIs can be easily maintained. The results
for changing IRs and a constant UT are presented in
Fig. 7.

From Fig. 7, all the algorithms remain stable with the
increasing of the IR. The reason is that the IR slightly affects
the mining performance since most rules were discovered.
The proposed algorithm still has best performance since re-
scans are redundant. Results of the memory usage for all
algorithms are also presented.

6.2 Memory usage

Our experimentation included an analysis of memory usage
with changing UTs and a constant IR (Fig. 8).

Figure 8 demonstrates that the IHAUPM requires
more memory as compared to other approaches for most
scenarios, e.g. in Fig. 8a, b, d, e, and f. The reason is

Dataset #D| #[1) Avglen MaxLen Type

retail 88,162 16,407 10 76 Sparse
T1014D100K 100,000 870 10.1 29 Sparse
kosarak 990,002 41,270 8 2,498 Sparse
T40110D100K 100,000 1,000 39.6 77 Dense
mushroom 963 119 23 23 Dense
foodmart 21,556 1,559 4 11 Sparse
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Fig.6 Runtime results w.r.t. varying thresholds

that the IHAUPM uses the tree structure as a buffer; it
is efficient but still has worse performance than that of
the AUL-structure. The proposed PRE-HAUIMI has better
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results than that of the FUP-based algorithm since there
is no need to re-scan the initial database, but sometimes
needs more memory usage to keep the extra information

(c) kosarak (LT: 2.1%, UT: 2.2%)

5 10 15 20 25

16000

14000

Insertion Ratio (%)

(f) foodmart (LT:0.03%, UT: 0.04%)

12000

10000

8000

6000

Runtime (ms)

4000

2000

5 10 15 20 25

[——HAUI-Miner —— IHAUPM

FUP-based —&—PRE-HAUIMI

Fig. 7 The results of runtime w.r.t. varied insertion ratios
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Fig.8 Memory usage results w.r.t changing thresholds

(pre-large utility patterns), which can be found in Fig. 8a
when the upper-bound threshold is set lower. The HAUI-
Miner needs less memory usage in most cases due to its
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progress, generally, the designed PRE-HAUIMI performs
well in terms of memory needs in most datasets. Results in
terms of varied IRs with a constant UT are given in Fig. 9.

Figure 9 demonstrates similar results to Fig. 8; i.e. the
HAUI-Miner has a lower memory requirement, and the
IHAUPM needs the most memory usage for incremental
mining in most cases except in kosarak dataset. This
is interpreted as the AUL-structure performs well in
incremental scenarios. Although the PRE-HAUIMI requires
more memory to buffer the required information of the pre-
large utility patterns than that of the FUP-based approach,
for example in Fig. 9a, b, d, and e, but it is a trade-off
problem between the runtime and the memory usage. Only a
very slight extra memory is required for the developed PRE-
HAUIMI algorithm than that of the FUP-based approach but
still outperforms the IHAUPM algorithm.

6.3 Number of assessed patterns

Here, we analyze our results for the number of assessed
patterns to find the HAUIs. The results for changing UTs
and a constant IR are presented in Figs. 10 and 11.

From Figs. 10 and 11, we can see that the assessed
patterns of the developed PRE-HAUIMI is much fewer than
the other algorithms except in Figs. 10c and 1lc. From
the Table 6, we can observe the sparsity of the kosarak
dataset with a very high the maximal length in some

transactions. Thus, the processed inserted transactions for
the incremental mining may consists of long lengths; the
developed PRE-HAUIMI may keep more information as the
pre-large utility patterns for later mining process. In most
cases, the [IHAUPM needs to asses more patterns since it
adopts the tree structure.

6.4 Scalability

Here, we perform experimentation on the scalability of the
different appoaches using artificial datasets, synthesizes by
IBM Generator [2]. With a varying ratio of scalability from
100K to 500K, in 100K increments. These measurements
are represented in Fig. 12.

Figure 12 shows that PRE-HAUIMI has better perfor-
mance in terms of runtime and the number of assessed
patterns. For memory usage, since the developed PRE-
HAUIMI needs to maintain the pre-large utility patterns,
it sometimes needs extra memory to keep those informa-
tion. The IHAUPM needs the most memory usage than the
other algorithms in terms of memory usage. This can be
explained as HAUI-Miner, FUP-based and the developed
PRE-HAUIMI adopt the efficient AUL-structure, which
requires less memory usage than the tree-based algorithm.
We also can see that the proposed PRE-HAUIMI is more
stable as compared to others in terms of runtime, which
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Fig. 11 The results of number of assessed patterns w.r.t insertion ratios

shows better efficiency and effectiveness in the updat-
ing progress. From the results, it also indicated that the
performance is not stable according to the size of the
increasing database. This is reasonable since the designed
PRE-HAUIMI needs to keep more itemsets in the pre-large
concept, it needs to explore more candidates for mainte-
nance rather than the FUP-based model, which can be seen
in Fig. 12c (dataset size is 100K or 200K). Moreover, since
the designed algorithm keeps an extra AU-structures based
on the pre-large concept, it sometimes needs more mem-
ory usage than that of the FUP-based model that can be
seen in Fig. 12b (dataset size is 500K). In average, the
designed algorithm has less computational cost, memory

usage, and number of determined candidates. Thus, we can
conclude that the designed PRE-HAUIMI can well han-
dle the incremental progress for updating the discovered
HAUISs.

7 Conclusion and future work

With the prevalence of High-average utility mining
(HAUIM) because of its fair scale in evaluating the aver-
age utilities of itemsets as compared to the traditional high
utility itemset mining (HUIM). Most existing algorithms
of HAUIM handle the static database; with updates in the
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dataset, the new database has to go through redundant re-
scans to be able to find the updated patterns. Thus, the previ-
ous findings go to waste, which has a high overhead in terms
of computational cost and memory needs. In this article, we
developed and experimented the PRE-HAUIMI algorithm,
which addresses the incremental mining problem with trans-
action insertion. A pre-large concept is utilized here for
HAUIM, and mining is sped up using the AUL-structure.
With the design of a safety bound, the database re-scans are
prevented in the maintenance procedure but the correctness
and completeness can still be held. The results demon-
strate the out-performance of the PRE-HAUIMI algorithm
over the traditional HAUI-Miner algorithm running in the
batch model and the IHAUPM and FUP-based approaches
running in the incremental maintenance.

There is still a limitation of the designed PRE-HAUIMI
algorithm. For example, if the number of processed itemsets
of each case is huge in the newly inserted transaction, then
it takes time to build the AUL-structure for the itemsets in
the new transactions. This issue has a major impact on the
computational cost. This situation happens when a transac-
tion contains many items in the newly inserted transactions
especially for the sales periods or seasons (i.e., Christmas
or black Friday sales). The solution for this issue is to inte-
grate the original database and new transactions as an
updated database, then applying the state-of-the-art HAUIM
algorithm to mine the required HAUIs. This is reasonable
since the most up-to-date HAUIM algorithm applies the
efficient pruning strategies to quickly reduce the size of
the unpromising candidates. Although the designed PRE-
HAUIMI algorithm cannot obtain the benefits from the
above situation, for the real-life applications especially for
the basket-market analysis, the developed PRE-HAUIMI
algorithm can well handle the dynamic database since the
size of the daily inserted transactions and the itemsets within
the transactions is much less than that of the historical
database.
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