
Three-dimensional wake transition behind an elliptic cylinder near a moving wall1

Jianxun Zhu (朱建勋),1, a) Fengjian Jiang (蒋奉兼),2 and Lars Erik Holmedal12

1)1. Department of Marine Technology, Norwegian University of Science and Technology,3

7052, Trondheim, Norway4

2)2. SINTEF Ocean, 7052, Trondheim, Norway5

(Dated: 24 March 2021)6

Three-dimensional flow past an elliptic cylinder with an aspect ratio of 0.5 near a mov-7

ing bottom wall is investigated numerically for gap ratios of G/D = 0.1,0.2,0.3 and 0.48

(where G denotes the gap between the cylinder bottom and the moving wall and D is the9

major-axis length of the cylinder) with Reynolds numbers (Re) ranging from 100 to 20010

(based on a constant inlet velocity and the major-axis length of the cylinder); the transition11

between two- and three-dimensional flow regimes is described in detail. For G/D = 0.4,12

the flow is first two-dimensional with a Kármán vortex street followed by a two-layered13

wake, then it evolves into a three-dimensional flow regime with near-wake and far-wake14

elliptic instabilities of vortex pairs; for Re ≥ 180, the near-wake elliptic instability disap-15

pears (i.e., the near wake becomes two-dimensional) while the far-wake elliptic instability16

persists. For G/D = 0.3, the flow is first two-dimensional without the development of17

the two-layered wake, then it evolves into a three-dimensional flow regime with stream-18

wise vorticity pairs propagating periodically in the spanwise direction; this propagation19

becomes irregular for Re ≥ 160. For G/D = 0.2 the flow is first two-dimensional as for20

G/D = 0.3, then it becomes three-dimensional, exhibiting a behavior of modified mode C21

instability; for Re ≥ 140, this flow exhibits a chaotic behavior. For G/D = 0.1, the flow22

is first three-dimensional and steady without vortex shedding, and then develops into an23

unsteady flow with a dominating upper shear layer in the near-wake and a chaotic wake24

structure farther downstream.25

a)Corresponding author: jianxun.zhu@ntnu.no
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I. INTRODUCTION26

Steady incoming flow past an isolated circular cylinder has been studied extensively due to27

its fundamental and practical significance1. The flow exhibits a transition from two-dimensional28

periodic flow to three-dimensional flow via a mode A instability at the Reynolds number around29

1902,3, where the Reynolds number (Re) is based on the free-stream velocity (U) and the cylin-30

der diameter (D). The mode A is characterized by streamwise vorticity pairs with a spanwise31

length ranging from 3D to 4D. The origin of the mode A instability can be attributed to an elliptic32

instability of the vortex cores in the near wake4,5, resembling the elliptic instability of a counter-33

rotating vortex pair6. For Re from 240 to 250, the mode A exhibits a gradual transition to another34

three-dimensional instability mode, i.e., mode B, which is characterized by streamwise vorticity35

pairs with a smaller spanwise wavelength ranging from 0.8D to 1D. When Re > 260, the mode B36

structure becomes increasingly disordered7,8. Williamson3 suggested that the mode B instability37

is associated with an instability in the braid shear layer within the near-wake region. Blackburn38

and Lopez9 reported the existence of quasi-periodic modes (using Floquet analysis) with spanwise39

wavelengths between those of modes A and B. These quasi-periodic modes can be combined to40

produce either standing or traveling wave modes within the cylinder wake. Blackburn, Marques,41

and Lopez10 found standing and traveling wave modes with a spanwise wavelength of approxi-42

mately 2.4D for flow past a circular cylinder for Re > 377.43

The problem of steady incoming flow past an isolated elliptic cylinder has attracted much less44

attention than that for the circular cylinder although relevant to engineering applications like heat45

exchangers11 and bridge piers12. This flow depends on both the aspect ratio (AR) of the elliptic46

cylinder (defined by the ratio of the semi-minor to semi-major axis length) and the incident angle47

(defined by the angle between the inlet flow direction and the semi-minor axis) in addition to the48

Reynolds number based on the free-stream velocity and the semi-major axis length. Experimental49

results obtained by Radi et al.13 for flow around an elliptic cylinder at zero incident angle, show50

that three-dimensional instability modes equivalent to mode A and mode B (although with slightly51

different wavelengths) are present sequentially as Re increases for AR ∈ [0.26,0.72]. Here the52

critical Re for the onset of mode A decreases as AR decreases. Interestingly, for AR = 0.39 and53

0.26, the flow exhibits a transition from a three-dimensional wake to a two-dimensional wake for54

Re∈ [200,250] and for Re∈ [150,190], respectively. Radi et al.13 and Thompson et al.14 suggested55

that the upstream movement of the two-layered wake caused by increasing Re suppresses the56

mode A instability. Moreover, Thompson et al.14 (using Floquet analysis) found that the mode A57

instability does not occur for AR = 0.1 and 0 (flat plate) where the near-wake mode structure is58

modified by the two-layered wake.59

Steady incoming flow past a circular cylinder near a moving bottom wall has been investigated60

by, e.g., Stewart et al.15 and Rao et al.16, who found that at G/D = 0.005 (where G denotes61

the gap between cylinder bottom and the moving bottom wall) and Re = 90, this flow exhibits62

a three-dimensional steady flow regime prior to the onset of unsteady flow, which is not present63

for the isolated cylinder. Rao et al.17 found that the critical Re for the onset of the unsteady64

flow regime increases as G/D increases up to 0.25, while for G/D ≥ 0.3, three-dimensional wake65

transition (i.e., mode A instability) occurs after the two-dimensional unsteady flow is formed.66

Here the critical Re for the onset of mode A was found to first decrease and then increase as G/D67
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increases. Qualitatively similar behaviors are observed by Jiang et al.18,19. They also reported68

that at G/D = 0.2, the three-dimensional steady and unsteady flow is triggered by a subharmonic69

mode, i.e., mode C, which is characterized by the streamwise vorticity pairs changing sign after70

each vortex shedding period. The formation of this mode is due to the moving wall breaking71

the wake symmetry (i.e., the wake pattern being reflected about the horizontal center-line of the72

cylinder after half of the vortex shedding period).73

In a previous work of Zhu et al.20, the two-dimensional wake pattern behind an elliptic cylinder74

near a moving wall has been investigated for G/D ∈ [0.1,5] and Re ≤ 150. At small gap ratios, a75

significant near-wall effect was found on the wake structures (including the Kármán vortex street76

and the two-layered wake). However, the near-wall effect on the three-dimensional wake transi-77

tion behind an elliptic cylinder near a moving wall has not been investigated before. In the present78

work, a detailed three-dimensional numerical investigations for this flow has been conducted with79

AR = 0.5 for G/D ∈ [0.1,0.4] and Re ∈ [100,200]. Overall, the results show that the flow exhibits80

different wake transition scenarios with increasing Re for each G/D. The transition between two-81

and three-dimensional flow regimes via the onset of three-dimensional instability modes such as,82

e.g., mode A, mode C and traveling wave mode, is described in detail. This flow configuration83

is important for understanding the basic mechanisms for biological flows21,22 as well as for engi-84

neering applications such as an AUV (Autonomous Underwater Vehicle) moving near seabed. The85

latter is of great importance for mapping the ocean bathymetry as well as for monitoring subsea86

structures and collecting both physical data (e.g., wave-induced velocities, current velocities and87

sediment concentration) and biological data (e.g., fish larvae, plankton and contamination).88

II. GOVERNING EQUATIONS89

The current paper addresses on the three-dimensional wake transition behind an elliptic cylinder90

near a moving wall. The incompressible flow with a constant density ρ is governed by the three-91

dimensional Navier-Stokes equations given as92

∂ui

∂xi

= 0 (1)

93

∂ui

∂ t
+

∂uiu j

∂x j

=−
1

ρ

∂ p

∂xi

+ν
∂ 2ui

∂x j∂x j

(2)

where the Einstein notation using repeated indices is applied. Here ui = (u, v, w) and xi = (x,94

y, z) for i = 1, 2 and 3, indicate the velocity and Cartesian coordinates, respectively, whilst ν ,95

t and p denote the kinematic viscosity of the fluid, time and pressure, respectively. Numerical96

simulations have been carried out using OpenFOAM (www.openfoam.org). A second-order finite97

volume method (FVM) is applied in conjunction with the PISO algorithm23 for solving equations98

(1) and (2), similar to the numerical approach used in Jiang et al.8.99

A. Computational domain and mesh100

Figure 1 shows a sketch of the computational domain and the mesh around the elliptic cylinder.101

The same computational domain was used by Jiang et al.18 for flow around a circular cylinder102
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near a moving wall. The aspect ratio (AR) of the elliptic cylinder is defined by the minor (a) to103

major (D) axis length ratio, i.e., AR = a/D. In the present work, the aspect ratio is set to be 0.5.104

The gap ratio is given by G/D, where G is the gap between the moving wall and the cylinder. The105

Reynolds number is based on the major axis length of the cylinder, i.e., Re = UD/ν . The inlet106

and outlet boundaries are located at upstream 20D and downstream 30D of the cylinder center,107

respectively. The top and bottom boundaries are located at 20D and (G+ 0.5D) away from the108

cylinder center, respectively. Different spanwise lengths of the computational domain are applied109

for different G/D, which will be further discussed below.110

X

Y

Z

FIG. 1. Sketch of the computational domain and the mesh around the elliptic cylinder.

∗ ∗
∗ ∗ ∗λ

∗

FIG. 2. Variation of the spanwise wavelength (λz) of the three-dimensional mode against the spanwise

length (Lz) of the computational domain.

As for the boundary conditions, a constant velocity U is set at the inlet while a Neumann111

condition for the velocity is imposed at the top and outlet boundaries. A no-slip condition is112

applied at the cylinder surface and the bottom wall, which moves toward the right with a constant113

velocity U . The pressure is set to be zero at the outlet, and a Neumann condition is imposed at the114

other boundaries. Periodic boundary conditions are employed in the spanwise (z−) direction.115

The radial size ∆r and vertical size ∆y of the first layer of mesh next to the cylinder and the116

bottom wall, respectively, are set to be the same. A C-type structured mesh24 is applied around117
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the cylinder. The grid expansion ratio in the whole domain is kept below 1.1, whilst the mesh size118

(∆z) along the spanwise (z−) direction is kept to a constant value. A constant mesh size (∆x) along119

the x-direction is applied for x ≥ 10D.120

Figure 2 shows simulations for flow around an elliptic cylinder near a moving wall for G/D ∈121

[0.1,0.4], with different spanwise lengths Lz of the computational domain. It is shown that for122

Lz ≥ 12D (for G/D = 0.4), Lz ≥ 30D (for G/D = 0.3), and Lz ≥ 36D(for G/D = 0.2 and 0.1) the123

spanwise wavelength λz converges to the values 4D, 5D, 12D and 9D, respectively. Thus, in the124

present work, Lz = 12D and 30D is applied for G/D = 0.4 and 0.3, respectively, and Lz = 36D is125

applied both for G/D = 0.2 and 0.1.126

B. Grid independence study127

To test grid independence, numerical simulations for flow around an elliptic cylinder of AR =128

0.5 near a moving wall have been conducted using three different grid resolutions with Lz = 12D129

as given in table I for G/D = 0.2 and Re = 200, which represents the most unstable flow regime130

investigated in the present work. Table I shows the Strouhal number (St = D f/ν , where f is the131

vortex shedding frequency), time-averaged drag (C̄D) and lift (C̄L) coefficients obtained by three132

different grid resolutions. The drag and lift coefficients are defined by CD = 2FD/(ρU2LzD) and133

CL = 2FL/(ρU2LzD), respectively, where FD and FL are the drag and lift force on the cylinder,134

respectively. Here the value of St is almost the same (1000 time units for CL are included for fast135

Fourier transform) while C̄D and C̄L obtained in case 1 deviate less than 1% from those obtained136

in case 2 and case 3.137

Case G/D Re ∆y/∆r ∆z St C̄D C̄L N (million)

Case 1 0.2 200 0.004 0.2 0.134(±0.001) 1.4966 0.246 3.91

Case 2 0.2 200 0.002 0.2 0.134(±0.001) 1.4832 0.2452 4.11

Case 3 0.2 200 0.004 0.1 0.134(±0.001) 1.4796 0.2443 7.82

TABLE I. Values of the Strouhal number (St), time-averaged drag (C̄D) and lift (C̄L) coefficients for flow

around an elliptic cylinder near a moving wall obtained by three different grid resolutions; N denotes the

total cell number.

Figure 3 shows almost identical streamwise and spanwise velocity profiles between the cylin-138

der bottom and the bottom wall obtained by three different grid resolutions. Based on the small139

differences seen in table I and figure 3, we chose to apply the same grid resolution as Case 1 for140

all numerical simulations in the present work.141

C. Validation of the numerical model142

A numerical simulation with Lz = 12D for flow around a circular cylinder near a moving wall143

has been conducted for G/D = 0.4 and Re = 200 using the grid resolution for case 1 to validate the144

present numerical model. Table II shows the present results and the numerical results previously145
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FIG. 3. The streamwise and spanwise velocity profiles between the cylinder bottom and the bottom wall

obtained by three different grid resolutions.

reported in Jiang et al.19 for St, C̄D and the root-mean-square of the lift coefficient (C′
L). Table II146

shows that St remains almost the same while the deviations of C̄D and C′
L from the results obtained147

by Jiang et al.19 are equal to -0.05% and 1.22%, respectively.148

Case G/D Re St C̄D C′
L

Jiang et al.19 0.4 200 0.19(±0.001) 1.4742 0.4236

present work 0.4 200 0.19(±0.001) 1.4749 0.4288

Relative difference - - 0 -0.05% 1.22%

TABLE II. Values of the Strouhal number (St), time-averaged drag coefficient (C̄D) and root-mean-square

of the lift coefficient (C′
L) for flow around a circular cylinder near a moving wall for Re = 200 with G/D =

0.4 using the grid resolution for case 1.

Figure 4 shows the evolution of the wake vortices identified by isosurfaces of λ2 (left column)149

and isosurfaces of the streamwise vorticity ω∗
x (= ωxD/U) (right column) for flow around an iso-150

lated elliptic cylinder with AR = 0.5 for Re = 115. Here Lz = 12D and λ2 refers to the method151

proposed by Jeong and Hussain25. The red color of the isosurfaces of λ2 corresponds to the span-152

wise vorticity ω∗
z = 0.1(= ωzD/U) whilst the blue color corresponds to ω∗

z = −0.1 due to the153

vortices shed from the cylinder bottom and top, respectively. At t∗ = 300(=tU/D) (figure 4a), the154

wake exhibits a weakly three-dimensional transition as visualized by the isosurfaces of ω∗
x (figure155

4c) where the black and yellow colors denote the negative and positive values of ω∗
x , respectively.156

Three streamwise vorticity pairs are formed in the spanwise direction, showing the onset of mode157

A with a spanwise wavelength λz of 4D. This wavelength agrees well with the experimental results158

by Radi et al.13, who found λz in the range of 4D to 6D for AR ∈ [0.39, 0.64]. As the flow develops159

(t∗ = 1000), a vortex dislocation occurs (figure 4b and 4d), which is qualitatively similar to that160

observed for flow around an isolated circular cylinder3,26.161

A three-dimensional numerical simulation is conducted for flow around an isolated elliptic162

cylinder with Re = 110 (not presented here), showing that the wake here remains two-dimensional;163

the wake becomes three-dimensional at Re = 115 (figure 4). Hence the critical Reynolds number164

(ReA) for the onset of the mode A instability lies between 110 and 115, which is in good agreement165
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with ReA = 112.2 obtained by Thompson et al.14 for AR = 0.5 using Floquet analysis.166

FIG. 4. Instantaneous isosurfaces of λ2 = -0.05 (left column, colored by ω∗
z = ±0.1) and ω∗

x = ±0.005 for

flow around an isolated elliptic cylinder of AR = 0.5 for Re = 115 at t∗ = 300 (a-b) and t∗ = 1000 (c-d).
167

168

III. RESULTS AND DISCUSSION169

A. Wake transition for configuration with G/D = 0.4170

1. Two-dimensional wake pattern B171

Figure 5 shows a cross-section (in the xy-plane) of the ω∗
z contours for Re = 125. Here the172

wake remains two-dimensional, and the Kármán vortex street exists in the near-wake region; the173

two-layered wake is developed downstream. The vortices shed from the cylinder bottom disappear174

earlier than those shed from the cylinder top due to wall suppression effect. This flow is denoted175

as the two-dimensional wake pattern B, as previously classified by Zhu et al.20.176177178

2. Modified ordered mode A flow regime179

Figure 6 (Multimedia view) shows the isosurfaces of λ2 (figures 6a and 6c) and the correspond-180

ing isosurfaces of ω∗
x (figures 6b and 6d). The near-wake flow remains nearly two-dimensional181
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FIG. 5. Contours of ω∗
z at cross-section (x, y, 6D) for flow around an elliptic cylinder near a moving wall

for Re = 125 with G/D = 0.4.

(i.e., no mode A instability) while a span-wise wavy deformation of the vortices shed from the up-182

per part of the cylinder occurs farther downstream at t∗ = 200 (figure 6a). Here three streamwise183

vorticity pairs are observed in the spanwise direction (figure 6b), showing a three-dimensional184

structure with a wavelength of λz = 4D. It appears that the development of the two-layered wake185

(visualized by the red and blue λ2-isosurfaces in figure 6a) leads to the upper vortices moving in186

a separated layer, with an elliptic instability caused by co-rotating upper vortex pairs27,28. This187

leads to an exponential growth of the spanwise wavy vortex amplitude (H) with time as shown in188

figure 7. Here the spanwise wavy vortex amplitude is defined by half of the horizontal distance189

between the trough and crest of the wavy deformation.190

As the wake develops with time (see figure 6c and 6d for t∗ = 500), the onset location of the191

wavy deformation of the upper vortices moves upstream towards the cylinder whilst the mode A192

instability is now present in the near-wake region. This near-wake mode A instability, which is also193

observed for the isolated elliptic cylinder (figure 4b), can be attributed to the elliptic instability of194

the counter-rotating vortices shed from the cylinder top and bottom4,5, respectively. It is worth to195

note that the vortex dislocation observed for the isolated elliptic cylinder (figure 4b) is not present196

here since this dislocation is now suppressed by the moving wall. This behavior is qualitatively197

similar to the observation by Jiang et al.18 for flow around a circular cylinder near a moving wall198

for Re≤ 325 with G/D< 1. The flow here is denoted as the modified ordered mode A flow regime,199

which is different from the ordered mode A flow regime identified by Jiang et al.18 for flow around200

a circular cylinder near a moving wall where the elliptic instability caused by the co-rotating vortex201

pairs does not occur in the far-wake region.202

Figures 6(e) and 6( f ) show ω∗
x -contours in the xz-plane at y = −0.5D, corresponding to the203

ω∗
x -isosurfaces in figure 6(b) and 6(d), respectively. At t∗ = 200, the strong vorticity pairs lined204

in the spanwise direction are observed in the far-wake region while these vorticity pairs become205

stronger in the near-wake region as the wake develops (t∗ = 500). This behavior coincides with206

the observations from the isosurfaces of λ2 and ω∗
x shown in figure 6(a)-6(d).207
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FIG. 6. Isosurfaces (Multimedia view) of λ2 = -0.05 (colored by ω∗
z ; a and c) and ω∗

x =±0.02 (b and d) as

well as contours of ω∗
x (e and f ) at cross-section (x,−0.5D,z) for flow around an elliptic cylinder of AR =

0.5 for Re = 170 with G/D = 0.4.

3. Near-wake two-dimensional flow regime208

As Re increases to 180 (figure 8a-8b; Multimedia view), the far-wake elliptic instability caused209

by the upper co-rotating vortex pairs persists while the near-wake flow becomes two-dimensional.210

This flow is denoted the ’near-wake two-dimensional’ flow regime. It is worth to mention that Radi211

et al.13 reported similar observations for flow around an isolated elliptic cylinder with AR = 0.26212

for Re ∈ [150,190] and with AR = 0.39 for Re ∈ [200,250]. It was suggested by Radi et al.13 and213

Thompson et al.14 that this might be due to the two-layered wake moving upstream as Re increases214
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FIG. 7. Time history of the amplitude for one vortex centerline oscillation for flow around an elliptic

cylinder near a moving wall for Re = 170 with G/D = 0.4.

(for a given AR) or as AR decreases (for a given Re), thus suppressing the mode A instability in215

the near-wake region. In the present work, the near-wall effect leads to the two-layered wake216

moving upstream, thus suppressing the near-wake instability. This upstream movement of the217

two-layered wake caused by the near-wall effect was previously demonstrated by Zhu et al.20 for218

two-dimensional flow past an elliptic cylinder near a moving wall.219

As a comparison, a simulation of flow around a circular cylinder near a moving wall is con-220

ducted for Re = 180 and G/D = 0.4. The resulting isosurfaces of λ2 and ω∗
x are shown in figures221

8(c)-8(d), respectively. Here the two-layered wake is absent and the flow exhibits the mode A222

instability in the near-wake region. This gives further support to the hypothesis of the near-wake223

being suppressed by the two-layered wake moving upstream towards the cylinder due to the effect224

of the bottom wall.225226

B. Wake transition for configuration with G/D = 0.3227

Numerical simulations show that the critical Re for the onset of the three-dimensional wake228

instability lies between 145 and 150, which is larger than the corresponding critical Re (125-135)229

for G/D = 0.4. This trend was also observed by Jiang et al.18 for flow around a circular cylinder230

near a moving wall as G/D was decreased from 0.4 to 0.3.231

1. Two-dimensional wake pattern C232

Figure 9 shows a cross-section (in the xy-plane) of the ω∗
z contours for Re = 145. The flow233

here is two-dimensional, exhibiting the wake pattern C, which is characterized by pair-wise vortex234

shedding without the development of the two-layered wake20.235236
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FIG. 8. Isosurfaces (Multimedia view) of λ2 = -0.05 (left column, colored by ω∗
z ) and ω∗

x = ±0.02 (right

column) for flow around an elliptic cylinder of AR = 0.5 (a-b) and circular (c-d) cylinder for Re = 180 with

G/D = 0.4.

2. Traveling wave mode flow regime237

As Re increases to 150, a quasiperiodic three-dimensional mode, i.e., the traveling wave238

mode9,10, occurs. This mode is characterized by a spanwise propagation of the wavy defor-239

mation of the vortices (as visualized by λ2-isosurfaces in figure 10a and 10c), coinciding with240

the streamwise vorticity pairs with oblique alternating streamwise vorticies (as visualized by ω∗
x -241

isosurfaces in figure 10b, 10d, 10e and 10 f ) for Re = 150 and G/D = 0.3. Here T denotes the242

vortex shedding period. At t∗ = t0 (=2403) the six crests of the wavy deformation (figure 10a),243

corresponding to the six streamwise vorticity pairs (figure 10b), show each streamwise vortex pair244

(marked as TW mode) exhibits a length of λz = 5D. These streamwise vortex pairs propagate245

in the positive z-direction (see figure 10d-10e; from t∗ = t0 + T to t∗ = t0 + 2T ). After eight246

vortex shedding periods (figure 10 f ), the pattern starts to repeat itself. This process can be further247

illustrated by ωx sampled along the z-direction at the location x = 0.4D and y = 0.6D (figure 11a),248

showing that the streamwise vorticity pairs move in the positive z-direction with a nearly constant249

distance for each vortex shedding period. After eight vortex shedding periods, the streamwise250

vorticity pairs are identical to those at t∗=t0 in terms of both position and amplitude.251

As Re increases to 155 (figure 11b), the streamwise vorticity pairs propagate in the positive252

z-direction with different distances per cycle, but still nearly repeat themselves after eight vortex253
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FIG. 9. Contours of ω∗
z at cross-section (x, y, 15D) for flow around an elliptic cylinder near a moving wall

for Re = 145 with G/D = 0.3.

shedding cycles with a slightly smaller amplitude. It should be noted that the crests (indicating254

the positive values of ω∗
x ) are wider while the troughs (indicating the negative values of ω∗

x ) are255

sharper. It appears that the wake becomes more unsteady such that the streamwise vortex pair256

become imbalanced in strength. The flow here which is 8T -periodic is denoted as the ’traveling257

wave (TW ) mode’ flow regime.258

3. Squiggly wave traveling mode flow regime259

Figure 11(c) shows ω∗
x sampled along a line in the spanwise direction for x = 0.4D and y =260

0.6D for Re = 160. Here the streamwise vorticity pairs propagate in the positive z-direction but261

with different propagation distances for each vortex shedding period (see, e.g., the propagation262

distances from t∗ = t0 (=3401) to t0+T and from t∗ = t0+T to t0+2T ). Here ω∗
x exhibits a more263

’nonlinear’ behavior (relative to the more sinusoidal behavior observed in figure 11a and 11b) and264

does not repeat itself after 8T . The flow here is slightly more irregular than the ’traveling wave265

mode’ flow regime, thus denoted as the squiggly wave traveling mode’ flow regime.266

Overall, as Re increases from 100 to 200, the flow exhibits a transition scenario of ’two-267

dimensional wake pattern C’ → ’traveling wave (TW ) mode flow regime’ → ’squiggly traveling268

wave (TW ) mode flow regime’.269

C. Wake transition for configuration with G/D = 0.2270

Numerical simulations conducted by the authors (not presented here) show that for Re ≤ 120,271

the flow is two-dimensional without vortex shedding. As Re increases to 121, a transition to the272

two-dimensional wake pattern C occurs while the three-dimensional instability occurs at Re= 122.273

274275
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FIG. 10. Isosurfaces (Multimedia view) of λ2 = -0.05 (a and c, colored by ω∗
z ) and ω∗

x =±0.02 (b, d, e and

f ) for flow around an elliptic cylinder near a moving wall for Re = 150 at G/D = 0.3. T denotes the vortex

shedding period.

1. Modified mode C flow regime276

The presence of the moving wall close to the elliptic cylinder leads to the wake symmetry being277

broken, resulting in the mode C instability29,30, as described in detail in the introduction. Jiang278

et al.18 found that the mode C structure is strongly affected by the shear layer developed on the279

moving wall. In order to investigate the pure mode C structure, a numerical simulation with a slip280

condition imposed on the bottom wall (implying no shear layer developed on the bottom wall) has281

been conducted for Re = 125 and G/D = 0.2. As visualized by isosurfaces of ω∗
x shown in figure282
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ω ω

ω
FIG. 11. Values of ω∗

x sampled at (0.4D, 0.6D, z) for flow around an elliptic cylinder near the moving wall

for Re = (a) 150, (b) 155 and (c) 160 at G/D = 0.3.

12, the features of the mode C structure is present; the streamwise vorticity with λz = 2.6D (figure283

12a; t0 = 1000) changes sign after one vortex shedding period (figure 12b) and repeat itself after284

two shedding periods (figure 12c). This is consistent with the results obtained by Jiang et al.18
285

for flow around a circular cylinder near a slip wall at G/D = 0.2 for Re = 140. Mode C also286

triggers the three-dimensional instability for flow around an elliptic cylinder near a moving wall287

as visualized by the isosurfaces of λ2 and ω∗
x in figure 13 for Re = 125 and G/D = 0.2 at t∗ = 100.288

The spanwise wavelength of the mode C is approximately equal to 1.5D, which is smaller than289

that (λz = 2.6D) obtained for the slip wall condition as shown in figure 12.290

Figure 14 (Multimedia view) shows the isosurfaces of λ2 from t∗ = t0 (= 2650) to t0 + 5T .291

Here the wavy deformation of the vortices (t∗ = t0) shows the mode C structures evolving into292

streamwise vortices with a wavelength of λz = 12D. This behavior can be further visualized by293

the corresponding ω∗
x sampled along a line in the spanwise direction for x = 2D and y = 0.55D294

shown in figure 15. The wavy deformation of the vortices persists for the next vortex shedding295

period ( in figure 14b) but with a small decrease around the peak value of ω∗
x (figure 15 for t∗296
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FIG. 12. Isosurfaces of ω∗
x = ±0.01 for flow around an elliptic cylinder near a slip wall for Re = 125 with

G/D = 0.2 at t∗ = (a) t0,(b) t0 +T and (c) t0 +2T .

FIG. 13. Isosurfaces of (a) λ2 = -0.05 (colored by ω∗
z ) and (b) ω∗

x = ±0.01 for flow around an elliptic

cylinder of AR = 0.5 for Re = 125 at G/D = 0.2.

= t0+T ). In the next vortex shedding period (figure 15c), the wavy deformation of the shedding297

vortex nearly disappears, indicating a decay of the three-dimensional instability within this period,298

coinciding with the small value of ω∗
x observed in figure 15 at the same time instant (t∗ =t0+2T ).299

Interestingly, the three-dimensional instability re-occurs for the next vortex shedding period (figure300

14d) but the value of ω∗
x is now opposite of that for t∗ = t0 and t0 +T as shown in figure 15. The301
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FIG. 14. Isosurfaces (Multimedia view) of λ2 = -0.05 (colored by ω∗
z ) for flow around an elliptic cylinder

of AR = 0.5 for Re = 125 with G/D = 0.2 at t∗ = (a) t0,(b) t0 +T,(c) t0 + 2T,(d) t0 + 3T,(e) t0 + 4T and

( f ) t0 +5T . T denotes the vortex shedding period.

behavior observed for [t0, t0 + 2T ] is repeated for [t0 + 3T , t0 + 5T ] as shown in figures 14 and302

15. After one further vortex shedding period (t∗ = t0+6T ), the streamwise voriticity pairs repeat303

themselves, i.e., the ω∗
x profiles at t∗ = t0 and t∗ = t0+6T coincide as shown in figure 15. This304

flow is denoted as the modified mode C flow regime. It appears that the interruption of mode C305

here is due to the bottom-wall shear layer since a pure mode C structure persists when a slip wall306

condition is applied (figure 12).307308309
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ω

FIG. 15. Values of ω∗
x sampled at (2.0D, 0.55D, z) for flow around an elliptic cylinder near the moving wall

for Re = 125 with G/D = 0.2.

FIG. 16. Isosurfaces of (a) λ2 = -0.05 (colored by ω∗
z ) and (b) ω∗

x = ±0.01 for flow around an elliptic

cylinder for Re = 150 with G/D = 0.2.

2. Chaotic flow regime310

Figure 16 shows isosurfaces of λ2 and ω∗
x for Re = 150. Here the wake becomes chaotic with311

an irregular wavy deformation of the shedding vortex (figure 16a), corresponding to streamwise312

vorticities with a range of different spanwise wavelengths λz (figure 16b). This flow is denoted as313

the chaotic flow regime.314

D. Wake transition for configuration with G/D = 0.1315

1. Three-dimensional steady flow regime316

Figure 17 shows time-history of the spanwise velocity sampled at (x,y,z) = (0.5D,0.5D,18D)317

(i.e., in the wake) and isosurfaces of ω∗
x for Re = 100 and G/D = 0.1. The spanwise velocity318

17

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
0
4
8
2
1
9



(figure 17a) becomes constant after t∗ = 2500, indicating the evolution of the flow towards the319

three-dimensional steady flow regime. Four streamwise vorticity pairs (figure 17b) are present320

along the cylinder in the spanwise direction, corresponding to a spanwise wavelength of λz = 9D,321

which is larger than that λz = 6D observed in the three-dimensional steady flow regime for a322

circular cylinder near a moving wall13,18 for G/D ≤ 0.22. It should be noted that this flow regime323

does not occur for flow around an elliptic cylinder at G/D = 0.2 because the critical G/D for the324

onset of the unsteady flow is larger for an elliptic cylinder than for a circular cylinder20.325

FIG. 17. (a) the time history of the spanwise velocity w sampled at (0.5D, 0.5D, 18D) and (b) isosurfaces

of ω∗
x =±0.17 for flow around an elliptic cylinder near a moving wall for Re = 100 with G/D = 0.1.

326

327

FIG. 18. Isosurfaces (Multimedia view) of (a) λ2 = -0.05 (colored by ω∗
z ) and (b) ω∗

x = ±0.01 for flow

around an elliptic cylinder near a moving wall for Re = 200 with G/D = 0.1.
328

329

2. Three-dimensional wake pattern D330

Figure 18 (Multimedia view) shows the isosurfaces of λ2 and ω∗
x for Re = 200. Here the flow331

exhibits a dominating upper shear layer behind the cylinder (shown by the blue contours in figure332

18a) and a chaotic streamwise vorticity pattern farther downstream (figure 18b). Figure 19 shows333

that CD and CL are nearly constant in time. This behavior is qualitatively similar to that observed334
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for wake pattern D identified by Zhu et al.20 for two-dimensional flow. Thus, this flow, depicted335

in figure 18, is denoted as the three-dimensional wake pattern D.336

FIG. 19. Time history of drag and lift coefficients for flow around an elliptic cylinder near a moving wall

for Re = 200 with G/D = 0.1.
337

338

IV. SUMMARY AND CONCLUSIONS339

In this paper, numerical simulations have been conducted for flow around an elliptic cylinder340

with an aspect ratio AR of 0.5 near a moving wall for G/D ∈ [0.1,0.4] and Re ∈ [100,200]. Here341

four configurations with G/D = 0.1,0.2,0.3 and 0.4 are investigated. Different wake transition342

scenarios have been observed for each configuration. Table III summarizes how the wake patterns343

change with Re for each G/D configuration.344

G/D =0.4 G/D =0.3

Wake pattern B (Re ≤ 125) Wake pattern C (Re ≤ 145)

Modified mode A (Re ∈ [135,170]) TW mode (Re ∈ [150,155])

Near-wake two-dimensional (Re ≥ 180) Squiggly TW mode (Re ≥ 160)

G/D =0.2 G/D =0.1

Two-dimensional steady (Re ≤ 120) Three-dimensional steady (Re = 100)

Wake pattern C (Re = 121) Wake pattern D′ (Re ≥ 125)

Modified mode C (Re ∈ [122,130]) -

Chaotic (Re ≥ 140) -

TABLE III. Different flow regimes for flow around a circular cylinder near a moving wall for Re ∈

[100,200] and G/D ∈ [0.1,0.4]. TW mode denotes the traveling wave mode10. Wake patterns B, C and

D′ denote two-dimensional wake pattern B and C identified by Zhu et al.20, and three-dimensional wake

pattern, qualitatively similar to two-dimensional wake pattern D20, respectively.

The wake transition scenario for G/D = 0.4 can be summarized as follows: For Re ≤ 120,345
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the flow is two-dimensional, exhibiting wake pattern B, which is characterized by a Kármán vor-346

tex street in the near-wake region and a two-layered wake developed farther downstream. For347

Re∈ [135,170], the flow becomes three-dimensional, exhibiting the modified ordered mode A flow348

regime where an elliptic instability (mode A instability) of counter-rotating vortex pairs (i.e., vor-349

tices shed from the cylinder top and bottom, respectively) occurs in the near-wake region whilst350

an elliptic instability of co-rotating upper vortex pairs is present farther downstream due to the351

development of the two-layered wake with the upper vortices moving in a separated layer. For352

Re ∈ [180,200], the flow becomes two-dimensional in the near-wake region while the elliptic in-353

stability caused by the co-rotating upper vortices persists in the far-wake region. The reason for354

the two-dimensional near-wake flow appears to be that the two-layered wake moves upstream to-355

wards the cylinder as Re increases, suppressing the near-wake mode A instability which is present356

for Re ∈ [135,170].357

For G/D = 0.3, the following wake transitions take place: For Re ≤ 145, the flow is two-358

dimensional, exhibiting wake pattern C, which is characterized by pair-wise vortex shedding with-359

out the development of the two-layered wake. For Re ∈ [150,155], a three-dimensional instability360

occurs, forming the traveling wave mode flow regime characterized by a spanwise propagation of361

the streamwise vorticity pairs with oblique alternating streamwise vorticies. This flow repeat itself362

after 8 vortex shedding periods. For Re ∈ [160,200], the flow becomes more irregular, exhibiting363

the squiggly traveling wave mode flow regime where the spanwise progation of the streamwise364

vorticity pairs persists but with different propagation distances for each vortex shedding period.365

For G/D = 0.2, the following wake transitions are found: For Re ≤ 120, the flow is two-366

dimensional and steady without vortex shedding. For Re = 121, the flow exhibits the two-367

dimensional wake pattern C, as described in the paragraph above. For Re ∈ [122,130], the flow368

becomes three-dimensional, exhibiting the modified mode C flow regime where the wavy defor-369

mation of the shedding vortices is kept for two vortex shedding periods, and then disappears in the370

next shedding period. This behavior is repeated for the next three vortex shedding periods but with371

an opposite wavy deformation direction; the flow repeats itself after six vortex shedding periods.372

For Re ≥ 140, the wake becomes chaotic with an irregular wavy deformation of the shedding373

vortices.374

For G/D = 0.1, one wake transition takes place as follows: For Re = 100, the flow is three-375

dimensional and steady without vortex shedding, containing a constant spanwise velocity within376

the wake; for Re ∈ [125,200], the flow becomes unsteady, exhibiting the three-dimensional wake377

pattern D, which is characterized by a dominating upper shear layer behind the cylinder, followed378

by a chaotic wake structure farther downstream. Here the drag (CD) and lift (CL) coefficients are379

nearly time-independent.380
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