
FEATURE: SOFTWARE SCALABILITY MADE AGILE

EVERY YEAR IN April, fingers are
crossed at Altinn, the largest Norwe-
gian public portal operator. Will the
capacity be sufficient when 4 million

Norwegians want to investigate their
tax reports simultaneously? At times,
the entire Altinn portal crashes due
to overload situations. This creates
problems for other public services
provided by the same portal, e.g.,
for customs when declaring all of

the trucks with salmon crossing the
Norwegian border. An official inves-
tigation in 2011 following a severe
portal outage concluded that neither
scalability testing had been addressed
properly nor had scalability require-
ments been captured.1 To address
this, Altinn has invested in scalability
testing. This has improved scalability
but turned out to be costly when se-
vere issues are found close to release.
In an effort to reduce costs and re-
act faster to customer needs, Altinn
is moving toward agile development
with smaller and more frequent re-
leases to production, thus creating
the challenge of ensuring a rapid de-
velopment process.

Agile Methods
Although existing performance and
scalability models, tools, methods,
and guidelines are valuable, they are
usually time-consuming and require
considerable manual effort from
skilled personnel.2 “Fix it later”3

remains the most common approach
and imposes great risk along with
slow and costly development. Ag-
ile methods such as Scrum enforce
a rapid development process but
do not address specifically how to
deal with nonfunctional qualities,
e.g., scalability.

In this article, we describe a light-
weight extension to Scrum, named
ScrumScale. ScrumScale manages the
scalability requirements (concerns) of
a system to achieve a faster develop-
ment process. We discuss the lessons
learned from applying ScrumScale
during the development of a new
building application system, one of
the major innovations from Altinn
in 2018. We follow the related case
study from the early preparation stage
to its transition from waterfall-oriented
to an agile development process. We
supplement these lessons learned

Agile Scalability
Engineering:
The ScrumScale
Method
Gunnar Br ataas and Geir Kjetil Hanssen, SINTEF Digital

Nikolas Herbst, University of Würzburg

André van Hoorn, University of Stuttgart

// Scalability is a property that must be

carefully designed into a system. A case

study in the largest Norwegian public

portal, Altinn, illustrates how developers

and scalability experts improved scalability

and spent less time during scalability

testing. With minor adjustments to an

agile development process, stakeholders

spend more up-front time together. //

Digital Object Identifier 10.1109/MS.2019.2923184
Date of current version: 20 August 2020

0740-7459/20©2020IEEE. TRANSLATIONS AND CONTENT MINING ARE
PERMITTED FOR ACADEMIC RESEARCH ONLY. PERSONAL USE,
IS ALSO PERMITTED BUT REPUBLICATION/REDISTRIBUTION REQUIRES
IEEE PERMISSION. SEE HTTP://WWW.IEEE.ORG/PUBLICATIONS_STANDARDS/
PUBLICATIONS/RIGHTS/INDEX.HTML FOR MORE INFORMATION.

SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 77

78 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE SCALABILITY MADE AGILE

and the detailing of ScrumScale with
experience from other organizations
and case studies.

Figure 1 shows the relationship
between the cost of the resources in-
volved and the capacity of the system.
Initially, the capacity will often be
proportional to the cost; this pertains
to spending resources on bottlenecks,
e.g., by adding CPU resources to the
database server when database pro-
cessing is the bottleneck.4 (For more
information on capacity, scalability,
and scalability concerns, see “Scal-
ability.”) For the same bottleneck,
adding application servers will likely
result in inferior resource configura-
tions, as shown in Figure 1.

At some point the correlation
between resource cost and capac-
ity ceases to be linear. When trying
to add more resources, we typically
reach maximum system capacity.
By adding even more resources, the
overall capacity may decrease as well.
The resulting relationship (Figure 1)
between the amount of resources and
the resulting overall capacity for hu-
mans is termed the Ringelmann ef-
fect5 and is caused by either laziness
or coordination overhead. Only the
latter applies to computers.

Scalability problems are often
deeply rooted in the system architec-
ture and may be hard to tune away,
e.g., using a centralized SQL database
when a non-SQL document-based
database with relaxed consistency
requirements would be more appro-
priate. Such problems are important
to spot early. Moreover, we want to
avoid overengineering, where some
parts of the system are gold plated
with respect to scalability.

Extending Scrum:
ScrumScale
In the ScrumScale method shown in
Figure 2, we propose extensions both

Cost of Hardware and Software Resources

C
ap

ac
ity

Inferior Resource
Configurations

FIGURE 1. Scalability, relative to cost of resources and overall capacity.

SCALABILITY
Scalability is defined as the ability of a system to increase its capacity by consum-
ing more resources.4 The capacity of a system refers to the maximum workload a
system can handle within a given performance objective. Collectively, we term all
factors required to describe the scalability of a system as scalability concerns:

• The performance objective is often measured by 90th percentile response
times for the services within the system boundaries.

• The workload is the product of work and load.
• Work comprises what is done each time we invoke an operation

and is related to the amount of data to be processed, stored, or
communicated.

• The amount of data is related to specific work objects such as documents,
drawings, images, movies, and so on.

• Operations identify basic work components of the system interface as dif-
ferent ways of interacting with the system, e.g., functions, calls, transac-
tions, queries, and jobs.

• Load describes how frequently an operation is invoked and is often specified
by an arrival rate such as transactions per second.

• Cloud and/or hardware resources are software as a service, infrastructure
as a service, CPUs, disks, and networks. Software license costs are also
part of the resources.

• Data consistency describes how up to date different replicas should
be. Because replication and caching are key architectural patterns for
achieving scalability, strict consistency requirements will make it
more difficult.

SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 79

to normal sprints (steps 1–4 on the
right-hand side) and a sprint 0 (steps
A–C on the left-hand side). The key
idea is to involve a scalability expert
as early as possible both in the eval-
uation of user stories (e.g., “Which
user stories may have scalability is-
sues?”) and the evaluation of design
ideas (e.g., “Will this design create
scalability issues?”), in addition to
the familiar code review and scal-
ability testing. This “shift left” is a
faster approach compared to building
costly and time-consuming models
for scalability analysis.2 Scalability
experts span different competences
and, accordingly, different persons
and existing roles, e.g., software ar-
chitects and performance testers.
One scalability expert (champion)
may assist several teams, thus trans-
ferring expert scalability knowledge
across the entire organization.

Sprint 0 is widely used to indicate
the necessary preparations taken prior
to regular sprints. We use sprint 0 to
construct the initial product backlog
through three steps: A, B, and C, as
described in the following section.

Step A: Define User Stories
The initial product backlog, i.e., a list
of functional user stories, is defined
by the product owner (who represents
users and other internal stakeholders)
in collaboration with the team.

Step B: Scalability Triage
A scalability triage is an expert group
meeting. Triage is a concept borrowed
from emergency medicine, where a
doctor quickly determines whether
a person requires immediate treatment
or can wait. A user story is tagged
with a scalability concern if at least
one of the following conditions is true

1. The user story affects function-
ality, which already has a scal-
ability risk.

2. The user story invokes consid-
erable processing, storage, or
communication.

3. We may coarsely classify
work and load as expected to
be imposed by a user story
as small, medium, and large,
and performance objectives as
loose, medium, or tough. If the
relation between them seems
nontrivial, we have a scalabil-
ity risk.6

In this informal step, the work,
load, and performance objectives
are not specified in detail; therefore,
considerable expertise is required.
Only for user stories tagged with a
scalability concern do we continue
with the method.

Develop-
 ment

With QA

 Cross-
Functional

Team

Sprint Review

Sprint

Planning
With DoD

and Expert

Evaluation

Increment A

Increment B

Increment C

Increment D

Increment E

Scalability
ExpertsPrioritized

User
Stories
With

Scalability
Concerns

Sprint
Backlog

Scalability

Testing

Sprint 0

Scalability
Experts

Scalability

Triage

Product
Owner

Scalability
Concerns

Product
Backlog

User
Stories

Sprints 1,…, N

Define

User

Stories

Extract

Business-

Related

 Scalability

Concerns

∗
∗

Scalability
Experts

Scalability
Experts

Scalability
Experts

Step 1 Step 2

Step 3

Step 4

Step AStep B

Step C

FIGURE 2. The ScrumScale method. DoD: definition of done.

80	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE SCALABILITY MADE AGILE

Step C: Extract Business-Related
Scalability Concerns
When specifying scalability concerns,
the following issues may be used as
a guide:

1.	Consider business plans and
their connection to the projected
workload, which may be repre-
sented in different scenarios that
reflect the degree of increasing
optimism, i.e., realistic, possible,
and extreme.

2.	The planning horizon describes
how long into the future we
want to explore the scalability
of our system, e.g., two or five
years from now on.

3.	Clarify which components are
within the system boundaries.

4.	What seem to be the most im-
portant operations from a scal-
ability point of view?

5.	Which work objects will criti-
cally affect resource demands
for these operations, while at the
same time also vary in size?

6.	Approximately what will the
work parameters be that char-
acterize the work objects, e.g.,
the average size and number of
work objects?

7.	Which types of users does the
system have, and roughly how
many are there of each type?

8.	Approximately what will the
load be?

9.	Approximately which types of
performance metrics will we use?

10.	What are approximate per-
formance objectives for the
operations: 1 s or 1 min 90th
percentile response time?

11.	Which other systems, platforms,
databases, or infrastructure will
the system interact with? Partic-
ularly when a large workload is
anticipated, these systems should
get an early warning.

12.	Are there relevant consistency
concerns?

Having completed sprint 0, we have
the initial user stories in the product
backlog, including related scalability
concerns. This is the starting point for
the subsequent development sprints in
steps 1–4, where scalability concerns
are further refined, tested, and also po-
tentially relaxed.

Step 1: Sprint Planning With Definition
of Done and Expert Evaluation
For the selected user stories tagged
with a scalability risk, the scalabil-
ity concerns captured in the previ-
ous step must be detailed iteratively,
based on the following questions:

1.	Have the system boundaries
and the content of the opera-
tions changed? Are there new
operations?

2.	What will be the load during the
busiest hour, on the busiest day,
during the busiest week, and in
the busiest year for our planning
horizon? Burstiness, defined as
the relationship between peak and
average load, may be a helpful
concept; e.g., if the busy hour load
is three times the average hour
load, then burstiness is three.

3.	If documents are the criti-
cal work object (as in our case
study), we must find the work
parameters, i.e., what will be the
maximum size and number of
documents?

4.	Currently, what are the strict-
est performance objectives and
consistency concerns of the
planning horizon for the critical
operations?

5.	For which critical operation can
we see that the product of work
and load gives a risk of not fulfill-
ing the performance objectives?

6.	Should we communicate with
the product owner about relax-
ing some of these scalability
concerns?

The answers to these questions
are valuable inputs to the definition
of done (DoD) as well as a scalability
test plan. A spreadsheet may be used
to derive load and work based on pa-
rameters, which are easier to estimate
or measure. Uncertainty in these pa-
rameters may also be indicated.

For user stories tagged with scal-
ability concerns, the scalability expert
evaluates possible design patterns
or detailed design ideas and gives
feedback before coding begins. For
instance, a specific design idea may
impose a large number of heavy da-
tabases or network operations. The
scalability expert may therefore ad-
vise the development team to re-
design or consult with the product
owner to reconsider the user story.
This quality assurance (QA) at the
design level differs from the scalabil-
ity triage step, where the focus is on
user stories. For scalability, it is criti-
cal to have a proper architecture that
strikes a good balance between lais-
sez faire and overengineering.

Step 2: Development With QA
During (test-driven) development,
scalability experts give feedback on
ways to write scalable code, e.g., effec-
tive ways to write SQL queries and us-
ing indexes in database management
systems. One positive side effect of
this is that the scalability expert learns
more about the system under develop-
ment and may use this insight in pre-
paring scalability testing (step 3).

Step 3: Scalability Testing
Scalability testing requires consider-
able skills because we are typically
faced with partial information about

	 SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE � 81

the solution, test hardware, test data,
and workload.7 Ideally, testing done
by the end of the sprint should be
quick, and therefore automated.8

Step 4: Sprint Review
Results from the sprint-end scalability
testing are used during the sprint re-
view meeting where the product owner
reviews the outcome and makes de
cisions on how to potentially refine
the backlog.

During the planning and design
stages, human expert knowledge is
needed. The further the system en-
ters into production, the more tools
can be leveraged9 but the higher the
cost of change will be. When the sys-
tem is in production, we obtain mea-
surements for both the scalability
and workload of the solution, which
is useful for additional scalability
analysis and development.9

ScrumScale in the
Building Application
Case Study
We focus on the building application
case study conducted at Altinn. A
building application consists of docu-
ments describing projected buildings
and its surroundings and is submit-
ted to regulatory authorities. From
2016 onward, a new building appli-
cation system for all Norwegian citi-
zens was developed, initially using
iterative waterfall with traditional re-
quirements, before the Altinn organi-
zation employed two-week sprints in
January of 2018. Ten different orga-
nizations were involved in setting re-
quirements, making different parts of
the service, modifying the platform,
managing development, performing
operations, and so forth. From the
beginning, it was anticipated that
larger attachments would require re-
writing of the REST API in the Altinn
platform. Aside from this, scalability

concerns were not formulated when
SINTEF functioned as action re-
searchers in March of 2017. By then,
SINTEF had already learned during
structured interviews with 12 differ-
ent stakeholders in Altinn as well as
the surrounding organizations that
they did not elicit scalability concerns,
even if this was vital. Based on experi-
ence from the CloudScale project,2 we
extracted a consistent description of
scalability concerns.10

During meetings, we gradually
increased our understanding of the
scalability concerns. From March to
June 2017, SINTEF conducted 19
video conference meetings lasting
an average of 1 h with an average of
2.1 external stakeholders. A total of
50 work hours were spent by exter-
nal stakeholders answering emails
and follow-up questions during these
meetings. Training sessions on the
ScrumScale method was an integral
part of these meetings. Moreover,
ScrumScale has been formally intro-
duced to the organization via Conflu-
ence online guidelines.

As Altinn’s research partner, we ap-
plied principles from action research11
to guide our collaboration with Altinn:

1.	The Principle of the Researcher-
Client Agreement: To become
involved in the case as a key
source of learning, we took an
active collaborative role.

2.	The Principle of the Cyclical Pro-
cess Model (CPM): We worked
in iterations with practitioners to
diagnose, plan improvement ac-
tions, implement interventions,
evaluate results, and reflect on
what was learned.

3.	The Principle of Theory: To
identify proper interventions
(improvement ideas), we con-
sulted literature on agile devel-
opment and scalability.

Scalability Concerns
We detailed the scalability concerns
in collaboration with Altinn:

•	 We began by focusing on two
basic HTTP operations: posting
attachments and putting (sub-
mitting) the complete building
application. As we learned more
about the building application
workflow, in total, we found
10 different operations, three of
which were critical. In addition to
the two basic operations, we also
identified the operation for get-
ting (retrieving) the message box,
which is a central/bottleneck com-
ponent across many services.

•	 For load, we estimated 100,000
users per year; however, prior to
regulatory amendments, it was
observed that approximately 500
partial building applications per
hour caused the old solution to
crash. Altinn estimated twice
this load during the busy hour.

•	 To estimate work, we started to
analyze the data volume in six dif-
ferent building application types.
Because it was difficult to estimate
all of the required parameters, we
ended up with two application
sizes: an average of 0.6 GB and
70 MB for large applications and
small applications, respectively.

•	 Initially, we formulated several
performance objectives before
we simplified them to one per-
formance objective. The perfor-
mance objective now reflected
the timeout limit, i.e., a 90th
percentile response time of 40 s.

Scalability Expert
Evaluation
The expert evaluation in step 1 gave
the following key insights relevant to
the scalability of the building appli-
cation system:

82	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE SCALABILITY MADE AGILE

•	 Larger attachments: When clari-
fying the scalability concerns,
we found that attachments for
one building application could in
some cases be 6 GB, in contrast
to a maximum 0.5 GB, as origi-
nally anticipated. Knowing this
early could help better prepare
the Altinn platform.

•	 Data consistency: An original
requirement to change a supplier
in the middle of the building
application workflow would
result in frequent and expensive
database updates in the national
Altinn portal. As a result, this
requirement had to be relaxed
in cooperation with the relevant
stakeholders.

•	 Neighbor notifications: As part
of a wider building application
process, neighbor notifications
would be sent out. This was not
part of the original scalabil-
ity concerns, but was discov-
ered during iterative scalability
concern collection. A straight-
forward process of sending out
notifications with several large
documents to mailboxes would
jam them; therefore, a service
hotel was designed for reading
notifications on demand.

Note that all of these issues relate to
imprecise, overly demanding, or miss-
ing scalability concerns. Discovering
these issues early prevented code re-
writes and delays for a nationwide, mis-
sion-critical public infrastructure.

Positive Results
To evaluate the effects of the Scrum-
Scale method in Altinn, we inter-
viewed four key stakeholders late in
2018: one that was responsible for
scalability in Altinn, the scalability
tester, the project manager, and the
product owner. Because ScrumScale

contains only a few extensions familiar
to Scrum, the internal process shift was
straightforward. Importantly, we found
that scalability experts are involved ear-
lier in the process, which is one of the
main goals of ScrumScale. The respon-
sible scalability expert explained:

Developers and experts now
use more up-front time together,
resulting in less time spent at later
stages for individual, unstruc-
tured rework.

To improve the quality of scalabil-
ity concerns, Altinn introduced recur-
ring backlog refinement meetings every
month that evaluate scalability vul-
nerabilities. Where appropriate, en-
tire epics and user stories are tagged
with a scalability risk. The affected user
stories undergo an expert evaluation
where a scalability expert looks at de-
sign sketches. Coupling developers and
experts is particularly relevant to reduce
hot-fixes near release—which has been
a common practice earlier, and that has
created a need for later rework. This is
also considered to be beneficial for im-
proving knowledge transfer from scal-
ability experts to developers.

The scalability tester reported
that he now receives input for the
test plan, in particular data volumes
(work), for which he previously had
to request or even guess. He also
confirms improved interaction with
developers during the scalability tri-
age, where all user stories have been
evaluated for scalability implications.
Because of the early focus on scalabil-
ity during development, the effort on
scalability testing of the building ap-
plication could be relaxed.

Scalability testing in the build-
ing application case study did not
provide any surprises and consumed
28 h of work time compared to the
expected 80 h. More importantly,

the system is now in operation with
no scalability issues.

Our interview with a product owner
confirms the positive view of addressing
scalability early in the process, which
helps developers improve their compe-
tency and grow their responsibility re-
garding scalability.

In summary, the experience gained
from using ScrumScale suggests im-
proved communication and more trans-
parency in managing scalability.

Remaining Challenges
The most important current limitation
is that the scalability tester finds it diffi-
cult to maintain the “big picture” with
respect to scalability in the ongoing de-
velopment. In practice, the tester (being
a scalability expert) must respond to
a stream of minor pull requests as part
of code management to determine what
has actually changed in the code. Earlier,
with months between releases, the tester
could analyze plans and prepare scalabil-
ity tests more efficiently. The increased
speed in the development process has
resulted in sparse and fragmented docu-
mentation in different systems, which
has allowed serious scalability risks to
enter production. Although minimum
documentation is a virtue in Scrum,
ScrumScale must enforce improved doc-
umentation from developers to support
good scalability testing.

The scalability tester should be even
more involved in expert evaluation and
code QA, thus enabling knowledge
transfer to the development team so
that they can discover and resolve simi-
lar issues. This will reduce the need for
hot fixes by the scalability tester, who
may introduce functional errors.

Evolution of the
ScrumScale Method
Back in 2015, we coined the idea of
the ScrumScale method as a vision
where scalability is introduced in

SEPTEMBER/OCTOBER 2020 | IEEE SOFTWARE 83

the Scrum cycle. The ScrumScale
method was inspired by SafeScrum12

and similar ideas from which Scrum
is extended with guidelines on how
to manage nonfunctional require-
ments.13 SafeScrum addresses chal-
lenges specific to functional safety
and compliance with mandatory
standards that are not relevant for
scalability. We have, however, ap-
plied three core principles inherited
from SafeScrum:

1. Scrum is a useful basis that
emphasizes QA by frequent
evaluation of outcome (sprint
review) and frequent evaluation
of requirements and design ideas
(sprint planning).

2. Functional requirements and
scalability concerns are separated
but linked, to maintain the re-
lationship. The relationship and
potential impact that functional
requirements may impose on

scalability requirements are im-
portant to evaluate continuously.

3. Scalability experts, as a scarce
resource, support the team on
scalability decisions as early as
possible during the development
process (i.e., in sprint 0) and the
consecutive sprints.

There are other approaches for han-
dling nonfunctional requirements,
such as Architecture Tradeoff Analysis

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

GUNNAR BRATAAS is a senior research

scientist with the Process Innovation

Group at SINTEF Digital. His research fo-

cuses on sound and practical methods for

characterizing, assessing, and improving

the scalability of information and computer

systems. Brataas received a Dr.-Ing. for

software performance engineering of

information systems from the Norwegian

University of Science and Technology in

1996. He is a Member of both the IEEE and

ACM. Contact him at Gunnar.Brataas@

sintef.no.

NIKOLAS HERBST is a research group

leader at the chair of software engineering

at the University of Würzburg. His research

interests include predictive data analysis,

elasticity in cloud computing, autoscaling

and resource management, performance

evaluation of virtualized environments,

and autonomic and self-aware computing.

Herbst received a Ph.D. from the University

of Würzburg in 2018 and serves as elected

vice-chair of the Standard Performance

Evaluation Corporation Research Cloud

Group. He is a Member of the IEEE. Contact

him at Nikolas.Herbst@uni-wuerzburg.de.

GEIR KJETIL HANSSEN is a senior

research scientist with the Process

Innovation Group at SINTEF Digital. His

research focuses on software engineering

methodologies such as agile methods,

software process improvement, and

safety-critical systems. Hanssen received

a Ph.D. in software engineering from the

Norwegian University of Science and Tech-

nology in 2010. He recently coauthored

the book SafeScrum—Agile Development
of Safety-Critical Software from Springer.

Contact him at Geir.K.Hanssen@sintef.no.

ANDRÉ VAN HOORN is a researcher

with the Institute of Software Technology

at the University of Stuttgart. His research

focuses on investigating challenges and

opportunities in the context of continu-

ous software engineering and DevOps as

well as designing, operating, and evolving

trustworthy distributed software systems

that focus on quality attributes such as

performance, reliability, and resilience. Van

Hoorn received a Ph.D. from Kiel University

in 2014. He is a member of ACM and serves

in several roles within the SPEC Research

Cloud Group. Contact him at van.hoorn@

informatik.uni-stuttgart.de.

84	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: SOFTWARE SCALABILITY MADE AGILE

Method (ATAM);14 however, ATAM
is an extensive up-front analysis that
relies on an existing architecture. Our
goal has been to find a more continu-
ous and lightweight approach.

Following our experiences with the
case studies, we gradually evolved into
the first version of the ScrumScale
method.7 Compared to this first ver-
sion, we now introduce sprint 0. In ad-
dition, several steps have been clarified,
e.g., the DoD in step 1 and the sprint
review in step 4.

Aside from the building application
case study, detailing of the ScrumS-
cale method has also been strength-
ened by four more case studies in the
years 2017–2019: 1) credit card ac-
counting, 2) intraday energy trading,
3) open banking, and 4) authorization
in Altinn. Overall, these case stud-
ies confirmed the usability of the
ScrumScale method and helped to
fine-tune portions of it. For instance,
the third condition in the triage tech-
nique and different load scenarios was
derived from open banking,13 and
partial scalability testing was derived
from credit card accounting.7

O ur work demonstrates that
the effective consideration
of scalability concerns in an

industrial case study requires only mi-
nor adjustments to the development
process, whereas the main change is the
increased and more-frequent early dia-
logue between developers and experts.
Clear concepts for scalability concerns
make them easier to capture and fol-
low throughout development, as shown
in the building application case study.
The presented engineering approach
has evolved over the last few years and
has already helped provide control and
confidence over scalability in Altinn, a
critical part of the Norwegian IT infra-
structure. We believe that ScrumScale is

suitable for other systems with diffi-
cult scalability concerns that evolve
in complex environments with mul-
tiple stakeholders.

Based on the lessons learned from
our work, we see the need for further
work on 1) coordinating different
types of nonfunctional requirements,
2) ScrumScale in large-scale projects,
and 3) ScrumScale applied in a De-
vOps context.15

Acknowledgments
This research was supported by the
Norwegian Research Council under
grant 256669 (ScrumScale), the Ger-
man Research Foundation under grant
KO 3445/11-1, and the German Feder-
al Ministry of Education and Research
under grant 01IS17010. We thank
EVRY, Powel, and Altinn for contrib-
uting case studies, and Petter Brasker-
ud (Altinn), whose contributions were
pivotal to the success of the building
application case study.

References
1.	Det Norske Veritas, “Vurdering av

Altinn II plattformen (in Norwegian),”

Det Norske Veritas, Hovik, Norway,

Rep. 2011-1239, 2012. [Online].

Available: http://kursinfo.himolde.no/

in-kurs/IBE250/pensum/DNVAltinn

.pdf

2.	S. Becker, G. Brataas, and S. Leh-

rig, Engineering Scalable, Elastic,

and Cost-Efficient Cloud Com-

puting Applications. New York:

Springer-Verlag, 2017.

3.	C. U. Smith and L. G. Williams,

Performance Solutions: A Practi-

cal Guide to Creating Responsive,

Scalable Software. Reading, MA:

Addison-Wesley, 2002.

4.	G. Brataas, N. Herbst, S. Ivansek,

and J. Polutnik, “Scalability analysis

of cloud software services,” in Proc.

IEEE Int. Conf. Autonomic Com-

puting (ICAC), 2017, pp. 285–292.

5.	D. A. Kravitz and B. Martin, “Rin-

gelmann rediscovered: The origi-

nal article,” J. Pers. Soc. Psychol.,

vol. 50, no. 5, pp. 936–941, 1986.

doi: 10.1037/0022-3514.50.5.936.

6.	G. K. Hanssen, G. Brataas, and

A. Martini, “Identifying scalabil-

ity debt in open systems,” in Proc.

ACM/IEEE Int. Conf. Tech. Debt,

2019, pp. 48–52. doi: 10.1109/

TechDebt.2019.00014.

7.	G. Brataas, G. K. Hanssen, and G.

Ræder, Towards Agile Scalability Engi-

neering, XP 2018. New York: Springer-

Verlag, 2017.

8.	Z. M. Jiang and A. E. Hassan, “A

survey on load testing of large-

scale software systems,” IEEE

Trans. Softw. Eng., vol. 41, no. 11,

pp. 1091–1118, 2015.

9.	H. Schulz, T. Angerstein, and A.

van Hoorn, “Towards automating

representative load testing in continu-

ous software engineering,” in Proc.

Int. Conf. Performance Engineering

(ICPE), 2018, pp. 123–126.

10.	G.Brataas and T.E.Fægri, “Agile scal-

ability requirements,” in Proc. ACM

Int. Conf. Performance Engineering

(ICPE), 2017, pp. 413–416.

11.	R. M. Davison, M. G. Martinsons,

and N. Kock, “Principles of canoni-

cal action research,” Inform. Syst. J.,

vol. 14, no. 1, pp. 65–86, 2004.

12.	G. K. Hanssen, T. Stålhane, and

T. Myklebust, SafeScrum—Agile

Development of Safety-Critical

Software. New York: Springer-Verlag,

2018.

13.	A. Leffingwell, Agile Software Re-

quirements. Reading, MA: Addison-

Wesley, 2011.

14.	L. Bass, P. Clements, and R. Kazman,

Software Architecture in Practice, 3rd ed.

Reading, MA: Addison-Wesley, 2012.

15.	A. Brunnert et al., “Performance-ori-

ented DevOps: A research agenda,”

SPEC, Gainesville, VA, Tech. Rep.

SPEC-RG-2015-01, 2015.

