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A B S T R A C T

An accurate representation of a given sea state is crucial for the study of hydrodynamic loads on offshore
structures. It is straightforward to check the quality of the reproduced regular waves in a numerical wave
tank (NWT). However, many more parameters need to be considered to ensure the quality of irregular waves.
In this paper, a fully non-linear potential flow (FNPF) wave model is used to reproduce irregular sea states
with different severity of wave breaking. The numerical model solves the velocity potential from the Laplace
equation and the free surface boundary conditions using a finite difference method on a 𝜎-coordinate grid.
A comprehensive procedure is introduced to ensure the quality of the reproduced full-scale sea states. The
effect of wave spectrum discretisation techniques and breaking wave algorithms are compared for an optimal
performance. The evaluation of the simulation results takes into account the kurtosis and the wave crest
distribution in addition to the wave spectra. The vertical arrangement of the 𝜎-coordinate grid plays an
important role in representing the dispersion relation and a grid optimisation method is explained. The current
study provides a working procedure that reproduces high-fidelity irregular sea states with breaking waves in
an efficient FNPF NWT.
1. Introduction

In the design of offshore and coastal structures, the global loads and
motions are critical considerations as well as mooring line tensions.
Quantification of the sea state is the first step in the design process
to provide accurate wave inputs. The irregular nature of the ocean
requires long duration studies to obtain the statistical properties of a
certain sea state such as the significant values, the extreme values and
the wave spectrum at both low and high frequency ends of the wave
spectrum. Irregular waves consist of many regular wave components
with a wide range of frequencies. The low frequency components
in an irregular sea contribute to the low-frequency damping for the
mooring system and drifting for floating structures (Magnussen, 2014).
The high-frequency components usually contribute to very nonlinear
resonance phenomena of the structure such as ringing. For extreme
sea states, the first- and second-order wave theory is not adequate to
represent a correct wave crest distribution. Both Kriebel and Dawson
(1991) as well as Forristall (2000a) reported significant deviation of a
Rayleigh distribution predicted with a linear wave theory. There are
few analytical solutions to nonlinear irregular waves and therefore a
fully nonlinear irregular sea state analysis relies on numerical simu-
lations. A well-designed numerical tool should take into account the
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complete range of frequencies, the wave crest height distribution due
to the nonlinearity as well as wave breaking. A phase-resolved solution
is required for the time domain analysis of structural response, and
thus the numerical model is supposed to be computationally efficient
in order to provide a time series for the standard practice of three
hours (Huang and Guo, 2017).

Several numerical models of different types have been developed
to simulate irregular sea states in the open ocean with constant wa-
ter depth. Computational fluid dynamics (CFD) models that solve
the Naiver–Stokes equations provide comprehensive details of the
flow field, from wave kinematics and dynamics to overturning wave
breakers and turbulence. Commercial software such as StarCCM+ (CD-
adapco, 2016) and ANSYS Fluent (FLUENT, 2017) and open-source
codes such as OpenFOAM (OpenFOAM, 2019) and REEF3D::CFD (Bihs
et al., 2016) are all widely used CFD tools that represent most of
the physical details of ocean waves. However, a full three-hour time
series is required by industrial practice in order to provide statistical
properties of an irregular sea state (Huang and Guo, 2017). CFD is in
general computationally demanding, and such long duration simula-
tions usually require a tremendous mount of computational resources
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and time. In some cases, it was reported that hundreds of seconds
of CFD simulation of an irregular sea state takes up to several days
with a multi-processor computational infrastructure (Aggarwal et al.,
2018a,b). As a result, other wave models are preferred for the numer-
ical simulation of irregular sea-states at a much lower computational
cost.

Boussinesq-type models (Madsen et al., 1991; Madsen and Sørensen,
1992; Nwogu, 1993) are also efficient phase-resolving wave modelling
alternatives. Though the model was initially developed based on shal-
low water theory, continuous efforts have been made to represent the
dispersion relation in deeper water conditions by increasing the order
of the Boussinesq dispersive terms. For example, an accurate represen-
tation of dispersion relation up to the water depth to wavelength ratio
𝑘ℎ = 6 was achieved by Madsen and Schäffer (1998) and Gobbi et al.
2000). Their methods result in up to fifth-order spatial derivatives
n an extremely complex equation system, which increases the risk
f numerical instabilities. Instead, Madsen et al. (2002) used multiple
xpansions at various vertical layers of the water column and reported
n accurate representation of the dispersion relation up to 𝑘ℎ = 40.

This multiple expansion results in a large set of equations and an
increasing number of unknowns. Taking a different approach, Lynett
and Liu (2004) developed a multi-layer approach by dividing the
vertical water column into a finite number of layers with quadratic
polynomials and matching them at the interfaces. Further development
in the multi-layer approach have shown that the flow information in
the vertical direction is well resolved with 2–3 layers in deep water
conditions (Stelling and Duinmeijer, 2003; Zijlema and Stelling, 2005,
2008; Zijlema et al., 2011). However, Monteban (2016) reported that
a two-layer configuration results in about 10 times the computational
cost in comparison to a one-layer arrangement, which shows a dramatic
increase of computational resources as the layers increase. Jeschke
et al. (2017) introduced an innovative quadratic pressure assumption
which can achieve at least a good equivalence to a second-order Boussi-
nesq model without multi-layers. Its performance gain over irregular
topography was confirmed by Wang et al. (2020). van Groesen et al.
(2010) and van Groesen and Andonowati (2007) presented a model
based on Korteweg–de Vries (KdV)-type equations and Hamiltonian
structure of gravity surface waves. The model is shown to be able to
simulation both long and short waves with a large range of water depth
variations.

In spite of the continuous efforts of applying numerical models
based on shallow water equations to deepwater scenarios, the offshore
industry has been preferring the potential flow based numerical models
which usually are not limited by water depth conditions due to the
nature of the governing equations. Potential flow models solve the
Laplace equation together with free surface boundary conditions and
the solid-surface boundary conditions at the seabed or the surface of
an object. Due to the boundary-value nature of the governing equation,
the early potential flow models usually apply the boundary element
method (BEM) (Grilli et al., 1994). The BEM models are seen to be
computationally efficient and eligible for both constant and varying
topographies (Grilli et al., 2001). However, the fully populated un-
symmetrical matrix presents a difficulty in implementing high-order
numerical schemes and parallel computation techniques. Consequently,
the method is computationally sufficient for small domain analyses but
not optimal for large-scale applications. Li and Fleming (1997) pre-
sented a three dimensional fully nonlinear potential flow model using a
finite difference method and a multi-grid solver. Further developments
by Bingham and Zhang (2007) and Engsig-Karup and Bingham (2009)
resulted in the general purpose flexible-order fully nonlinear potential
flow model OceanWave3D. The model is capable of simulating irreg-
ular waves as well as different wave transformations. The use of a
𝜎-coordinate grid and a stretching function in the vertical direction
further improve the model’s computational efficiency as well as its
flexibility over varying seabed. A GPU-accelerated version of Ocean-
2

Wave3D was also developed (Engsig-Karup et al., 2012; Glimberg et al., i
2013), which dramatically improved the computational efficiency for
large-scale long duration simulations. Another fully-nonlinear poten-
tial flow code following a similar approach was also implemented at
TechnipFMC (Kim and Bai, 1999; Kim et al., 2006). Here, the velocity
potential is solved on a 𝜎-coordinate grid with a Chebyshev polynomial
interpolation in the vertical direction. The code has been used in
the offshore industry for the evaluation of design conditions. High-
order spectral (HOS) method is another technique to solve for the
velocity potential. Here, the Laplace equation is solved analytically
in the volume beforehand so that only the free surface boundary
conditions need to be time-integrated. In combination with the use
of Fast Fourier Transform (FFT), the HOS models show very high
computational efficiency. Successful HOS models have been developed
for both experimental scales and large-scales, such as the HOS-NWT and
HOS-Ocean models (Ducrozet et al., 2012; Bonnefoy et al., 2006a,b)
and Whisper3D (Raoult et al., 2016; Yates and Benoit, 2015). However,
simple analytical solutions to the Laplace equation exist in constant
water depth, but not for more complex bottom topography, an adaption
for a varying bathymetry is often required in a HOS model.

With the computational efficiency and the validity for a large range
of water depth, potential flow models have been used for long du-
ration sea state simulations. Ducrozet et al. (2012) used HOS-NWT
wave maker signal to generate an irregular wave field and focused
wave, Bonnefoy et al. (2009) further performed 250𝑇𝑝 long-time 3D
simulations to detect freak wave occurrence in a 3D domain, with 𝑇𝑝
eing the peak period. Ducrozet et al. (2007) demonstrated numerical
nvestigation of freak wave in a 2D irregular wave field with 1000𝑇𝑝
uration and in a 3D wave field with 250𝑇𝑝 duration. Ducrozet et al.
2007), Anon (2016) used HOS-Ocean to simulate a 250𝑇𝑝 3D irregular
ave field with periodic lateral boundary conditions. The finite element

ully nonlinear potential flow model from TechnipFMC (Kim and Bai,
999; Kim et al., 2006) has been applied extensively for the simulation
f three-hour sea-states with breaking waves in intermediate to deep
ater. Huang and Guo (2017), Huang and Zhang (2018) performed

hree-hour simulations of irregular sea states with many realisations. It
s reported that it is very challenging to capture the high-frequency part
f the spectrum with a higher steepness 𝐻𝑠∕𝐿𝑝 > 0.2. A new wave crest
istribution formulation was also derived based on the researches to
epresent the highly nonlinear sea-state. These long duration numerical
imulations both provided the research community with benchmark
ases and insights for the mathematical representations of the nonlinear
rregular sea states. However, a correct representation of an irregular
ea state requires adequate attention on many factors, such as the
requency band width, spectrum discretisation, arrangement of the 𝜎-
oordinate etc. The previously reported studies are lack of technical
etails about the numerical wave tank configuration and the choices of
arameters, making it hard to reproduce the results when a different
umerical model is applied. A common procedure regarding the most
mportant configurations is needed for the researchers who share the
nterest in irregular sea-state with different wave breaking scenarios.

In order to demonstrate a working procedure for the numerical
eproduction of irregular sea state, the fully nonlinear potential flow
odel REEF3D::FNPF (Bihs et al., 2020) that solve for the velocity
otential using a finite difference method on a 𝜎-coordinate grid is
sed in this article. Developed as an integrated part of the open-
ource hydrodynamics model REEF3D (Bihs et al., 2016), the potential
low model inherits the high-order numerical discretisation schemes in
pace and time as well as the high performance computation capacity.
he CFD model of REEF3D has been used for the investigation of 2D
nidirectional irregular wave field (Aggarwal et al., 2018b,a) and 3D
hort-crested wave field (Wang et al., 2018a,b), which demonstrated
ts numerical robustness. The potential flow model REEF3D::FNPF was
pplied to study the geometric properties of rogue waves in deep
ater (Wang et al., 2019).

In this manuscript, the authors address several key factors that

nfluence the quality of the irregular wave field in a potential flow



Applied Ocean Research 117 (2021) 102898W. Wang et al.
numerical wave tank on a 𝜎 coordinate grid. The goal is to introduce a
procedure for a reproducible representation of an irregular sea-state. In
Section 2, the numerical implementation of the model REEF3D::FNPF
is introduced. In Section 3, the considerations regarding domain size,
probe location, frequency bandwidth, grid resolution, time-stepping
and arrangement of the 𝜎 coordinate grid are addressed. In Section 4,
the numerical results are presented, where the effectiveness of the
procedure as well as the effects of the different factors are discussed. In
the conclusion, the findings are summarised and a working procedure
is produced.

2. Numerical model

2.1. Governing equations

The governing equation for the fully nonlinear potential flow model
REEF3D::FNPF is the Laplace equation:

𝜕2𝜙
𝜕𝑥2

+
𝜕2𝜙
𝜕𝑦2

+
𝜕2𝜙
𝜕𝑧2

= 0. (1)

Boundary conditions are required in order to solve for the velocity
potential 𝜙 from the Laplace equation, especially at the free surface and
at the bottom. The fluid particles at the free surface should always re-
main at the surfaces, which defines the kinematic free surface boundary
condition. The pressure in the fluid at the free surface should be equal
to the atmospheric pressure. This describes the dynamic free surface
boundary condition. These two conditions must always be fulfilled:
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where 𝜂 is the free surface elevation, 𝜙 = 𝜙(𝐱, 𝜂, 𝑡) stands for the velocity
potential at the free surface, 𝐱 = (𝑥, 𝑦) represents the coordinates at the
horizontal plane and �̃� is the vertical velocity at the free surface.

At the bottom, the velocity component normal to the bottom shall
always be zero since the fluid particle cannot penetrate the solid
boundary. This gives the bottom boundary condition:
𝜕𝜙
𝜕𝑧

+ 𝜕ℎ
𝜕𝑥

𝜕𝜙
𝜕𝑥

+ 𝜕ℎ
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= 0, 𝑧 = −ℎ. (4)

where ℎ = ℎ(𝐱) is the water depth measured from the still water level
to the seabed.

Due to the time-dependent nature of the free surface boundary
conditions, a time-variant 𝜎-coordinate system (Engsig-Karup and Bing-
ham, 2009) is used for the vertical grid arrangement. The 𝜎-coordinate
system allows the vertical grid to follow the water depth variations over
space as well as the free surface elevations over time and thus offers
great flexibility for irregular boundaries. The transformation from a
Cartesian coordinate system to a 𝜎-coordinate system is expressed as
follows:

𝜎 =
𝑧 + ℎ (𝐱)

𝜂(𝐱, 𝑡) + ℎ(𝐱)
. (5)

The velocity potential after the 𝜎-coordinate transformation is de-
noted as 𝛷 in the following context. The boundary conditions and the
Laplace equation in the 𝜎-coordinate are then rewritten in the following
format:

𝛷 = 𝜙 , 𝜎 = 1; (6)
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(7)
Fig. 1. Schematic of a 5th-order WENO stencil.
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where 𝜎 = 1 corresponds to the free surface and 𝜎 = 0 corre-
sponds to the bottom. Once the velocity potential 𝛷 is obtained in the
𝜎-coordinate system, the velocities can be calculated:
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The Laplace equation is discretised using second-order central dif-
ferences on a 𝜎-coordinate system (Engsig-Karup and Bingham, 2009)
and solved using a parallelised geometric multi-grid preconditioned
conjugated gradient solver provided by Hypre (van der Vorst, 1992).

The gradient terms of the free-surface boundary conditions are
discretised with the 5th-order Hamilton–Jacobi version of the weighted
essentially non-oscillatory (WENO) scheme (Jiang and Shu, 1996). The
WENO stencil consists of three local essentially non-oscillatory (ENO)-
stencils and each is assigned with a smoothness indicators IS (Jiang
and Shu, 1996). A large IS indicates a non-smooth solution in a local
stencil. The scheme is designed so that the local stencil with the highest
smoothness (i.e. smallest IS) is assigned with the largest weight 𝜔𝑖
and therefore contributes the most. In this way, the scheme is able
to handle large gradients up to shock with good accuracy. The WENO
approximation for 𝛷 is a convex combination of the three possible ENO
approximations. For example, the schematic of the WENO stencils in
the 𝑥-direction with a convective velocity from left to right is shown in
Fig. 1.

The discretisation is formulated as the following:

𝛷±
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1𝛷
1±
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2±
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The three stencils are defined as:
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with
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The weights are written as
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with the regularisation parameter 𝑒 = 10−6 and the following smooth-
ness indicators:

𝐼𝑆±
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12
(
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)2 + 1

4
(
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4
(
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)2 ,

(18)

For the temporal discretisation of the time-dependent terms in the
ree surface boundary conditions, a third-order accurate total variation
iminishing (TVD) Runge–Kutta scheme (Shu and Osher, 1988) is used
hat consists of three Euler steps (Shu and Osher, 1988).

𝜙(1) = 𝜙𝑛 + 𝛥𝑡𝐿 (𝜙𝑛)

𝜙(2) = 3
4
𝜙𝑛 + 1

4
𝜙(1) + 1

4
𝛥𝑡𝐿

(

𝜙(1))

𝜙𝑛+1 = 1
3
𝜙𝑛 + 2

3
𝜙(2) + 2

3
𝛥𝑡𝐿

(

𝜙(2))

(19)

The numerical workflow of solving the Laplace equation and bound-
ary conditions for 𝜙 and 𝜂 within in one Runge–Kutta step is sum-
marised in Fig. 2

The efficient computation of long duration simulations depends
largely on the strategy for the computational parallelisation. In
REEF3D, parallelisation is achieved through domain decomposition,
where the simulation domain is divided into smaller sub-domains,
each of them communicating with their adjacent neighbours through
ghost cells. Since a 5th-order WENO scheme is used for the free
surface boundary conditions, three ghost cell levels are required to
complete the stencils. The message passing interface (MPI) is used
for the implementation of the ghost cell value exchange. The strat-
egy of ghost cell-based domain decomposition and MPI enables the
model to perform demanding simulations with hundreds of processors
simultaneously.

2.2. Irregular wave generation

Flexible wave generation methods are implemented (Bihs et al.,
2016). In this paper, a relaxation method is used for the wave gen-
eration with the following relaxation function (Mayer et al., 1998):

𝛤 (𝑥) = 1 − 𝑒(𝑥3.5) − 1
𝑒 − 1

𝑓𝑜𝑟 𝑥 ∈ [0; 1], (20)

here 𝑥 is scaled to the length of the relaxation zone. The velocity
otential 𝛷 and the surface elevation 𝜂 are increased to the analytical
alues in the wave generation zone:

(𝑥)𝑟𝑒𝑙𝑎𝑥𝑒𝑑 = 𝛤 (𝑥)𝜑𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 + (1 − 𝛤 (𝑥))𝜑𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 , (21)

Similarly, the velocity potential and the surface elevation 𝜂 are
educed to still water values in the wave energy dissipation zone or
umerical beach to eliminate wave reflection of the outlet boundaries.

The irregular wave generation is achieved by a linear superposition
f a finite number of individual regular wave components with dif-
erent amplitudes, frequencies and phases. Assuming that each wave
omponent is a linear wave, the first-order free surface 𝜂(1) is defined
s

(1) =
𝑁
∑

𝑖=1
𝐴𝑖 cos 𝜃𝑖. (22)

here 𝐴𝑖 is the amplitude of each wave component and 𝜃𝑖 is the phase
f each component, which is defined as
4

𝑖 = 𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜀𝑖. (23)
here 𝑘𝑖 is the wave number, 𝜔𝑖 is the angular frequency, 𝜀 is the phase
of each wave component.

A power spectrum is used to describe the energy distribution over
the frequencies. A commonly used power spectrum for the North Sea
marine environment is the JONSWAP spectrum (DNV, 2011). Signifi-
cant wave height 𝐻𝑠, peak angular frequency 𝜔𝑝, and number of com-
ponents 𝑁 are given as input values to the JONSWAP spectrum (DNV,
2011):

𝑆 (𝜔) = 5
16

𝐻2
𝑠𝜔

4
𝑝𝜔

−5
𝑖 𝑒𝑥𝑝

(

−5
4

(

𝜔𝑖
𝜔𝑝

)−4
)

𝛾
𝑒𝑥𝑝

(

−(𝜔−𝜔𝑝)2
2𝜎2𝜔2𝑝

)

𝐴𝛾 . (24)

where the peak-shape parameter 𝛾 = 3.3 and the spectral width
parameter 𝜎 is 0.07 for 𝜔𝑖 ≤ 𝜔𝑝 and 0.09 for 𝜔𝑖 > 𝜔𝑝. The normalising
factor 𝐴𝛾 = 1 − 0.287 ln(𝛾).

When a frequency range is chosen between a low frequency end 𝜔𝑠
nd a high-frequency end 𝜔𝑒, a finite number of discrete frequencies
𝑁𝑓 ) are needed to sufficiently represent the wave energy described by
he power spectrum. Two methods to choose the frequency components
re presented in this paper: the peak enhance method (PEM) and
he equal energy method (EEM) (Duarte et al., 2014). In PEM, the
requency range is divided at the peak frequency (𝜔𝑝) into two sub-
anges [𝜔𝑠, 𝜔𝑝] and [𝜔𝑝, 𝜔𝑒]. In the lower and higher ranges of the
eak frequency, the frequencies are evenly distributed into 𝑁𝑠 and 𝑁𝑒
requency components respectively. It is a variant of the equivalence-
istance arrangement of the frequencies while maintaining the location
f the peak frequency regardless of how many components are used.
he relationship among 𝜔𝑠, 𝜔𝑝, 𝜔𝑒, 𝑁𝑠, 𝑁𝑓 and 𝑁𝑒 is summarised in
q. (25):

𝑁𝑓 = 𝑁𝑠 +𝑁𝑒
𝑁𝑠
𝑁𝑒

=
𝜔𝑝 − 𝜔𝑠

𝜔𝑒 − 𝜔𝑝

(25)

Instead of evenly distributing the frequency components, the EEM
ethod discretises the power spectrum so that the energy at each

requency interval is kept constant. As a result, the frequency intervals
hemselves are not constant and more components are concentrated
ear the peak frequency. Since the area below the spectra stands
or the energy, a spectrum can be regarded as a ‘probability density
unction’ (pdf). An integral over the frequency domain gives a concept
orresponding to a ‘cumulative probability function’ (cdf). Choosing
n even interval in the 𝑦-axis of the cumulative probability function’,

the corresponding 𝑥-axis values are the discrete frequency components.
An example of a JONSWAP spectrum discretised into 50 frequency
components using EEM is demonstrated in Fig. 3. The demonstrated
JONSWAP spectrum follows the formulation of DNV-GL (DNV, 2011)
where 𝐻𝑠 = 0.06 m, 𝑇𝑝 = 0.9 s and the peak enhance parameter is
3.3.

After the discretisation of the power spectrum, the irregular wave
free surface elevation is calculated in Eq. (26):

𝜂(𝑥, 𝑡) =
𝑁𝑓
∑

𝐼=1

√

2𝑆(𝜔𝑖)𝑑𝜔𝑖 ⋅ cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 + 𝜀𝑖) (26)

.3. Wave breaking

Since the free surface is represented by a single value in the pre-
ented potential flow model, it is not possible to represent an over-
urning breaker as in a CFD simulation (Bihs et al., 2016). However,
correct detection of wave breaking events and energy dissipation can
e achieved with an effective breaking wave algorithm. The proposed
lgorithm aims to address both wave steepness-induced wave breaking
n deep water and depth-induced breaking in shallow water.

Deepwater wave steepness-induced breaking is initialised with a
teepness criterion:
𝜕𝜂 ≥ 𝛽. (27)

𝜕𝑥𝑖
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Fig. 2. Numerical workflow of solving the Laplace equation and boundary conditions for the velocity potential 𝜙 and free surface elevation 𝜂 within in one Runge–Kutta sub-step.
Fig. 3. The discretisation of the frequency spectrum based on the equal energy method with 50 components.
where 𝛽 is the threshold of wave slope at the wave front.
The depth-induced wave breaking is initialised when the vertical

velocity of the free-surface exceeds a fraction of the shallow water
celerity (Smit et al., 2013):

𝜕𝜂
𝜕𝑡

≥ 𝛼𝑠
√

𝑔ℎ. (28)

𝛼𝑠 = 0.6 is recommended as it works well with most of the
waves (Smit et al., 2013).

After a wave breaking is detected, two methods are available to
represent the energy dissipation during the wave breaking process.
The first method is a geometric filtering algorithm that smoothens the
free surface for energy dissipation (Jacobsen, 2011). Here, an explicit
scheme is used and therefore there is no Courant–Friedrichs–Lewy
(CFL) constraint on the timestep size. Another method is to introduce
a viscous damping term in the free surface boundary conditions locally
around the breaking region as defined by Baquet et al. (2017). When
wave breaking is detected, the free surface boundary conditions Eqs. (2)
5

and (3) then become:

𝜕𝜂
𝜕𝑡

= −
𝜕𝜂
𝜕𝑥

𝜕𝜙
𝜕𝑥

−
𝜕𝜂
𝜕𝑦

𝜕𝜙
𝜕𝑦

+ �̃�

(

1 +
(

𝜕𝜂
𝜕𝑥

)2
+
(

𝜕𝜂
𝜕𝑦

)2
)

+ 𝜈𝑏

(

𝜕2𝜂
𝜕𝑥2

+
𝜕2𝜂
𝜕𝑦2

)

, (29)

𝜕𝜙
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= − 1
2
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)2
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)2
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)

⎞

⎟

⎟

⎠

− 𝑔𝜂 + 𝜈𝑏

(

𝜕2𝜙
𝜕𝑥2

+
𝜕2𝜙
𝜕𝑦2

)

. (30)

where 𝜈𝑏 is the artificial turbulence viscosity. 𝜈𝑏 is calibrated from the
comparison of the potential flow model simulations with model test
data and the CFD simulations. As a result, the value of 𝜈𝑏 is recom-
mended to be 1.86 (Baquet et al., 2017) for the offshore deep water
conditions in the proposed model. In the new free surface boundary
conditions Eqs. (29) and (30), the newly introduced diffusion term
is treated with an implicit time scheme while the rest of the terms
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Fig. 4. Illustrative comparison of the two wave breaking algorithms with CFD in a
simulation of breaking wave event in an irregular sea state.

are treated with explicit time schemes. This way, there is no extra
constraint on time step size.

A visual comparison of the two methods in the simulation of a wave
breaker in an irregular sea state is shown in Fig. 4, where it is seen
that both methods show a similar crest height as the CFD counterpart,
but the damping method shows a more similar representation of the
breaker geometry in comparison to the CFD free surface. The sea state
is described by a JONSWAP spectrum (DNV, 2011) where 𝐻𝑠 = 0.0644
m, 𝑇𝑝 = 1.5 s and the peak enhance parameter is 3.3.

A correct representation of wave breaking is important for a correct
representation of an irregular wave spectrum and the wave crest dis-
tribution of a strongly nonlinear irregular sea-state. In the manuscript,
both breaking algorithms are used to produce irregular sea-states of
moderate and severe breaking scenarios.

2.4. Vertical grid arrangement

In the model, the vertical coordinates follow a stretching function
so that smaller cells are arranged near the free surface and larger sizes
are closer to the bottom:

𝜎𝑖 =
sinh (−𝛼) − sinh

(

𝛼
(

𝑖
𝑁𝑧

− 1
))

sinh (−𝛼)
, (31)

where 𝛼 is the stretching factor and 𝑖 and 𝑁𝑧 stand for the index of the
grid point and the total number of cells in the vertical direction.

The stretching approach reduces the computational cost as well as
the numerical errors when the same number of vertical cells are used.
However, the dispersion relation and phase velocity are sensitive to
the stretching arrangement. A methodology for an optimal vertical grid
distribution is adopted to ensure an accurate representation of the wave
propagation.

Since each wave component is a linear wave, the Airy wave theory
is used to explain the method. According to the Airy wave theory
for infinite water depth, the amplitude of the velocity potential only
depends on the vertical coordinate z:

𝛷(𝑧) = 𝐶𝑒𝑘𝑧. (32)

where 𝐶 = 𝐴
√

𝑔∕𝑘, 𝐴 is the wave amplitude and 𝑘 is the wave number.
The distribution can be normalised by 𝐶 to represent a general

description. The Taylor expansion of the normalised function 𝛷(𝑧) at
he free surface 𝜁 up to 3𝑟𝑑 order can be expressed as the following:
𝑘𝑧 = 𝑒𝑘𝜁 + 𝑒𝑘𝜁𝑘𝛥𝑧 + 1

2
𝑒𝑘𝜁𝑘2𝛥𝑧2 + 1

6
𝑒𝑘𝜁𝑘3𝛥𝑧3 + 𝑂(𝛥𝑧4). (33)

where 𝛥𝑧 = 𝑧 − 𝜁 .
The truncation error 𝐸 is then defined as the difference between

the original analytical expression and its Taylor expansion up to the
3rd order:

𝐸 = 𝑒𝑘𝑧 −
(

𝑒𝑘𝜁 + 𝑒𝑘𝜁𝑘𝛥𝑧 + 1
2
𝑒𝑘𝜁𝑘2𝛥𝑧2 + 1

6
𝑒𝑘𝜁𝑘3𝛥𝑧3

)

(34)

It is seen that the truncation error of a finite difference scheme
depends on 𝛥𝑧 = 𝑧 − 𝜁 . Alternatively, a more general form of Eq. (34)
can be expressed for a finite difference scheme of order 𝑂 as:

0 = 𝐸𝑒−𝑘𝜁 −
∞
∑ (𝑘𝛥𝑧)𝑛 (35)
6

𝑛=𝑂+1 𝑛!
From this expression, each cell size can be calculated in an iterative
manner at each location along the water depth, given a value of the
truncation error 𝐸 and the order of the finite difference scheme 𝑂.
The vertical grid estimated from this process represents the correct
distribution of the velocity potential in the vertical wave column and
retains the correct wavenumber and the dispersion relation.

3. Methodology

3.1. Frequency range

The choice of frequency range is important for determining a sea-
state realistically and accurately. The inclusion of the low frequency
and high frequency ranges are important for a correct representation of
wave–wave interactions as well as structure responses such as drifting
and ringing. The bandwidth of the frequency range also influence the
grid resolution in the horizontal direction. An adequate amount of
cells per wavelength is usually required to represent a regular wave
accurately. In order to represent all wave components that consist
the irregular wave field, the grid resolution depends on an adequate
amount of cells per wavelength of the shortest regular wave component
(with the highest frequency). There are two general principles when
choosing the frequency range: (1) wave energy should be represented
as much as possible; (2) all wave components in the wave train have to
fulfil the linear wave assumption, based on which the irregular wave
theory is derived. In this manuscript, the low-frequency end (𝜔𝑠) is
chosen so that it truncates off only 0.05% of the total wave energy.
For the high-frequency end (𝜔𝑒), it is chosen either at a frequency
that truncates 99% of the wave energy or at the high-frequency limit
that the waves fulfil the linear wave theory. The linear wave theory
requirement in deep water is:

𝑘𝐴 =
𝜔2
𝑒
𝑔
𝐴 ≪ 1 (36)

𝐿(𝜔𝑒) =
√

𝑔
𝐴

(37)

Where 𝑘 is the wave number, 𝜔𝑒 is the angular frequency, 𝑔 is
gravitational acceleration and 𝐴 is the wave amplitude. Here, 𝐴 =
𝐻𝑠∕2. From Eq. (37), the upper limit of the high-frequency 𝜔𝑒 is
determined. In the tested cases, this frequency limit corresponds to
2.5𝜔𝑝 to 3.5𝜔𝑝 depending on the spectrum and sea state.

3.2. Horizontal resolution

For regular wave propagation, it is seen that about 32 cells per
wave length is usually sufficient to represent the free surface accurately
in REEF3D::FNPF (Bihs et al., 2020; Wang et al., 2019). For irregular
waves, the wavelength of each of the wave components varies very
much. Therefore, the grid resolution should be based on the shortest
wave in the irregular wave train. The horizontal cell size is decided as
the follows:

𝑑𝑥 = 𝐿𝑒∕32, (38)

where 𝐿𝑒 is the wavelength corresponding to the high frequency limit
𝜔𝑒. Such resolution is used for all the following simulations.

3.3. Time stepping

A fixed time step is used in this paper. The principle of determining
the time step is to ensure that the flow information does not transport
more than one horizontal cell size in distance within one time step. In
order to ensure that the chosen time step is sufficient for all different
waves travelling at different speed, the time step size is determined
using the phase velocity of the longest wave:
𝑑𝑡 = 𝐶𝑠∕𝑑𝑥; (39)
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Fig. 5. Procedure of the numerical setup for the simulation using a potential flow
model with a 𝜎-coordinate grid.

Where 𝐶𝑠 is phase velocity corresponding to the longest wave with
the low frequency limit (𝜔𝑠). As a result, the time step is determined
by using the phase velocity of the longest wave (lowest frequency 𝜔𝑠)
and the cell size that is determined from the shortest wave (highest
frequency 𝜔𝑒).

In summary, the choice of the frequency range determines the
choices of horizontal grid and time step size. Together with the vertical
grid arrangement using the constant truncation error method, the
numerical setup procedure is summarised in Fig. 5.

4. Numerical results and discussions

In this section, the methodologies regarding the choices of fre-
quency range, grid resolution and time stepping for the irregular wave
representation are put to test. Four different scenarios are presented
in the manuscript with various spectra, severity of breaking and wa-
ter depth. The four scenarios are: non-breaking wave defined with a
JONSWAP spectrum (DNV, 2011) in deep water (JNB), mildly break-
ing wave defined with a JONSWAP spectrum in intermediate water
(JMB), severely breaking wave defined with a JONSWAP spectrum in
deep water (JSB) and severely-breaking wave defined with an extreme
Torsethaugen spectrum (Torsethaugen, 1993, 1996; Torsethaugen and
Haver, 2004) in deep water (TSB). The input wave parameters are
included in Table 1. Here, 𝛾 is the shape parameter of the JONSWAP
spectra, 𝑑 stands for still water level, 0.5𝐻𝑠𝐾𝑝 is the characteristic wave
steepness and 𝜔 is the frequency range used in the simulations.

The computational domain is chosen so that all wave components
have sufficient space to propagate and develop. Therefore, the domain
size is governed by the longest wave component 𝐿𝑚𝑎𝑥 corresponding to
the lowest frequency. In the numerical wave tank configuration, a wave
generation zone of one 𝐿𝑚𝑎𝑥 is located at the inlet boundary, and a
numerical damping zone of two 𝐿 is located at the outlet boundary.
7

𝑚𝑎𝑥
Table 1
Wave conditions for the simulated sea states.

Case no. 𝐻𝑠 (m) 𝑇𝑝 (s) 𝑆(𝑓 ) 𝛾 𝑑 (m) 0.5𝐻𝑠𝐾𝑝 𝜔 (Hz)

JNB 6.21 12.50 JONSWAP 1.2 600.0 0.08 [0.051, 0.283]
JMB 12.25 16.0 JONSWAP 2.5 100.0 0.12 [0.040, 0.201]
JSB 15.64 15.0 JONSWAP 2.5 600.0 0.14 [0.043, 0.178]
TSB 14.60 14.0 Torsethaugen N/A 600.0 0.15 [0.037, 0.184]

The computational zone in between has a length of 11𝐿𝑚𝑎𝑥. 7 wave
gauges are arranged along the numerical wave tank. The locations of
the wave gauges are determined based on the peak wave length 𝐿𝑝
corresponding to the peak period 𝑇𝑝, as the wave gauges are designed
for the measurement of the characteristic properties of the wave field.
Wave gauges G1 and G2 are located at 0.5𝐿𝑝 to the upstream side and
the downstream side of the boundary between the wave generation
zone and the computational zone. Wave gauge G5 is located at 12.5𝐿𝑝
from the beginning of the computational domain, with G3 and G4
located 2.5𝐿𝑝 and 1.25𝐿𝑝 to the upstream of G5 and G6 and G7 located
1.25𝐿𝑝 and 2.5𝐿𝑝 to the downstream of G5. The principle is that the
wave gauges should be located at a sufficient distance away from the
wave generation zone so that the wave–wave interactions between the
different frequencies have evolved sufficiently. An empirical rule of
thumb is that 10𝐿𝑝 away from the wave generation should be sufficient
for most cases. In this manuscript, the wave gauges cover a range from
10𝐿𝑝 to 15𝐿𝑝 and the data measured at G5 is considered as the primary
measuring point, and its adjacent wave gauges provide information of
the spatial variance of the statistical properties of the wave field and
provide the evidence that the wave field is fully developed at 12.5𝐿𝑝.
(See Fig. 6).

As described previously, the vertical grid arrangement in the 𝜎-
coordinate system is important in the quality of the reproduced ir-
regular wave field. Based on the peak period and water depth, the
methodology explained in Section 2.4 is used to determine the ver-
tical grid for each scenarios. The agreement between the theoretical
arrangement and the stretching function within one wavelength in the
vertical direction is the criterion in the study as the dispersion relation
over one wavelength in the water depth has less impact. Meanwhile,
8 vertical grids are kept within the wavelength correspond to the
highest frequency so that the shortest wave component has the grid
resolution for its dispersion relation close to the free surface. Keeping
a constant truncation error, the theoretical optimal vertical stretchings
and the configurations in the numerical model for the four scenarios
are illustrated in Fig. 7.

It is seen that the optimised stretching functions agree well with the
theoretical calculation within one wavelength of the peak period in all
cases. The resulting number of vertical grid lines 𝑁𝑧 and the stretching
factors 𝛼 are summarised in Table 2.

Based on the methodology described in Section 3, the horizontal
grid number 𝑁𝑥 and time steps 𝑑𝑡 are calculated based on the frequency
range. The resulting grid configurations are summarised in Table 2. All
simulation are performed for 12800 s, among which the time window
between 2000 s and 12800 s form the 3 hour time series for the
analysis. 2000 s is long enough to allow at least 250 wave components
with the highest frequency (the slowest propagating wave) to finish
propagating though the entire numerical wave tank in all scenarios. All
simulations are performed with 128 cores of Intel E5-2683v4 2.1 GHz
processors on the supercomputer Fram. The domain length 𝐿 and
𝑁𝑊 𝑇
Fig. 6. Numerical wave tank setup for the irregular wave simulations.
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Fig. 7. Comparison between theoretical optimal vertical grid arrangement with the actual arrangement in the numerical model based on peak period and water depth using the
constant truncation error method (Pakozdi et al., 2019). The black dashed horizontal lines show one wavelength of the highest frequency under the free surface, the blue dashed
horizontal lines show one wavelength of the peak frequency under the free surface. In (a), the wave length of the peak period is longer than the water depth and therefore is not

shown in the figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Numerical configurations for the simulated sea states.

Case no. 𝐿𝑁𝑊 𝑇 (m) 𝑁𝑥 𝑑𝑡 (s) 𝑁𝑧 𝛼 𝑁𝑡 𝑇𝑐𝑜𝑚𝑝 (h)

JNB 6030.70 9900 0.020 36 3.3 396016 12.5
JMB 9832.93 8184 0.031 15 1.4 245506 4.72
JSB 8644.22 5634 0.042 36 2.8 225366 4.56
TSB 9066.20 6330 0.034 37 3.05 253202 5.66

the computational time 𝑇𝑐𝑜𝑚𝑝 for each simulation are also included in
Table 2.

With the parallel computation algorithm, the numerical model is
able to utilise the computational resources effectively. A scalability
test is performed with up to 512 computational cores using the wave
inputs of the JNB case on the supercomputer Fram. In order to ensure
sufficient number of cells per core, a 3D numerical wave tank with
the same longitudinal and vertical dimensions as the JNB case is
used. It has 10050 cells in the 𝑥-direction, 28 cells in the 𝑦-direction
nd 36 cells in the vertical direction. This results in a total of 10.13
illion cells, about 20000 cells per core for the 512-core simulation.
ll simulations are performed for 1000 iterations. The computational
peed-up factor defined by the ratio between the simulation time with
ingle-core 𝑇1 and the simulation time with multi-core 𝑇𝑛 is plotted

in relation to the number of cores. A near linear scalability is seen in
8

Fig. 8.
Fig. 8. Computational speed-up in relation to the increase of the number of computer
cores in the scalability test for the numerical model.
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Fig. 9. Kurtosis at all wave gauges in the simulations with an EEM method together with the two different wave breaking algorithms.
In addition to the general procedure and process for the irregular
aves numerical wave tank configurations, the two wave spectrum
iscretisation methods, the equal energy method (EEM) and the peak
nhanced equal distant method (PEM), are tested in the study to
nvestigate their effects on the statistical properties of the wave field.
480 frequency components are used in all tests based on a Fast
ourier Transform (FFT) analysis of a general equal distance method
frequencies all evenly distributed through the range without peak en-
ancing). The two breaking wave algorithms for potential flow solver,
he geometric filtering algorithm and the viscous damping algorithm,
re also tested. The comparative study on the discretisation method
nd the breaking wave algorithms are aimed to further help researchers
hoose the right procedure for an accurate reproduction of an irregular
ave field. In the simulation of the non-breaking case JNB, the breaking
lgorithms are also in use to ensure a comparable numerical set-up
s other cases, though wave breakings are not detected during the
imulation.

.1. Kurtosis

The first step to check the quality of a numerically reproduced
9

rregular sea state is study the kurtosis of the times series at the points
of measurement. If the time series at all measured locations shows a
stable and near constant kurtosis, it means that the sea state is spatially
homogeneous and that the wave gauges are spaced far enough to allow
a sufficient wave–wave interaction. In the other case when the kurtosis
varies, it shows that the wave field is still developing and wave–wave
interaction is undergoing, indicating that a non-homogeneous and not
fully developed sea. The kurtosis at all wave gauges in all situations are
shown in Figs. 9 and 10.

As can be seen, the first two wave gauges G1 and G2 tend to
show much smaller kurtosis than the rest of the wave gauges. For
the generation of a single frequency regular wave, the waves near the
generation zone should be the most accurate in comparison to the input
theoretical wave. However, for the irregular wave field, the adjacent
area near the generation zone does not allow a sufficient space for
the wave–wave interaction to develop and the measurements near the
wave generation zone are in fact the least accurate in comparison to
the input wave spectrum, as most spectra are formulated for developed
sea states. The other five wave gauges located 10𝐿𝑝 to 15𝐿𝑝 away from
the wave generation zone show stable kurtosis with a slight fluctuation
around the value 3. This shows that the waves are well developed
and the wave gauges are located in the correct place. In general, the
spectrum discretisation methods and the breaking wave algorithms do

not have a strong impact on the kurtosis. One exception is the JSB case
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Fig. 10. Kurtosis at all wave gauges in the simulations with an PEM method together with the two different wave breaking algorithms.
ith the geometric filtering algorithm, where the kurtosis is constantly
ncreasing over the space. It shows that in this severe wave breaking
cenario, the viscous damping breaking algorithm is a more stable
hoice.

.2. Wave spectra

With the information of a developed sea after 10𝐿𝑝, the time series
at G5 (12.5𝐿𝑝) is used for reproducing the input wave spectrum. The
uality of the reproduced wave spectrum is the most commonly used
riterion to examine a numerical simulated irregular sea state. Here, the
umerical wave spectra are compared with the input theoretical wave
pectra for all simulated cases in Figs. 11 and 12

The non-breaking case JNB in deep water shows a near identical
greement at low frequency, peak frequency as well as high frequency
ange with the PEM method. However, there tends to be a slight
vershoot near the peak frequency when the EEM method is applied.
ne possible reason is that the equal energy bins are too densely
llocated near the peak frequency and lead to a slight higher energy
oncentration. The JMB cases also show near identical agreement in all
imulations. Especially, there is no energy loss at the high frequency
omain, which indicates the right amount of energy dissipation due
o the mild breaking captured by both breaking algorithms. However,
10
there is a slight underestimation of the spectrum peak when PEM
method is used, and a slight overshoot when EEM is used. For the
severely breaking cases JSB and TSB, the numerical spectra at the low
frequency and peak frequency range agree well with the inputs. Slightly
higher energy concentrations near the peak frequency are also observed
when the EEM method is applied. At the high-frequency range, certain
losses of energy are observed with the JONSWAP spectrum and more
prominent energy losses are seen with the Torsethaugen spectrum. Both
breaking wave algorithms show similar impact on the wave spectrum,
except that when both PEM and filtering algorithms are applied to
the JSB case, there is a loss of energy near the peak period in addi-
tion to the high-frequency domain. This may be a direct result of a
varying kurtosis as seen in Section 4.1. Huang and Zhang (2018) also
expressed the difficulty in representing the high-frequency range of a
wave spectrum for severe wave breaking scenarios. The fundamental
reason behind this energy loss still remains as a future research topic.
However, the general good agreements in all cases, from non-breaking
to sever-breaking show that the procedure presented in the manuscript

represent the irregular sea state well in the numerical wave tank.
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Fig. 11. Comparison of the numerically reproduced wave spectra and the input theoretical wave spectra in all cases using the EEM discretisation method.
4.3. Wave crest distribution

Traditionally, a wave spectrum is used to calibrate waves as a defin-
ing criterion. However, this criterion is not sufficient. In cases of local
wave-structure interactions, such as wave impact on hulls, green water
and air gap, wave crest distributions are a necessity to ensure there
is no unrealistic wave crest in the numerical wave field (Huang and
Zhang, 2018). The traditional Forristall distribution (Forristall, 2000b)
is derived from linear and second-order wave theory and therefore
is not optimal for severe sea state (Baquet et al., 2017). Since most
wave crest distributions are developed for the JONSWAP spectrum, the
wave crest distribution at wave gauges G3–G5 from all JONSWAP cases
are compared to both the Forristall distribution and the distribution
suggested by Huang and Zhang (2018) in Figs. 13 and 14.

It is seen that the difference between the Forristall distribution
and the lower bound of Huang distribution increases with increasing
11
nonlinearity and severity of wave breaking. Huang and Guo (2017)
suggested that if a wave realisation generated in a NWT has a crest
distribution that falls between the upper and lower bounds, as well as
matches the specified target Hs, Tp and spectrum, then it is qualified for
model tests. The wave crest distributions of the computed wave fields
in the presented simulations are all within the theoretical Forristall
distribution and the lower bound of the Huang distribution. It means
that the simulated wave fields never underestimate the wave crests,
making the sub-consequent design lay on the safe side. For the non-
breaking wave case and the mild wave breaking case, the wave crest
distributions are well within both the upper and lower bounds of the
Huang distribution, fulfilling Huang’s qualification criterion (Huang
and Guo, 2017). In addition, it is also seen that for the mild wave
breaking case JMB, the viscous damping method keeps the wave crest
distribution well within the upper and lower limit, while the filtering

algorithm tends to have higher crests and a tendency to exceed the
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Fig. 12. Comparison of the numerically reproduced wave spectra and the input theoretical wave spectra in all cases using the PEM discretisation method.
upper bound especially when it is used together with the EEM spectrum
discretisation method. For the severe wave breaking case JSB, the wave
crest distributions at some wave gauges tend to exceed the upper bound
with both breaking wave algorithms. This is in contrast to the fact
that the high-frequency wave energy is underestimated with severe
wave breaking, as seen in Figs. 11 and 12. The overestimation of the
wave crest indicates there might be a need for a stricter wave breaking
criterion or slightly more energy dissipation. Under this assumption,
the underestimation of the high-frequency is most likely not due to
wave breaking at high frequencies but other high-order wave–wave
interaction effects. Thus, the contradiction between the overestimation
of wave crests and the underestimation of the high-frequency energy
in the case of severe wave breaking implies that most breaking waves
take place at low frequency and near peak frequency. This contradiction
12

also asserts that the wave spectrum alone does not present the complete
information about the wave field and the analysis of the wave crest
distribution is a necessary supplement.

5. Conclusions

The manuscript presents a complete procedure for reproducing
irregular sea states in a potential flow based numerical wave tank. Com-
pared to previous research, this study furthers the advance of achieving
a reproducible numerical wave tank for irregular waves by providing
extensive numerical details. The comparative study of the different
wave spectrum discretisation schemes and breaking wave algorithms
provide insights into their impact on the statistical properties of the
waves.

To summarise, a quantification of a sea state requires more than
wave spectrum, the cautious check on kurtosis and wave crest distribu-

tion are crucial and necessary. The effects of the spectrum discretisation
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Fig. 13. Wave crest distribution at G3–G5 for all cases with the viscous damping wave braking algorithm.
chemes and the wave breaking algorithms are sometimes seemingly
ess significant for one wave property but have bigger impact on the
ther. In order to achieve a well represented irregular sea state, the
hoice of numerical wave tank domain size, frequency range, horizontal
rid size, vertical 𝜎-coordinate arrangement and a time stepping are
ll important factors. The domain size should allow enough space for
he irregular wave field to develop. The examination of the kurtosis
patial variation is a key method to ensure enough domain size and that
13

he locations of wave gauges are far enough from the wave generation
boundary. This is in contrast of a regular wave study where the wave
gauges close to the wave generation boundary are preferred. The
frequency range is chosen so that all wave components fulfil the linear
wave theory and that the vast majority of wave energy is represented.
The horizontal grid resolution is based on the principle that the shortest
wave component (highest frequency) has a required amount of cells per
wavelength. The time stepping is based on the horizontal grid size and
the phase velocity of the fastest wave component (lowest frequency).

The vertical grid arrangement follows the constant truncation error



Applied Ocean Research 117 (2021) 102898W. Wang et al.
Fig. 14. Wave crest distribution at G3–G5 for all cases with the geometric filtering algorithm.
method to ensure the correct dispersion relation. With the provided
procedure, the potential flow model REEF3D::FNPF is used to repro-
duce distinct sea states. The computational time to real time ratio
for the 3.5 hour simulations is found to be between 1.3 and 3.4. A
near linear computational scalability is found up to 512 cores when
at least 20000 cells per core is used. Generally, the kurtosis is stable,
the computed spectra match the inputs and the wave crest distributions
14

are within theoretical bounds. For a spectrum where most energy is
concentrated near the peak frequency, such as the JMB case, the EEM
method is seen to produce the spectrum shape well. When a spectrum
is more evenly distributed over the frequency, such as the JNB case, the
EEM method has a tendency to show higher energy concentration near
the peak frequency than theory. The viscous damping algorithm is seen
to be more stable in preserving the kurtosis and wave spectrum, while
the filtering algorithm produces more varying results. The combined

use of the PEM method and the viscous damping breaking algorithm



Applied Ocean Research 117 (2021) 102898W. Wang et al.
seems to give a more universal solution considering kurtosis, spectra
shape and wave crest distribution. With increasing severity of wave
breaking, more energy loss is seen at the high frequency part of the
spectra, and the wave crest distribution has a trend to exceed the upper
limit.

In conclusion, the methodology described in the manuscript fills
the gap of a guideline in the practice of numerical reproduction of
irregular sea state, especially for potential flow models with 𝜎-grid. The
procedure is seen to be effective for various sea states with different
wave spectra and severities of wave breaking. For future work, it is
suggested to apply more adaptive breaking wave algorithms to improve
the shape of wave spectra at higher frequency domain with severe
breaking. The proposed procedure and criteria in the manuscript are
still applicable in such investigations.
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