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A B S T R A C T

When working with the method of projected fringes outside the optical laboratory one often encounters the
problem of uncontrollable ambient light. This might cause saturation of the camera which in turn results
in clipping of the fringes. Since standard theories describing phase-shifting techniques assume the projected
fringes to be purely sinusoidal, such clipping will result in measurement error. In this paper a detailed analysis
of this problem is given, and relations between phase errors, the amount of fringe clipping and the number
of phase steps are found. Moreover, the phase difference between the clipped and the unclipped fringes is
described. This investigation is based on Fourier- and phasor analysis.
. Introduction

In optical measurement techniques like classical and holographic
nterferometry, moiré and speckle methods, one faces the problem of
nalyzing a set of fringes, called interferograms. In the present paper
e shall concentrate on the method of projected fringes.

A short glance at the specifics of the projected fringe method is
hown in Fig. 1 where a typical experimental set up is sketched. A
ight ray from the projector hits the object- and reference surface
the xy-plane) at two different points. The distance between these two
oints along the 𝑥-axis is u, as seen by the camera. From the figure
e find that the height difference 𝑧 = 𝑢∕(tan 𝑣0 + tan 𝑣). We further
ave that 𝜃 = 𝑢∕𝑝, where 𝜃 is the phase and p is the period of the
rojected sinusoidal fringes. With plane wave illumination and the
amera focused at infinity, it can be shown that 𝑧 = 𝑝𝜃∕ tan 𝑣0. By this
ethod one can measure the topography of surfaces, deformations, etc.
more comprehensive description of the projected fringe method can

e found in [1] and a lot of references to applications of the method
an be found in [2].

In the projected fringe method, (also termed the structured light
ethod) a periodic fringe pattern is projected onto the surface under

nvestigation. This fringe system represents a carrier wave. When the
urface is curved, or in other ways deviate from a reference surface, this
arrier will be modulated by a phase function which contains, as we
ave seen, information about the topography of the surface. To unveil
his information, the carrier has to be demodulated.

∗ Corresponding author.
E-mail address: kgasvik@goose.no (K.J. Gåsvik).

Rather than determining the phase function directly, it has in recent
years been common to analyze it indirectly by measuring the intensity
of the fringes. This method of demodulation is called the phase-shifting
or phase-stepping technique. In Section 2, we go through the theory of
this method.

The standard theories describing the phase-shifting technique, as-
sume the projected fringes to be purely sinusoidal. This is not always
strictly correct in practice. One of the reasons for this are non-linearities
in the projector and/or camera [3,4]. Some authors have studied
the case of non-sinusoidal fringes in general [5,6] ,specifically when
defocusing the image of a rectangular grating onto the surface [7].

Apparatus based on the projected fringe method has in many cases
moved out from the optical laboratory into industrial environments.
Then one often encounters the problem of uncontrollable ambient light.
Also, measuring shiny metal surfaces might be a problem. This can
result in saturation of the camera which in turn results in clipping of
the fringes. Image saturation has been studied and analyzed by many
authors [8–11]. This effect is also studied experimentally [12] where
the measurement error was recorded as a function of a controlled
background illumination.

In this paper we will investigate the relation between the phase
error and the amount of clipping with different number of phase steps.
In addition, the phase difference between the clipped and the unclipped
fringes will be described. The study is based on Fourier- and phasor
analysis.
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Fig. 1. Experimental set up for the projected fringe method. The camera is coupled to
a PC.

2. The phase-shift method. Fringe clipping

Let the intensity distribution of the ideal, sinusoidal fringes be given
by

𝐼 = 𝑎 + 𝑏 cos 𝜃 (1)

he problem is to recover the phase 𝜃 which is related to the surface
opography.

In phase shift methods [13–17], an experimentally controllable
hase 𝛼𝑖 is introduced such that

𝑖 = 𝑎 + 𝑏 cos(𝜃 + 𝛼𝑖) (2)

ere 𝑖 = 1, 2,…𝑁 , where 𝑁 is the number of phase steps.

et 𝛼𝑖 =
𝑖2𝜋
𝑁

(3)

Which means that each period is divided into 𝑁 equal steps. By using
the least squares method, it can be shown that

tan 𝜃 =
−
∑𝑁
𝑖=1 𝐼𝑖 sin(𝑖2𝜋∕𝑁)

∑𝑁
𝑖=1 𝐼𝑖 cos(𝑖2𝜋∕𝑁)

(4)

lipping of sinusoidal signals is a well-known phenomenon in signal
rocessing. There it is termed harmonic distortion. The case we shall
tudy is unsymmetrical clipping and is shown in Fig. 2.

Fig. 2 shows one period of a clipped cosine-function which we
enote 𝑔(𝑥). The magnitude of the clipping is given by the clipping
ngle 𝜙. One way of describing this fringe function is to write it as
Fourier series. Since 𝑔(𝑥) is symmetric, we get

(𝑥) = 𝑐0 +
∞
∑

𝑘=1
𝑐𝑘 cos(𝑘𝑥) (5a)

here

𝑘 =
1
𝜋 ∫

𝜋

−𝜋
𝑔(𝑥) cos(𝑘𝑥)𝑑𝑥 = 2

𝜋 ∫

𝜋

0
𝑔(𝑥) cos(𝑘𝑥)𝑑𝑥 (5b)

By solving the following integrals:

𝑐𝑘 =
2
𝜋

[

cos𝜑∫

𝜑

0
cos(𝑘𝑥)𝑑𝑥 + ∫

𝜋

𝜑
cos(𝑥) cos(𝑘𝑥)𝑑𝑥

]

(6)

we get

𝑐𝑘 =
1
𝜋

[

2 cos𝜙
sin 𝑘𝜙
𝑘

−
sin(𝑘 + 1)𝜙
𝑘 + 1

−
sin(𝑘 − 1)𝜙
𝑘 − 1

]

for 𝑘>1 (7a)

𝑐 = 2 [𝜙 cos𝜙 − sin𝜙] (7b)
0 𝜋

2

𝑐1 =
1
𝜋

[

𝜋 − 𝜑 + 1
2
sin 2𝜑

]

(7c)

Fig. 3 shows 𝑐𝑘 as a function of 𝑘 for 𝑘 > 1. 𝑐𝑘 is of course not a
continuous function, but written as such, the trend of the coefficients
is better visible. We see that the Fourier coefficients 𝑐𝑘 for 𝑘 > 4 are so
small that a good approximation of 𝑔(𝑥) would be

𝑔4(𝑥) = 𝑐0 +
4
∑

𝑘=1
𝑐𝑘 cos(𝑘𝑥) which we denote 𝑔4. (8)

Fig. 4 shows the Fourier coefficients 𝑐0–𝑐4 as a function of the clipping
angle 𝜙. As seen, we take 𝜙 ∈

[

0, 𝜋∕2
]

. It would be very unusual in
practice to work with a clipping angle greater than that.

Fig. 5 shows a graph of 𝑔4 with a clipping angle 𝜙 = 𝜋∕3 = 60◦. Also
shown is cos(𝑥).

At first sight, it might look as the whole positive part of cos 𝑥 will
be clipped when 𝜙 = 𝜋∕2, i.e., 𝑔4max = 0. In fact, this configuration
occurs at a lower value of 𝜙. We know that 𝑔4 has a maximum at 𝜃 = 0.
Inserting this value into Eq. (8), we get
4
∑

𝑘=0
𝑐𝑘 = 0

which gives 𝜙 = 1.35 rad. This situation is shown in Fig. 6.
Note that here we have changed the name of the variable from 𝑥 to

𝜃, the same 𝜃 as in Eq. (1). This representation will be used in the rest
of this manuscript.

3. Errors in phase measurements

Now we should be able to calculate the new phase by using the
function g instead of 𝐼 in Eq. (4). A first step would be to simplify this
equation, at least for the lower values of 𝑁 . We find for 𝑁 = 4:

tan 𝜃 =
𝐼1 − 𝐼3
𝐼4 − 𝐼2

(9)

The expressions for 𝑁 = 3, 5 and 6 are a bit more complicated. To find
the new phase 𝜓 , we then have to insert 𝐼𝑖 = 𝑔4𝑖 into these expressions.
This is a rather cumbersome and risky (for errors) process. Fortunately,
an excellent paper written by Su et al. [7] came to our assistance.
They have developed a general formula valid for unspecified Fourier
coefficients and unrestricted number of phase steps. In our terminology
and with 𝑘max = 4, it reads:

tan𝜓 =
𝑐1 sin 𝜃1 − 𝑐𝑁−1 sin(𝑁 − 1)𝜃 + 𝑐𝑁+1 sin(𝑁 + 1)𝜃
𝑐1 cos 𝜃1 + 𝑐𝑁−1 cos(𝑁 − 1)𝜃 + 𝑐𝑁+1 cos(𝑁 + 1)𝜃

(10)

where 𝜓 is the new phase for the clipped cosine function.
With this formula in hand, we get for 𝑁 up to 6:

tan𝜓(𝑁 = 3) =
𝑐1 sin 𝜃 − 𝑐2 sin(2𝜃) + 𝑐4 sin(4𝜃)
𝑐1 cos 𝜃 + 𝑐2 cos(2𝜃) + 𝑐4 cos(4𝜃)

(11a)

tan𝜓(𝑁 = 4) =
𝑐1 sin 𝜃 − 𝑐3 sin(3𝜃)
𝑐1 cos 𝜃 + 𝑐3 cos(3𝜃)

(11b)

tan𝜓(𝑁 = 5) =
𝑐1 sin 𝜃 − 𝑐4 sin(4𝜃)
𝑐1 cos 𝜃 + 𝑐4 cos(4𝜃)

(11c)

tan𝜓(𝑁 = 6) =
𝑐1 sin 𝜃
𝑐1 cos 𝜃

= tan 𝜃 (11d)

Now we are able to find the measurement error 𝛥𝜃 through

𝛥𝜃 = 𝜓 − 𝜃 = arctan(tan𝜓) − arctan(tan 𝜃) (12)

A result of this procedure is shown in Fig. 7. Here 𝑁 = 3, 𝜙 = 45◦.
We see that the error varies between ±0.05. The same is done for
𝑁 = 3, 4 and 5, for different values of the clipping angle 𝜙 and the
results are given in Table 1. There we also have listed the dependence
of the phase error on the clipping height ℎ and number of phase steps
𝑁 . The clipping height is given as ℎ = 1 − cos𝜙, i.e. the fraction of
the amplitude. We have only considered clipping heights of practical
interest.
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Fig. 2. Clipped cosine. 𝜙 = the clipping angle.

Fig. 3. 𝑐𝑘 as a function of 𝑘. for 𝑘 > 1 and 𝜙 = 𝜋∕4.

Fig. 4. The Fourier coefficients 𝑐0–𝑐4 as a function of the clipping angle 𝜙.
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Fig. 5. Graph of 𝑔4(𝑥) and cos(𝑥). 𝜙 = 𝜋∕3 = 60◦. Amount of clipping = 50%.
Fig. 6. 𝑔4(𝜃) for 𝜙 = 1.35 rad = 77.3◦ showing that the whole function is negative.
Fig. 7. 𝛥𝜃 as a function of 𝜃. 𝑁 = 3, 𝜙 = 𝜋∕4 = 45◦.
Table 1
Phase error (in rad) as function of phase steps 𝑁 , the clipping angle 𝜑, and the clipping
height ℎ.

* 𝜑
[

deg
]

30 36 45 60
ℎ (%) 13 20 30 50

𝑁 = 3 𝛥𝜃max 0.01 0.02 0.05 0.28
RMS 0.007 0.014 0.035 0.20

𝑁 = 4 𝛥𝜃max 0.02 0.04 0.06 0.09
RMS 0.014 0.028 0.04 0.06

𝑁 = 5 𝛥𝜃max 0.02 0.03 0.03 0.02
RMS 0.014 0.02 0.02 0.014

4. Phasor diagrams

In the preceding sections we have found the measuring error subject
to certain approximation (𝑘 = 4). It would be interesting to find
max

4

Table 2
Phase difference 𝛥𝜔 (in rad) between the clipped and unclipped fringe function.
𝜑
[

deg
]

30 36 45 60
ℎ (%) 13 20 30 50
𝛥𝜔max 0.04 0.075 0.08 0.14
𝛥𝜔RMS 0 0.014 0.034 0.097
𝛥𝜔max∕

√

2 0.028 0.053 0.057 0.097

the phase deviation induced by the same approximation. To do that,
we have to transform 𝑔4 into the form 𝑅 cos 𝛽. This can be done by
constructing a phasor diagram. A phasor is represented as a vector in
the complex plane. The method of phasor addition we will use can be
employed without any appreciation of its relationship to the complex
number formalism.
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Fig. 8. Phasor diagram (symbolically) of the first 𝑀 terms of a Fourier series. The
engths of the phasors are arbitrary, but the phasor angle increases by 𝜃 for each step.
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Let us denote the sum of the first 𝑀 terms of a Fourier series of an
even function 𝑔𝑀 (𝜃). Then we have (see Fig. 8)

𝑔𝑀 (𝜃) = 𝑅 cos 𝛽,where (13)

tan 𝛽 =
∑𝑀
𝑘=1 𝑐𝑘 sin(𝑘𝜃)

𝑐0 +
∑𝑀
𝑘=1 𝑐𝑘 cos(𝑘𝜃)

= 𝑌
𝑋

and (14)

𝑅 =
⎡

⎢

⎢

⎣

(

𝑐0 +
𝑀
∑

𝑘=1
𝑐𝑘 cos(𝑘𝜃)

)2

+

( 𝑀
∑

𝑘=1
𝑐𝑘 sin(𝑘𝜃)

)2
⎤

⎥

⎥

⎦

1
2

=
√

𝑋2 + 𝑌 2 (15)

here we have introduced the shorthand notation

= 𝑐0 +
𝑀
∑

𝑘=1
𝑐𝑘 cos(𝑘𝜃) and 𝑌 =

𝑀
∑

𝑘=1
𝑐𝑘 sin(𝑘𝜃)

o test the validity of our calculation, we have

cos 𝛽 = 1
√

1 + tan 2𝛽
= 𝑋

√

𝑋2 + 𝑌 2
which gives

𝑅 cos 𝛽 =
√

𝑋2 + 𝑌 2 𝑋
√

𝑋2 + 𝑌 2
= 𝑋

This is not a strict proof, but confirms Eqs. (14), (15).
We now turn back to our clipped cosine function and 𝑀 = 4. In the
same way as above, we now can calculate the deviation 𝛥𝜔 = 𝛽 − 𝜃
Fig. 9. Phase difference 𝛥𝜔 (in rad) between clipped and unclipped fringe functions. 𝑀 = 4, 𝜙 = 𝜋∕3 = 60◦.
Fig. 10. A real phasor diagram of 𝑔4 .𝜃 = 20◦ = 0.35 rad, 𝜙 = 𝜋∕3 = 60◦ 𝑅 is the resultant phasor. 𝑐4 is barely visible.
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Fig. 11. Phasor diagram. 𝜃 = 𝜋∕2= 90◦, 𝜙 = 𝜋∕3. 𝑐4 is barely visible.

nduced by our approximation by calculating

𝜔 = 𝛽 − 𝜃 = arctan(tan 𝛽) − arctan(tan 𝜃) (16)

n example is shown in Fig. 9, with 𝑀 = 4, 𝜙 = 𝜋∕3. Her we see that
he deviation varies between ±0.12 rad.

Eq. (16) is calculated for different values of the clipping angle 𝜙,
nd the results are given in Table 2.

In Fig. 10 we have made a real phasor diagram of 𝑔4. Here 𝜙 = 𝜋∕3
and 𝜃 is set to 20◦. The resultant phasor is making an angle 𝛽 to the
𝑥-axis. If we had 𝛽 = 𝜃, i.e. 𝑅 parallel to 𝑐1, 𝑔4 would have the same
phase as cos 𝜃. In the diagram, we can measure the angle between 𝑐1
and 𝑅 (= 𝜃 − 𝛽) to be 5◦ = 0.09 rad. The same can be found from the
graph in Fig. 9. The point A with 𝜃 = 20◦ = 0.35 rad is marked, and we
can read off a deviation of 0.10 rad. It is clear that this method gives a
better accuracy that reading off the angle from a phasor diagram. The
discrepancy is however, remarkably low.

Fig. 11 shows another phasor diagram of 𝑔4. Here 𝜃 = 𝜋∕2, 𝜙 = 𝜋∕3.

By measuring the angle between 𝑐1 and R, we determine 𝛽 − 𝜃 to be

6

6◦ = 0.1 rad. In the graph of Fig. 9, we find at the marked point B,
(𝜃 = 90◦ = 𝜋∕2 rad), the same quantity to be 0.07 rad.

Another test is to compare the length of 𝑅 given by Eq. (15) and
displayed by the graph in Fig. 12, with the same length given in the
phasor diagrams.

The two marked points in the graph are A (𝜃 = 20◦ = 0.35 rad) and
B (𝜃 = 90◦ = 𝜋∕2 rad). We find 𝑅𝐴 = 0.41 and 𝑅𝐵 = 0.88 which agree
very well with same quantities found in the phasor diagrams in Figs. 10
and 11.

5. Discussions

As seen, the measurement error and the phase differences are repre-
sented by the maxima of the functions 𝛥𝜃 and 𝛥𝜔. The root mean square
(RMS) is another way of representing the same quantities. For harmonic
functions, the RMS is given as 𝑎∕

√

2, where a is the amplitude. The 𝛥𝜃-
functions are harmonic, see e.g. Fig. 7. Therefore, we have used this
expression to calculate the RMS and filled it into Table 1.

The 𝛥𝜔− functions, however, are not harmonic, see e.g. Fig. 9. To
find the RMS, we therefore have to integrate the square of 𝛥𝜔 over
one period. A problem is that these functions have singularities seen as
small gaps in the graphs. The reason is that the function arctan(tan(𝑥))
has singularities at 𝑥 = 𝜋∕2 and 3𝜋∕2. The solution is to divide the
ntegrand into 3 parts and jump past the singularities. The resulting
rror will be negligible. The results are given in Table 2.

To name 𝛥𝜃 the measuring error is a bit of a misnomer, but is widely
ccepted in the literature. When measuring the phase of the clipped
ringes, one should expect the error to be equal to 𝛥𝜔. By comparing
he RMS-values of 𝛥𝜃 and 𝛥𝜔 in Tables 1 and 2 for 𝑁 = 5, we see that
his is in fact correct, except for the extreme case of ℎ = 50%.

So, what does these measuring errors imply when performing sur-
ace topography measurements? For simplicity we apply parallel illumi-
ation and a projection angle equal to 45◦. Then the height measuring
rror 𝛥𝑧 is given by

𝑧 =
𝑝

tan(45◦)
𝛥𝜃 = 𝑝𝛥𝜃

Where 𝑝 is the period of the projected fringes. In this case, 𝛥𝑧 is given
as the fringe period times 𝛥𝜃 in radians.

6. Conclusions

To study the effect of fringe clipping in phase-shifting fringe projec-
tion profilometry, the clipped fringe function is expanded into a Fourier
series. From this series, we have found the resulting phase error as a
function of h, the clipping height and N, the number of phase steps.
Our results show that

(1) For clipping height below ∼20% of the amplitude, the phase
error is of the same order of magnitude as other sources of error
(surface reflectivity, electronic noise, gamma nonlinearity, etc.)
Fig. 12. Length of the phasor 𝑅 as a function of 𝜃.
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(2) For clipping height over 20%, the error becomes significant,
especially when using 3 phase steps, but also 4 phase steps
should be avoided.

(3) For 𝑁 ≥ 5, the method is rather immune against a high degree
of clipping.

Moreover; by using phasor diagrams, the phase difference between
the clipped and the unclipped fringe function is found, and how it is
related to the degree of clipping. Since the equation describing this
phase difference is anharmonic, we cannot use the standard formula
for harmonic functions to calculate the RMS values.

As a final remark, one may infer that the problem of saturation
of the camera is easily solved by reducing the camera lens aperture.
But then the contrast of the fringes will be reduced which results in a
reduction of the signal-to-noise ratio.
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