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Abstract: The development of oil exploration activities and an increase in shipping in Arctic areas
have increased the risk of oil spills in this cold marine environment. The objective of this experimen-
tal study was to assess the effect of biostimulation on microbial community abundance, structure,
dynamics, and metabolic potential for oil hydrocarbon degradation in oil-contaminated Arctic sea-
water. The combination of amplicon-based and shotgun sequencing, together with the integration
of genome-resolved metagenomics and omics data, was applied to assess microbial community
structure and metabolic properties in naphthenic crude oil-amended microcosms. The comparison
of estimates for oil-degrading microbial taxa obtained with different sequencing and taxonomic
assignment methods showed substantial discrepancies between applied methods. Consequently,
the data acquired with different methods was integrated for the analysis of microbial community
structure, and amended with quantitative PCR, producing a more objective description of microbial
community dynamics and evaluation of the effect of biostimulation on particular microbial taxa.
Implementing biostimulation of the seawater microbial community with the addition of nutrients
resulted in substantially elevated prokaryotic community abundance (103-fold), a distinctly different
bacterial community structure from that in the initial seawater, 1.3-fold elevation in the normalized
abundance of hydrocarbon degradation genes, and 12% enhancement of crude oil biodegrada-
tion. The bacterial communities in biostimulated microcosms after four months of incubation were
dominated by Gammaproteobacterial genera Pseudomonas, Marinomonas, and Oleispira, which were
succeeded by Cycloclasticus and Paraperlucidibaca after eight months of incubation. The majority of
195 compiled good-quality metagenome-assembled genomes (MAGs) exhibited diverse hydrocarbon
degradation gene profiles. The results reveal that biostimulation with nutrients promotes naphthenic
oil degradation in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve
bioremediation goals within a reasonable timeframe.

Keywords: arctic seawater; crude oil; hydrocarbon degradation potential; biostimulation; taxonomic
classification methodology; oil hydrocarbon-degrading microbial taxa

1. Introduction

Marine ecosystems are exposed to petroleum hydrocarbons through a variety of
natural mechanisms, such as natural seeps, and anthropogenic activities, such as accidental
oil spills during oil production and transport. Climate change has elevated the risk of
crude oil spillage, especially in cold Arctic marine environments, where the severely
reduced sea-ice-covered area has enabled the growth of oil exploration activity as well
as prolonged and more frequent usage of Arctic shipping routes [1]. In Arctic regions,
the complete clean-up of oil spills using traditional methods such as skimmers or beams
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is often challenging due to remote or poorly accessible locations and extreme weather
conditions [2]. Consequently, bioremediation techniques, which rely on the potential
of indigenous seawater microbial communities to degrade oil hydrocarbons, have been
suggested as suitable and labor-effective clean-up methods in remote Arctic locations.
An understanding of seawater microbial community structure and its potential for the
degradation of different oil compounds is essential for determining the framework of
a possible bioremediation approach.

Crude oils are extremely complex mixtures of aliphatic and aromatic hydrocarbons, as-
phaltenes, and resins, which have been part of the marine environment for millions of years
due to natural seepage. Owing to this exposure, marine microbial communities possess
remarkable potential and a diverse range of pathways for degrading these compounds [3].
Overall, more than 350 prokaryotic genera have been shown to degrade hydrocarbons
(Supplementary File S1), including a variety of marine psychrophilic and psychrotolerant
bacterial genera, such as Colwellia, Cycloclasticus, Loktanella, Marinomonas, Pseudomonas, and
Sulfitobacter [4], most of which belong to the phyla Proteobacteria (especially classes Alpha-,
Beta-, and Gammaproteobacteria) and Bacteroidetes.

Among several bioremediation methods, biostimulation with the addition of nutrients
or the use of dispersants to increase the oil degradation rate of indigenous microbes, as
relatively easily implemented and cost-effective clean-up actions, have been suggested to
be combined with other clean-up technologies in seawater [4]. In cold seawater, microbial
growth and consequently its oil degradation rate can be limited by the low availability
of nutrients such as nitrogen and phosphorus [3]. Biostimulation with nutrient addition
helps to compensate for this deficiency and to enhance oil degradation by allowing excess
microbial growth, while the addition of dispersants makes oil more accessible to microbes
by breaking it into small droplets with a higher surface-to-volume ratio [4]. The accelerated
oil degradation rate in warm seawater in response to nutrient addition has been shown in
microcosm and mesocosm studies [5–8]. In Arctic seawater, the effect of biostimulation
and dispersant use on the crude oil biodegradation rate has been addressed in several
studies [9–11]. However, previous research has overlooked the potential of biostimulation
with nutrient addition in oil-contaminated Arctic seawater.

In recent years, the rapid development of microbial analysis tools, especially whole
DNA metagenomics-based approaches enabling simultaneous retrieval of both taxonomic
and functional information, has provided unprecedented amounts of information for use
in bioremediation strategy development [12]. Knowledge of the diversity and structure
of microbial communities in oil-contaminated Arctic seawater has expanded with several
amplicon- or metagenome-based community sequencing studies using different taxonomic
classification methods and reference databases [10,11,13–15]. The determination of micro-
biome structure and diversity is based on the assignment of individual reads to taxa by
comparing them to reference databases [12], but a “gold standard” method has yet to be
established. Hence, for a more realistic assessment of oil biodegradation potential and
the realization of bioremediation approaches, information on the possible occurrence and
nature of technical biases introduced to the diversity and structure estimates of microbial
communities in Arctic seawater by widely used classifiers is needed.

The main objective of this study was to assess the effect of biostimulation on the
dynamics of microbial community abundance, structure, and metabolic potential for oil
hydrocarbon degradation in oil-contaminated Arctic seawater. For this purpose, a com-
bination of amplicon-based and shotgun sequencing with several different taxonomic
assignment methods, together with genome-resolved metagenomics and omics data inte-
gration, was applied in an oil-amended microcosm experiment.

2. Materials and Methods
2.1. Experimental Setup and Sampling

In order to evaluate the petroleum hydrocarbon degradation potential of the microbial
community of Arctic seawater, an eight-month-long microcosm experiment was conducted
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in the lab of the Northern Research Institute in Narvik (Norway). The surface seawater
(100 L total) was collected from three locations (78◦14′31.4′′ N, 14◦44′20.1′′ E; 78◦13′35.6′′ N,
14◦10′18.3′′ E; and 78◦09′21.3′′ N, 14◦03′17.2′′ E, respectively) at Svalbard in April 2016
using a sterilized bucket and stored at 4 ◦C in sterilized 40 L containers during transporta-
tion to the lab. Equal volumes of seawater from different locations were pooled, and the
composite seawater was used to establish the microcosms immediately after arrival in the
lab. Troll B type (North Sea naphthenic) crude oil of 2013 (provided by Statoil, Mongstad,
Norway), previously pasteurized by heating at 70 ◦C for 30 min for three consecutive days,
was used in this experiment.

Twelve 1-L bottles (DWK Life Sciences, Mainz, Germany) covered with a cotton
stopper and filled with 900 mL of pooled seawater were used for the microbial community
analysis. For oil degradation treatments (SWO), four bottles were supplemented with 9 g of
crude oil. To evaluate the effect of biostimulation on oil degradation (SWOB), four bottles
were supplemented with 9 g of oil and 4.5 g of Full fertilizer® 22-3-10 (Yara, Glomfjord,
Norway) (final concentration of NO3

− 500 mg/L and NH4
+ 580 mg/L; P 130 mg/L; K

430 mg/L). Four seawater bottles without any additives (SW) served as controls. The
microcosms were incubated at 4 ◦C in the dark without agitation. After four months of
incubation, two bottles of each treatment were collected for microbiological analysis. Water
from the two remaining bottles for both treatments was collected after eight months of
incubation. In the text, samples taken at different sampling times are differentiated by the
respective numbers in the abbreviations of the treatments.

In parallel, twelve 200 mL microcosms (four replicates of sterilized seawater with 2 g
of oil (SWOS), four replicates of seawater with 2 g of crude oil (SWO), and four replicates
of biostimulated (1 g of NPK fertilizer) seawater with 2 g of crude oil (SWOB)) were
incubated under similar conditions and were used to assess the amount of remaining oil
in the seawater. Two replicates (entire microcosms) of each treatment were sampled after
four months, and the two remaining parallel replicates were sampled after eight months
of incubation.

2.2. Chemical Analyses

Concentrations of nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), and total
phosphorus (Ptot) in the initial pooled seawater and microcosms at the time of sampling
were determined spectrometrically using a nitrate test in seawater, ammonium cell test,
and phosphate cell test, respectively (Merck Millipore, Darmstadt, Germany) following
the manufacturer’s instructions. Total nitrogen (Ntot) and total organic carbon (TOC) con-
centrations were analyzed by Akvaplan Niva, Tromsø, Norway. The pH was determined
using pH/Cond 340i meter (WTW GmbH, Weilheim, Germany), the salinity was measured
with a YSI 30-25FT salinity meter (YSI Inc., Yellow Springs, OH, USA), and dissolved
oxygen content was determined with an FDO®925 optical oxygen sensor (WTW GmbH).
The values of the measured physicochemical parameters are given in Table S1.

For the aliphatic hydrocarbon and total hydrocarbon content (THC) analysis, hy-
drocarbons were extracted from water with dichloromethane (DCM, 1:3 v/v). The DCM
mixture was then concentrated by evaporation. The concentrated extract was purified by
solid-phase extraction through a silica column and further evaporated before gas chro-
matography analysis. The aliphatic hydrocarbons and THC of the samples were determined
by GC-FID analysis using an Agilent 7890A model gas chromatograph equipped with
a flame ionization detector (Agilent Technologies, Inc., Santa Clara, CA, USA) and Agilent
CP-Sil 8 CB Fused Silica capillary columns (25 m × 0.32 mm ID, 0.25 µm film thickness)
(Agilent Technologies, Inc.). Hydrogen was used as the carrier gas (flow 2.5 mL/min), and
the injection volume was 1 µL in splitless mode. The following temperature program was
used: 55 ◦C for 3 min, ramping 25 ◦C/min to 300 ◦C for 10 min.

The analysis of 16 priority polycyclic aromatic hydrocarbons (PAHs) was performed
on a gas chromatography-mass spectroscopy (GC-MS) system (Agilent 7890A GC, Agilent
Technologies, Inc.) coupled with Agilent 5975C MSD (Agilent Technologies, Inc.) and equipped
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with an Agilent HP-5ms Ultra Inert Fused Silica capillary column (30 m × 0.25 mm ID, 0.25 µm
film thickness) (Agilent Technologies, Inc.). Helium was used as a carrier gas at a constant
pressure of 14.093 psi, and the injection volume was 1 µL in splitless mode. The following
temperature program was used: 50 ◦C for 2 min, ramping 30 ◦C/min to 100 ◦C, 6 ◦C/min
to 230 ◦C for 2 min, 20 ◦C/min to 280 ◦C for 5 min, and 20 ◦C/min to 310 ◦C for 10 min.
Temperatures of the MSD transfer line, MS ion source, and MS quadrupole were maintained
at 310 ◦C, 230 ◦C, and 150 ◦C, respectively.

2.3. DNA Extraction

Two liters of the initial pooled seawater (SW0) and the entirety of collected microcosm
samples (0.9 L) were filtered aseptically through 0.2 µm Sterivex SVGPL10RC filters (Merck
Millipore). After the filtration, the filters were stored at −80 ◦C until DNA extraction. The
DNA was extracted using DNeasy PowerWater Sterivex Kit (Qiagen, Foster City, CA, USA)
according to the protocol of the manufacturer. The quantity and quality of DNA extracts
were determined by spectrophotometry (Infinite M200, TecanAG, Grödig, Austria). The
extracted DNA was stored at −20 ◦C prior to further analysis.

2.4. Quantitative PCR Conditions and Data Analysis

Quantitative PCR (qPCR) was used to determine the abundances of 16S rRNA genes
specific to bacteria (B16S), archaea (A16S), Colwellia, Cycloclasticus, and Pseudomonas genera.
The qPCR assays were performed on RotorGene® Q with RotorGene Series Software
v 2.0.2 (Qiagen). Stock solutions of target sequence-containing plasmids (Eurofins MWG
Operon, Ebersberg, Germany) were used to create serially diluted standard curves, ranging
from 25 to 108 copies of each target gene. The qPCR reactions were performed in 10 µL
volume containing 5 µL of Maxima SYBR Green Master Mix (Thermo Fisher Scientific Inc.,
Waltham, MA, USA), an optimized concentration of forward and reverse primers (Table S2),
1 µL of template DNA, and sterile distilled water. The used primers and optimized qPCR
programs are described in Table S2. All qPCR samples were measured in triplicate, and
negative controls were included in every qPCR run.

Quantification data were analyzed with the LinRegPCR program v 2020.0 [16]. The
target gene abundance was calculated through the estimation of the fold difference between
a sample and multiple data points from the standard curve, as described previously [17],
and is presented as gene copy numbers per mL of analyzed water. The total 16S rRNA
gene abundance (16Stot) was calculated by summing the bacterial and archaeal 16S rRNA
gene abundances. The relative abundances (%) of archaea in the prokaryotic community
and targeted genera in the bacterial community were also calculated.

2.5. Database of Genera Containing Oil Hydrocarbon-Degrading Organisms

A list of bacterial (n = 350) and archaeal genera (n = 14) containing oil hydrocarbon-
degrading organisms (HDOs) was compiled (Supplementary File S1) based on reports
in the literature (up to October 2021). An organism was considered an oil hydrocarbon
degrader either when it was directly shown to degrade oil hydrocarbon compounds or
when it possessed genes related directly to oil hydrocarbon degradation pathways.

2.6. Taxonomic Profiling of Prokaryotic Community

The prokaryotic community structure and composition were assessed using amplicon-
based and whole-genome shotgun sequencing analysis. The sequence data of both methods
are accessible in online repositories; the names of the repositories and accession numbers
can be found at https://ebi.ac.uk/ena, PRJEB48192.

2.6.1. Shotgun Metagenomic Sequencing

Due to low DNA concentrations in extracts, for the preparation of DNA libraries for
the metagenomic analysis, the DNA from two parallel microcosms of the same treatment
was pooled to fulfill the technical requirements of the method. The pooled DNA samples

https://ebi.ac.uk/ena
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were purified and concentrated with NucleoSpin® Gel and PCR Clean-up kit (MACHEREY-
NAGEL GmbH & Co. KG, Düren, Germany) according to the manufacturer’s protocol.
Paired-end sequencing libraries (2 × 150 bp) were constructed using the Nextera XT DNA
Library Preparation kit (Illumina, San Diego, CA, USA) according to the manufacturer’s
instructions and sequenced using the NovaSeq 6000 system (Illumina).

The quality of obtained raw metagenomic sequences was controlled using FastQC
v 0.11.7 [18]. Reads <35 bp and poly-G tails were removed and bases with quality scores
lower than 20 were trimmed with Cutadapt v 1.16 [19]. Coverage and diversity metrics of
the quality-controlled metagenomic sequences were estimated using Nonpareil v 3.3.3 [20].
The characteristics of the metagenomic data are presented in Table S3.

Bacterial and archaeal communities were classified to species level using Kaiju v 1.7.3 [21]
with the NCBI-nr database. Contigs were assembled using Megahit v 1.2.9 [22]. The
minimum length of contigs was 1000 bp. Contigs were assembled into metagenome-
assembled genomes (MAGs) with MetaBAT2 v 2.15 [23], followed by quality assessment
with CheckM v 1.0.18 [24] and taxonomic assessment with Kaiju v 1.7.3 with the NCBI-nr
database. dRep v 2.6.2 [25] was used to assess the relatedness of genomes, and MAGs
with average nucleotide identity (ANI) score ≥95% were considered to belong to the same
organism. Both contigs and MAGs were analyzed for hydrocarbon degradation-related
gene (HDG, n = 92) annotations with HMMER v 3.3 using HMM models from the KEGG
KO database (n = 91) [26]. For the long-chain alkane degradation-related almA gene,
which is missing from the KEGG KO database, a custom HMM profile was built with
HMMER v 3.3 using pairwise alignment results of almA sequences [27]. The values of
HDGs of prokaryotic communities were calculated using MicrobeCensus v 1.1.1 [28] and
are presented as gene-specific reads per kilobase per genome equivalent (RPKG). HDGs
were regarded as present in a MAG when >50% of gene cluster components were registered.

2.6.2. Amplicon-Based Sequencing

The universal primers 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 926R (5′-CCGY-
CAATTYMTTTRAGTTT-3′) [29] were used for targeting the V3-V5 hypervariable region
of both the bacterial and archaeal 16S rRNA genes in each microcosm. The PCR reaction
mixture for amplification of each sample contained a unique combination of primers; each
primer had a specific 6 bp long barcode sequence at the 5′ end [30]. All PCR reactions were
performed in a 20 µL reaction mixture using Phusion Hot Start High-Fidelity Polymerase
(Thermo Fisher Scientific Inc.) according to the manufacturer’s instructions and 0.4 µM
primers at the following amplification conditions: 98 ◦C for 30 s; 25 cycles: 98 ◦C for 10 s;
60 ◦C for 30 s; 72 ◦C for 15 s; 72 ◦C for 8 min. The amplification of each sample was per-
formed in triplicate. The replicate PCR products were pooled, and the concentration of each
composite sample was determined with the TapeStation 2200 using D1000 ScreenTapes®

(Agilent Technologies, Inc.). Amplicons of all samples were finally pooled in equal propor-
tions, and the mixture was purified and concentrated using the NucleoSpin® Gel and PCR
Clean-up kit (MACHEREY-NAGEL GmbH&Co. KG). The paired-end DNA library was
prepared according to Herbold and co-authors [31] and sequenced on an Illumina® MiSeq
system (Illumina) at Microsynth AG (Balgach, Switzerland).

The paired-end reads were assembled into composite reads with Pear v 0.9.11 [32].
Bacterial and archaeal sequences were separated by adapter tags using BBMap v 37.86.
The assembled reads were processed using Mothur v 1.40.4 [33]. Illumina reads were
demultiplexed, and during data denoising, sequences were discarded if the average se-
quencing quality score dropped <25 over a 25-bp sliding window, were <100 bp, had any
ambiguous bases, and had longer than 6 homopolymers. Chimeras were detected with
the vsearch algorithm in de novo mode [34]. Quality-checked reads were clustered into
operational taxonomic units (OTUs) using a distance-based greedy clustering method with
a 97% similarity threshold [35]. Spurious OTUs with less than 3 sequences were discarded.
The characteristics of amplicon-based sequencing data are given in Table S4.
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2.6.3. Comparison and Integration of Bacterial Community Taxonomic Classification Methods

In order to evaluate whether the choice of sequencing and taxonomic affiliation
method influences the estimation of bacterial community structure and particularly the
estimates for the oil-degrading taxa, five different taxonomic classification methods were
applied for a comparative analysis of initial seawater and treatments after four and eight
months of incubation. Metagenomic data were classified to the genus level using Kaiju [21]
with the NCBI-nr database, Kaiju with MARDB [36] databases, and Kraken2 v 2.1.1 [37]
as well as Bracken v 2.6.1 [38] with the Standard Kraken2 database. Programs were run
with default parameters using paired-end reads. The amplicon-based sequencing data
were classified using SILVA alignment v 132 [39]. Sequences were classified using 80%
confidence in bootstrap values. Eukaryotes and reads that were unable to be taxonomically
assigned were removed from the subsequent analysis. These classification methods are
referred to as Kaiju, Kaiju/MAR, Kraken2, Bracken, and Amplicon, respectively, in the
further text and in figures.

The top 20 bacterial phyla (Proteobacteria were characterized at the class level) of each
sample analyzed with all five taxonomic classification methods were ranked in descending
order, assigning the highest rank value to the phylum with the highest proportion in the
bacterial community. An average rank estimate for each phylum based on its ranks in
five taxonomic classifications was also calculated. The proportions of bacterial genera
containing HDOs were derived from taxonomic classification data according to an HDO
database compiled in this study (Supplementary File S1) and used with the 16Stot values of
each sample to calculate the estimated abundances of potential hydrocarbon degraders.
The overlap of the top 50 bacterial genera derived with five different classification meth-
ods as well as the presence of genera containing HDOs was visualized using the online
Venn diagram tool: http://bioinformatics.psb.ugent.be/webtools/Venn/ (accessed on
10 September 2021). The clustering of samples based on the crl-transformed proportions of
the top 50 genera in the bacterial community according to each classification method was
performed using Euclidean distance and the Ward-linkage method, and analysis results
were visualized as heatmaps using the ClustVis program [40].

The proportions of both the top 50 genera and genera containing HDOs in the bacterial
community according to the five taxonomic classification methods were integrated using
multiple co-inertia analysis (MCIA) with the package omicade4 in R v. 4.0.3 [41].

3. Results
3.1. Oil Hydrocarbon Depletion

The depletion of THC was ≤10% in all treatment variants during the first four months
of the experiment (Figure 1A). By the eighth month, 29% of THC was depleted in the
sterilized treatment (SWOs) variant. Biodegradation in the non-biostimulated treatment
(SWO) did not appear to substantially contribute to either THC or aliphatic hydrocarbon
depletion. However, biodegradation in biostimulated (SWOB) microcosms added another
12% (total depletion of 41%) to THC depletion. The decreasing ratios of n-C17pPristane
and n-C18/phytane also indicated the occurrence of biodegradation only in the SWOB
treatment (Table S5).

The quantitative analysis of 16 priority PAHs indicated that the highest PAH depletion
(71% and 85% at four and eight months, respectively) occurred in the SWOB treatment,
while the depletion rates were relatively similar (53–58% and 65–68% after four and eight
months, respectively) in SWOs and SWO (Figure 1B). After four months, almost complete
depletion (99.5%) of naphthalene, representing two-ring PAHs, was detected in the SWOB
variant (Table S5), while the depletion of three-ring PAHs in this variant was less than
that in other treatments. However, by the eighth month, the depletion rate (66%) of
three-ring PAHs (mainly fluorene and phenanthrene) in SWOB also considerably exceeded
(by 21–30%) the rate in other treatments. The removal of ≥4-ring PAHs was in the range of
30–40% in all treatments.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 1. The proportion of total hydrocarbons (THC) remaining (A) and the concentration of
16 priority PAHs (B) in the oil-amended sterilized seawater (SWOs), oil-contaminated seawater
(SWO), and biostimulated oil-contaminated seawater (SWOB) at 4 and 8 months. N = 2.

3.2. Microbial Community Abundance and Composition
3.2.1. Microbial Community Abundance

The average abundance of 16Stot in microcosms on day 0 was 1.2 × 106 copies/mL
(Figure 2), with B16S accounting for 84.5% of the community. While the 16Stot abundance
underwent moderate growth in SW and SWO throughout the experiment (2.5–4.4-fold),
the biostimulation (SWOB) approach markedly enhanced the total prokaryotic (69- and
103-fold increase at four and eight months, respectively), and especially the bacterial
(Figure S1A; Table S6), community growth.

Figure 2. The average abundances and SD (n = 2) of summarized bacterial and archaeal 16S rRNA genes
as well as estimated abundances of genera containing oil hydrocarbon degraders based on taxonomic
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assignment using Kaiju with NCBI-nr and MARDB databases, Kraken2 and Bracken with Stan-
dard Kraken2 database, and amplicon-sequencing data with SILVA database in seawater (SW),
oil-contaminated seawater (SWO) and biostimulated oil-contaminated seawater (SWOB) after 0, 4,
and 8 months of incubation.

A16S abundance was on average 1.8 × 105 copies/mL at the start of the experi-
ment, which accounted for 15.5% of the microbial community in the initial seawater
(Figure S1B,C). A16S abundance dropped 5.3–9.5-fold in SW and SWOB microcosms dur-
ing the experiment. Archaea were more resilient in the SWO treatment, where the A16S
abundance was decreased by 3.3- and 1.8-fold after four and eight months of incubation,
respectively, compared to the start of the experiment. By the fourth month, the relative
abundances of archaea had reached levels of 0.5% in SW, 2.1% in SWO, and 0.03% in SWOB
treatment, which were maintained until the end of the experiment (Figure S1C).

3.2.2. Microbial Community Structure
Estimation of Bacterial Community Structure According to Different Classification Methods

Since bacteria formed most of the prokaryotic community in the microcosms, further
analysis focused on the bacterial community with classification using different methods
yielding inconsistent results: 67–92% and 71–87% of total reads were classified using Kaiju
and Kaiju/MAR approaches, respectively, while only 18–62% of reads could be classified
when using Kraken and Bracken (Table S3).

The average rank estimates calculated based on the ranks of 20 most abundant bac-
terial phyla and Proteobacterial classes in the bacterial community according to the five
taxonomic classifications (Figure 3) only agreed on the ranks of the most dominant tax-
onomic groups (e.g., Alpha- and Gammaproteobacteria and Bacteroidetes). The rank
estimates for less abundant phyla were variable depending on the specific taxon and
taxonomic classification method (e.g., Acidobacteria, Firmicutes, and Verrucomicrobia).

In most cases, the closest rank estimate to the average of all methods was provided
by Kaiju, although some notable exceptions included Cyanobacteria in SW0, and several
estimates for Epsilonproteobacteria. Moreover, all of the bacterial phyla or Proteobacterial
classes of the top 20 most abundant taxa according to all classification methods were present
in the NCBI-nr database used with Kaiju. Kaiju/MAR showed higher rank estimates for
Ca. Marinimicrobia, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia compared
to the average rank of all methods and the Kaiju estimate, while the rank estimates of
Firmicutes and Acidobacteria were lower in both cases. Ca. Rokubacteria, present in the
top 20 phyla according to NCBI-nr and SILVA databases, was absent from the MARDB
database. Kraken2 and Bracken yielded very similar rank estimates to each other (except
for Acidobacteria in SW0 and SWO8) while often deviating notably from the average rank
estimate of all methods. For instance, the rank estimates of Chloroflexi, Gemmatimonadetes,
Nitrospirae, and Verrucomicrobia were always lower than the average rank estimate, while
the rank estimates of Firmicutes, Deinococcus-Thermus, Fusobacteria, Spirochaetes, and
Tenericutes were higher than the average rank estimate. In addition, Ca. Marinimicrobia,
Nitrospinae, and Ca. Rokubacteria were absent from the Standard Kraken2 database.
The greatest deviations in bacterial phyla ranks from the average of all methods (e.g.,
Acidobacteria, Cyanobacteria, and Verrucomicrobia) were often obtained by the Amplicon
method. Furthermore, unlike the other reference databases used in this study, in the SILVA
database, Beta- and Epsilonproteobacteria were not categorized as distinct Proteobacterial
classes, and their ranks could not be taken into account in the analysis.
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Figure 3. The comparison of bacterial community structure at the phylum level (Proteobacteria at
class level) by ranks of the 20 most prominent taxa of each sample (highest rank value corresponds
to highest proportion in bacterial community) by different taxonomic classification methodologies
(Kaiju with NCBI-nr and MARDB databases, Kraken2 and Bracken with Standard Kraken2 database,
and amplicon-based data with SILVA database) in seawater (SW), oil-contaminated seawater (SWO),
and biostimulated oil-contaminated seawater (SWOB). The numbers in sample codes denote time
in months. The height of each pie chart slice corresponds to the rank estimate of the individual
classification method for the taxon in question, while the calculated average rank for all classification
methods is indicated by the black circle.

Despite similar average rank patterns in all samples, the proportions of phyla in the
bacterial community determined by different taxonomic classification methods were mostly
dissimilar, especially for the five most abundant taxa (Tables S7–S11), with the Amplicon
method usually deviating the most. Of the top five taxa, the Amplicon method estimated
a substantially lower proportion of Gammaproteobacteria and a higher proportion of
Bacteroidetes compared to the other classification methods. For instance, the top-ranked
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Gammaproteobacteria proportion in SWOB4 was 80–86% according to metagenome-based
classification methods and 47% according to the Amplicon method, while the proportion
of Bacteroidetes in the same sample was 4–8% according to metagenome-based methods
and 34% according to the Amplicon method. The deviations in the estimates of lesser taxa
ranks among different methods also provided a good indication of proportion deviation
tendencies among the methods for a particular taxon. For instance, the rank and proportion
estimates of Firmicutes in SW0 were 18 and 9.4% for Bracken, 18 and 7.2% for Kraken2, 13
and 2% for Kaiju, 8 and 0.7% for Amplicon, and 6 and 0.15% for Kaiju/MAR, respectively
(Figure 3; Tables S7–S11). Since Kaiju with the NCBI-nr database generally resulted in
the highest number of classified reads and the closest rank estimate to the average of all
methods on the phylum level, a detailed description of bacterial and archaeal commu-
nity structure in microcosms according to this method is provided in Figures S6 and S7,
respectively, and in Section S1 in Supplementary File S2.

At the genus level, only 16 of the top 50 most predominant bacterial genera across all
samples overlapped among all taxonomic classification methods; the overlap increased to
26 genera when only metagenome-based classification methods were considered (Figure 4).
Amplicon, Kraken2, and Bracken yielded the highest number of unique genera among
the top 50 predominant bacterial genera compared to the other methods. In the detection
of genera containing oil hydrocarbon degraders, 108 genera were common to all applied
methods, and 191 common genera were found when only metagenome-based classification
results were considered (Figure S2). The differences between the estimated proportions
within the bacterial community in the same sample according to different classification
methods were also substantial (>10%) for several genera, such as Pseudomonas, Cycloclasti-
cus, Colwellia, Flavobacterium, and Polaribacter. In addition, Marinomonas, Paraperlucidibaca,
Hyphomonas, and Sphingorhabdus proportions showed over 5% difference for one sample
(Tables S12–S16). Notably, Kraken2 and especially Bracken showed considerable propor-
tions (≥5% of the bacterial community) of Klebsiella (SW4, SWOB4, SWOB8), Salmonella
(SW0), and Staphylococcus (SW0, SW8) (Tables S14 and S15), which were not among the
predominant genera in data obtained with other classification methods.

Figure 4. Venn diagram showing the overlap of the 50 predominant bacterial genera between
different taxonomic classification methods.
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Estimation of Bacterial Community Similarity According to Different Classification Methods

Despite substantial differences in the lists and proportions of the 50 most predominant
bacterial genera according to different taxonomic assignment methods, the clustering
analysis indicated separate groupings of SW, SWO, and SWOB samples, with the SWOB
treatment showing the most distinct separation in the cases of all metagenome-based
classification methods (Figure S3A–D). In the case of the Amplicon method, the SWOB
treatment and three SW samples formed separate clusters, while SW0 samples and the
SW8.1 sample clustered together with the SWO treatment (Figure S3E). Regardless of the
taxonomic assignment method applied, the dominant genera specific to each treatment
clustered similarly together on heatmaps. The dominant cluster containing Pseudomonas,
Cycloclasticus, Sphingorhabdus, Marinomonas, Sneathiella, Ulvibacter, and Aequorivita was
specific to the SWOB treatment, while a separate branch of Hyphomonas and Parvibaculum
was dominant in the SWO treatment (Figure S3).

The datasets of the proportions of the 50 most prominent bacterial genera in the
bacterial community and the proportions of genera containing HDOs according to different
taxonomic assignment methods were integrated in the MCIA analysis (Figure 5). In both
cases, the most variance was captured by the first MCIA axis (37.6% and 40.8%, respec-
tively), which separated the SWOB treatment from the rest of the samples (Figure 5A,D).
The second axis of MCIA captured 22.0% and 24.9% of the variance, respectively, and this
axis emphasized the distinction between the samples of SW and SWO treatments.

Projections of all variables in the space of the first two MCIA axes indicated that irre-
spective of the taxonomic assignment method used, the SWOB treatment was associated
with higher proportion values of genera Pseudomonas, Sphingorhabdus, and Dietzia, while
three methods out of five also placed Oleispira and Aequorivita within this group, and two
methods out of five included Paraperlucidibaca in this group (Figures S4 and S5). Notably,
Oleispira was missing from the Standard Kraken2 reference database, and Paraperlucidibaca
was absent from the MARDB and Standard Kraken2 reference databases. Regardless of
the taxonomic assignment method, the SWO treatment was associated with higher pro-
portions of Parvibaculum, Hyphomonas, and Lacinutrix genera, while amplicon sequencing
results also indicated increased proportions of Jejudonia and Cellulophaga in this treatment.
The pseudo-eigenvalue space of genera proportion datasets derived with five different
classification methods indicated that Kraken2 and Bracken data contributed the most
variance along the first axis, while Kaiju/MAR and Kaiju data contributed high variance to
the second axis (Figure 5C,F). The correlation (multivariate generalization of the Pearson
correlation coefficient (RV)) between datasets of all four metagenome-based classification
methods was RV ≥ 0.9 for the 50 predominant bacterial genera and RV ≥ 0.88 for bacterial
genera containing HDOs (Table S17). The correlation of Amplicon data with metagenomic
classification methods was markedly lower for predominant genera (RV = 0.81–0.85) and
especially in genera containing HDOs (RV = 0.58–0.76).
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Figure 5. Multiple co-inertia analysis (MCIA) results based on five bacterial genera proportion datasets obtained with
different taxonomic assignment methods (Kaiju with NCBI-nr database, Kaiju with MARDB database, Kraken2 and
Bracken with Standard Kraken2 database, and Amplicon-based sequencing with SILVA database) from seawater (SW),
oil-contaminated seawater (SWO), and biostimulated oil-contaminated seawater (SWOB). The numbers in sample codes
denote time in months. Subplots (A–C) depict MCIA results based on proportion data of the 50 predominant bacterial
genera, and subplots (D–F) depict MCIA results based on proportion data of genera containing hydrocarbon-degrading
organisms. Subplots (A,D) present the first two MCIA components in the sample space. Each sample is represented by
a shape, where the five datasets for the sample are connected by lines to a center point (global score). (B,E) are Scree plots of
absolute eigenvalues (bars) and the proportions of variance for the eigenvectors (line). (C,F) are data weighting graphs that
show the pseudo-eigenvalue space of all datasets indicating how much variance of an eigenvalue is contributed by each dataset.
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Estimation of Bacterial Genera Proportions via Quantification

In order to estimate genera proportions in the bacterial community via methodology
other than sequencing, Pseudomonas, Cycloclasticus, and Colwellia were targeted with genus-
specific primers using qPCR, and their quantified abundances were normalized against
B16S abundance. These genera could not be quantified from SW0, SW4, and SWO4, as
all DNA of these samples had been used to construct sequencing libraries. In the case of
Colwellia, the proportions determined with sequencing-based and quantification-based
methods were reasonably similar; compared to the quantification approach, sequencing-
based approaches slightly overestimated Colwellia proportions in the SWOB treatment
and underestimated them in SW8 and SWO8 (Table 1). In the case of Cycloclasticus,
all sequencing-based proportion estimates (except for Kraken2 and Bracken of SWOB8)
were higher than the quantification-based proportion estimates (Table 1). The differ-
ence was especially pronounced for Cycloclasticus in SW8, for which proportion estimates
obtained by Kaiju (with NCBI-nr database) and Kaiju/MAR exceeded the quantification-
derived proportions by 35- and 65-fold, respectively. In the case of the genus Pseudomonas,
metagenomic-classification-based proportion estimates were generally substantially higher,
while the Amplicon proportions were in a similar or even lower range compared to the
quantification-based proportions (Table 1). The greatest disagreement was recorded for
the SWOB treatment, where Kraken2 and Bracken-based Pseudomonas proportions were
48–51% in SWOB4 and 32–34% in SWOB8, while the quantification approach showed that
this genus accounted for 9–10% in these two samples.

Table 1. The proportions (%) of genera Colwellia, Cycloclasticus, and Pseudomonas in the bacterial
community of seawater (SW), oil-contaminated seawater (SWO), and biostimulated oil-contaminated
seawater (SWOB) based on five taxonomic classification methods and quantification by qPCR (quan-
tified abundances normalized against B16S). The numbers in sample codes denote experimental time
in months. NA—not analyzed.

SW0 SW4 SW8 SWO4 SWO8 SWOB4 SWOB8

Colwellia
Kaiju 3.96 4.94 3.86 4.57 10.87 1.73 0.60

Kaiju/MAR 17.78 8.46 5.18 4.90 13.63 1.86 1.08
Kraken2 8.32 9.97 6.26 4.94 10.83 1.40 0.61
Bracken 6.73 8.16 5.34 4.33 10.05 1.33 0.54

Amplicon 6.45 4.63 3.53 2.75 9.91 1.07 1.80
Quantification NA NA 7.35 NA 13.83 0.85 0.34

Cycloclasticus
Kaiju 0.13 10.05 8.81 1.10 2.12 1.82 13.36

Kaiju/MAR 0.25 23.20 16.69 1.75 3.99 2.66 25.33
Kraken2 0.18 1.90 1.48 0.14 0.23 0.21 4.88
Bracken 0.14 1.55 1.25 0.12 0.21 0.20 4.34

Amplicon 0.05 2.13 1.90 0.25 0.46 0.59 7.74
Quantification NA NA 0.25 NA 0.01 0.14 7.60

Pseudomonas
Kaiju 1.96 1.23 1.97 9.64 6.42 38.41 25.39

Kaiju/MAR 0.48 0.94 2.24 8.59 9.44 39.03 13.88
Kraken2 3.02 5.68 5.37 13.64 13.06 50.54 34.33
Bracken 2.71 4.74 4.83 12.21 11.97 48.14 31.65

Amplicon 0.26 0.20 0.25 0.78 0.24 10.76 3.70
Quantification NA NA 2.59 NA 5.08 9.52 9.25

3.3. Hydrocarbon Degradation Potential of Bacterial Community
3.3.1. The Dynamics of Estimated Abundances of Genera Containing Hydrocarbon Degraders

The estimates of proportions of genera containing HDOs ranged from 13.6% to 95.4%
in the analyzed samples according to different classification methods (Table S19), with
the corresponding estimated abundances ranging from 1.4 × 105 to 1.1 × 108 copies/mL
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(Figure 2). The characterization of the community was based on classification with Kaiju
using the NCBI-nr database, as it resulted in the highest number of detected genera
containing HDOs (n = 339) in combination with the moderate summed proportion estimate
(Figure 2; Table S19).

On day 0, the average proportion and estimated abundance of genera containing
HDOs in seawater were 26.6% and 2.7 × 105 copies/mL, respectively (Table S19). The
abundances of genera containing HDOs increased throughout the experiment in all treat-
ment variants, and by the end of the experiment, in SW and SWO, the increase was 7-
and 9-fold, respectively. However, in the SWOB treatment, the abundances of genera
containing HDOs had increased 358-fold by the end of the experiment, reaching a value of
9.7 × 107 copies/mL.

3.3.2. The Dynamics of Hydrocarbon Degradation-Related Genes

A more direct estimation of the microbial community potential for oil hydrocarbon
degradation was obtained by analyzing the normalized abundances of 92 HDGs. A total
of 82–85 genes were detected across the samples (Table S20). The sum of the normalized
abundances of HDGs in initial seawater was 277 RPKG. In SW, this value increased after
four months of incubation, but a drop below the initial level was detected by the eighth
month (Figure 6). On the other hand, in the SWO treatment, the summed RPKG value and
the RPKG values of genes from different functional groups related to the degradation of
aliphatic, monoaromatic (MAHs), and polyaromatic (PAHs) compounds only or several
compounds simultaneously (“various” group) slightly increased throughout the experi-
ment. The highest increase (1.3-fold) in the RPKG sum compared to SW0 was detected in
SWOB4, and this level remained virtually unchanged in SWOB8.

Figure 6. The summarized abundance of detected oil hydrocarbon degradation-related genes, pre-
sented as gene-specific reads per kilobase per genome equivalent (RPKG), in microbial communities
of seawater (SW), oil-contaminated seawater (SWO), and biostimulated oil-contaminated seawater
(SWOB). The numbers in the codes of samples denote incubation time in months. The genes are
separated into groups by the compound types whose degradation they are involved in. “Various”
means that the gene can be related to degradation pathways of more than one compound type.
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3.3.3. MAGs and Their Oil Hydrocarbon Degradation Potential

A total of 398 MAGs were created by contig assembly; 195 of these were of good
quality (completeness >50% and contamination <10%), which were classified using Kaiju
and analyzed for the presence of HDGs (Table S21). Seventy-two of the good-quality
MAGs could be classified to at least the genus level. The relatedness analysis of good-
quality MAGs indicated that several MAGs can be considered to belong to the same
organism (Table S21) and resulted in 130 estimated organisms altogether. The HDG
profiles of MAGs representing major genera (>2%) based on the total community analysis
of treatments are visualized in Figure 7. The lists of taxonomic affiliations of MAGs
and major OTUs determined using the amplicon-based sequencing approach showed
considerable overlaps, especially for organisms belonging to major genera in treatments,
such as Colwellia, Cycloclasticus, Hyphomonas, Marinomonas, Pacificibacter, Paraglaciecola,
Paraperlucidibaca, Pseudomonas, and Ulvibacter (Tables S21 and S22).

The MAGs affiliated to predominant bacterial genera generally had a wide variety
of HDGs covering the key steps of pathways for the degradation of aliphatic compounds,
MAHs, and PAHs in all treatments, including SW (Figure 7). The MAGs attributed to the
most abundant genera in the SWOB treatment, namely, Cycloclasticus, Pseudomonas, and Sph-
ingorhabdus, also had the greatest number of different HDGs detected with relatively equal
coverage of degradation pathways of different types of compounds. Another two predomi-
nant bacterial genera in the SWOB treatment, Marinomonas and Paraperlucidibaca, were also
well represented, with several MAGs classified to the species level as M. primoryensis and
P. baekdonensis, respectively. Their HDG profiles were more specific: all MAGs classified as
M. primoryensis lacked genes related to aliphatic compounds degradation, while MAGs
classified as P. baekdonensis showed a lower representation of genes that can simultaneously
belong to degradation pathways of various types of hydrocarbon compounds (Figure 7).
MAGs classified as Cycloclasticus, Pseudomonas, and M. primoryensis were detected in all
treatments, while other MAGs were more treatment specific.

Fifteen HDGs (mainly different types of alcohol dehydrogenases) were present in all
MAGs belonging to major bacterial genera (>2%) in treatments (Figure 7). While other
aliphatic compound degradation genes were frequent in MAGs, gene clusters related to the
degradation of short gaseous alkanes were rare. For instance, the methane-related pmoABC
cluster was found only in Cycloclasticus, and the butane-related bmoBCDXYZ cluster was
only detected in Ca. C. aromaticivorans and N. japonica. Among MAH degradation genes,
the anaerobic phenol degradation-related bsdCD and 4-cresol dehydrogenase-encoding
pchCF gene clusters were detected only in MAGs classified as Cycloclasticus and Sphin-
gorhabdus. In addition, the toluene degradation-related dmpKLMNOP and tmoABCDEF
gene clusters were detected only in MAGs classified as Ca. C. aromaticivorans, Cycloclasticus,
P. polaris, and S. sp. M41. While all the analyzed HDGs related to PAH degradation were
identified in numerous MAGs, the protocatechuate-4,5-dioxygenase-encoding ligAB gene
cluster belonging to degradation pathways of various types of compounds was found
only in MAGs classified as M. primoryensis, P. polaris, Pseudomonas (only MAG N4_12),
and Sphingorhabdus.

In a few cases, the clustering of MAGs based on the ANI score did not agree with the
taxonomic classification. For instance, MAG N2_11, classified as Colwellia, is located far
from MAGs classified as Ca. C. aromaticivorans, and their HDG profiles were markedly
different (Table S21), while MAG N7_14, classified as Pseudomonas salina, was clustered far
from other Pseudomonas salina MAGs on the taxonomic tree and was not the same organism
according to the ANI score. Moreover, N7_14 also missed the nahC gene and nidAB and
dbfA1A2 gene clusters, characteristic to most of the MAGs classified as Pseudomonas. MAG
N6_16, attributed to Paraglaciecola, was grouped separately and far from MAGs classified as
P. polaris on the taxonomic tree, and their HDG profiles were quite dissimilar. Finally, while
showing similar HDG profiles, MAGs N4_17 and N8_4, classified as Cycloclasticus, clustered
far from other Cycloclasticus-affiliated MAGs on the ANI score-based taxonomic tree.
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Figure 7. The metagenome-assembled genomes (MAGs) classified to either the genus or species
level and belonging to major genera (>2%) based on whole bacterial community analysis and
profiles of their oil hydrocarbon degradation genes derived from metagenomes in seawater (SW),
oil-contaminated seawater (SWO), and biostimulated oil-contaminated seawater (SWOB). The MAGs
with ANI score >95% are presented in one lane, and the characteristics of individual MAGs can
be found in Table S21 following their MAG codes (e.g., N2_11). An HDG marker represented by
a half-circle indicates that the respective gene was found only in some MAGs from the respective
organism lane.



Microorganisms 2021, 9, 2425 17 of 23

4. Discussion
4.1. The Effect of Taxonomic Classification Method on the Estimation of Community Composition
in Arctic Seawater-Derived Bacterial Communities

A growing body of Arctic marine microbiology research is characterizing microbial
communities using data from either amplicon-based or shotgun metagenomic sequenc-
ing [11,13–15,42], and the latter is also used for functional profiling. For the taxonomic
assignment of shotgun metagenomic data, numerous classifiers and reference databases
are available that fall into several categories: (i) DNA-to-DNA methods, where perfect
matches between sequence stretches and reference sequences (k-mers) are sought (e.g.,
Kraken2, Bracken, and PathSeq); (ii) DNA-to-protein methods, where sequence reads are
compared with protein-coding sequences (e.g., Kaiju and DIAMOND); and (iii) DNA-to-
marker methods, including only specific marker gene families in reference databases (e.g.,
MetaPhlAn2) [43,44]. However, it has been suggested that the classifier performance and
ecological truthfulness and representativeness of the results may vary according to the
sample type, taxa present, and composition of the reference database used [43]. Contrary
to the results from small, simulated benchmarking datasets [43], in this study, Kaiju classi-
fied substantially more reads than Kraken2. This supports the notion that, in the case of
environmental metagenomes, Kaiju is able to classify more reads than nucleotide-based
methods [21].

The bacterial community structure and taxa proportion estimates varied widely be-
tween shotgun metagenomic and amplicon-based data. This discrepancy, characterized
by lower proportions of Proteobacteria (especially Gammaproteobacteria) and higher pro-
portions of Bacteroidetes in amplicon-based data compared to metagenome data, seems to
be consistent in describing bacterial communities from different water habitats, such as
freshwater [45] and Mediterranean seawater [46]. The deviation of amplicon-based taxa
proportion estimates compared to metagenome datasets could be attributed to a combina-
tion of several factors: the coverage of utilized primers, general PCR bias, variance of copy
numbers of the 16S rRNA genes between different taxa, discrepancy of taxon ranks between
reference databases, and different sizes and curation levels of reference databases [12,45].
Different metagenome-based classification methods also yielded substantial differences
in the estimated proportions of individual taxa at all taxonomic levels, and the overlap of
50 prominent genera between all four metagenome-based classification strategies slightly
exceeded 50%. Phylum ranking analysis indicated the possible preferable classification
of sequences as Firmicutes, Tenericutes, Fusobacteria, and Spirochaetes by DNA-to-DNA
methods and as Ca. Marinimicrobia, Chloroflexi, Gemmatimonadetes, and Verrucomicro-
bia by DNA-to-protein-based methods. These discrepancies could be caused by different
compositions (including the number of references to a specific taxon) and sizes of reference
databases used in different methods [36,47].

At the genus level, the estimated proportions of bacterial community dominants in
the biostimulation treatment were considerably higher according to metagenome-based
methods compared to amplicon-based classifiers: higher proportions were estimated for
Pseudomonas by all metagenome-based classifiers (especially DNA-to-DNA types) and
for Cycloclasticus by DNA-to-protein methods. The quantification of their abundances
with genera-specific primers verified that the metagenomic classification methods can
severely overestimate the proportions of certain organisms in the bacterial community
and concordantly affect conclusions based on these results, such as the selection of biore-
mediation strategy. Such overestimation is probably caused by a combination of several
factors. These taxa are represented by disproportionally high numbers of closely related
reference sequences in databases (especially Pseudomonas in Standard Kraken2 and MARDB
and Cycloclasticus in MARDB), leading to oversampling and the decreased accuracy of
classifiers [48]. The difference in Pseudomonas proportions was probably also affected by
the tendency of Kraken2 and Kaiju to overestimate the proportions of microbes with larger
genome sizes and higher polyploidy [44]. It is also highly probable that some sequences
from the metagenomic data of this experiment were misclassified into these dominant
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genera; this has been previously noted to be a problem for Pseudomonas classifications in
Kraken2 [47]. Moreover, the reclassification of species Pseudomonas salina and Pseudomonas
sabulinigri, found to be abundant in this experiment, into a new genus, Neopseudomonas,
has been recently suggested due to their high variation from the core of the Pseudomonas
genus [49]. In this study, the metagenome-based classifiers also yielded substantially higher
numbers of genera containing hydrocarbon degraders compared to the amplicon-based
approach, which may be related to differences in sequencing depth between sequencing
methods but also to the known tendency of Kaiju and Kraken2 to predict a large number
of low-proportion false-positive taxa [12,43]. The comparison of different sequencing,
classification, and quantitative estimations obtained by different analytical tools highlights
that the choice of analytical method has a strong effect on practical decisions, such as
the applicability of the oil bioremediation method in seawater, made based on microbial
community estimations.

Regardless of the large variation in the estimates of several individual taxa propor-
tions, the concordance between the predominant genera proportion datasets among all
classifications was high (correlation value RV > 0.8 for all methods and RV ≥ 0.9 for
metagenome-based methods). The integration of datasets using a multivariate analysis
approach indicated the clear separation of samples according to their bacterial community
structure in different treatments, regardless of the taxonomic assignment method used.
The MCIA analysis also illustrated that the identification of major genera driving the shift
in the bacterial community structure in response to different treatment conditions was
similar among all utilized methods. Based on the obtained results, it can be inferred that
the integrated analysis of microbial community data produced with different sequencing
and taxonomy assignment methods is more informative than the analysis of individual
datasets. In addition, the integrated analysis was more efficient in determining the main
differences between treatments.

4.2. Bacterial Community Potential for Oil Hydrocarbons Degradation in Arctic Seawater

The microbial community in Svalbard seawater used to set up the biostimulation micro-
cosm experiment was rich in Proteobacteria and showed diverse hydrocarbon degradation-
related gene profiles and relatively high proportions of the genus Colwellia, which suggests
the possibility of previous exposure to oil hydrocarbons [50]. However, Arctic seawater
is often characterized by low availability of nutrients, such as nitrogen and phosphorus,
which limits microbial growth and oil degradation, even if an abundant carbon source is
available [3].

Svalbard seawater also seemed to be nutrient deficient, as the oil-contaminated micro-
cosms showed an even lower abundance of prokaryotes than uncontaminated seawater. In
addition, no substantial biodegradation of either total oil hydrocarbons, aliphatic hydrocar-
bons, or PAHs during an eight-month-long incubation was detected in oil-contaminated
seawater. However, a clear shift in bacterial community structure in response to oil con-
tamination was identified: by the eighth month, the bloom of Hyphomonas, a well-known
alkane degradation-related genus [51], that was observed after four months was succeeded
by increased proportions of several types of hydrocarbons degrading Colwellia [52,53]
and especially aromatic hydrocarbons degrading Marinomonas [54]. These compound
degradation preferences were also well corroborated by the hydrocarbon degradation
gene profiles of MAGs classified as the aforementioned genera. In addition, MAGs with
diverse HDG profiles attributed to other known oil hydrocarbon-degrading genera such as
Neptunomonas, Pseudomonas, Paraglaciecola, Sulfitobacter, and Ulvibacter and species such as
Maribacter antarcticus [13,55] were detected from SWO treatment microcosms. It seems that
even though the microbial community in Arctic seawater responds to oil contamination and
has versatile potential for oil compounds degradation, its abundance in nutrient-deficient
conditions is just too low for notable biodegradation of the pollutant.

The oil biodegradation rate in the biostimulation treatment was considerably lower
than that reported for dispersant-amended oil-contaminated cold seawater [10,56]. This is
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probably partly caused by the type of oil spilled. The Troll B type (North Sea naphthenic)
crude oil used in this experiment contains a very low concentration of rapidly degradable
n-alkanes and a high fraction of PAHs, often very recalcitrant in seawater [57,58], as well as
an unresolved complex mixture [59], leading to a generally low biodegradation rate [10]. In
addition, the oil formed a slick in this experiment, which provides a reduced surface area
for microbial colonization and degrades more slowly than dispersed droplets [10,60]. How-
ever, the addition of nutrients resulted in substantially elevated prokaryotic community
abundance and distinctly different bacterial community structure, as well as biodegrada-
tion that contributed to oil components depletion. The bacterial community structure at the
phylum level, characterized by markedly increased abundances of Gammaproteobacteria,
was similar to the pattern previously reported for dispersed oil degradation in Arctic sea-
water [9]. Blooms of the Gammaproteobacterial genus Pseudomonas and alkane-degrading
species Oleispira antarctica [13,61] at four months were succeeded after eight months by
high proportions of Cycloclasticus and Paraperlucidibaca baekdonensis, which can degrade
both aliphatic and aromatic hydrocarbons via various pathways [11,62]. The hydrocarbon
degradation gene profiles of MAGs attributed to these genera also supported this metabolic
succession pattern. Notably, these MAGs (among several others) also possessed the almA
gene related to long-chain alkanes degradation, which is absent from KEGG gene models
but seems to play an important role in aliphatic compounds degradation in marine envi-
ronments. The profiles of the metabolic potential of organisms simultaneously found in
high proportions (e.g., Cycloclasticus and P. baekdonensis) also complemented each other,
filling the gaps in degradation pathways found in the genome of each organism. This effect
in oil-degrading communities has been noted before [11], albeit not for the exact same taxa.
The succession of Oleispira and Cycloclasticus during oil degradation in Arctic seawater has
been reported before, but in a considerably shorter timeframe [10], while P. baekdonensis
blooms seem to be specific to microbial communities of biostimulated oil-contaminated
Arctic environments [62]. The hydrocarbon degradation potential of dominant bacterial
genera was supported by smaller proportions of other known hydrocarbon-degrading
genera, such as Neptunomonas, Paraglaciecola, and Ulvibacter, and species such as Mari-
nobacter antarcticus [13,55], which highlights the various distinctive HDG profiles in the
biostimulated microbial community of this study. Similar to previous reports [63], ar-
chaea formed a tiny segment of the prokaryotic community in oil-contaminated seawater,
and their proportions were especially low in biostimulated oil-contaminated seawater,
where essentially only two Methanosarcina species survived, suggesting that archaea do not
contribute to oil hydrocarbon biodegradation in Arctic seawater.

The results of the current microcosm study show that nutrient addition has a positive
effect on the efficiency of crude oil biodegradation in cold conditions, indicating that
under field conditions, nutrient delivery via microencapsulation in slow-release particles,
combined with dispersants or biosurfactants, may improve biostimulation efficiency [64]
and provide a higher oil removal rate in cold seawater.

5. Conclusions

The variations detected in the estimates of bacterial community structure and taxa
proportions when comparing several different taxonomic classification methods indicate
that for Arctic marine microbial communities, direct comparisons between amplicon-based
and metagenome-based methods should be avoided or used with extreme care. The
metagenome-based classification methods yielded higher numbers of identified genera
including oil hydrocarbon degraders, possibly due to the false-positive classification of
taxa. However, as the estimated proportions of these genera are very small, they do not
notably interfere with the estimation of the dominant segment of the microbial community
that potentially contributes the most to oil hydrocarbon degradation in bioremediation
approaches. More crucial for the use of microbial community structure estimates for
bioremediation planning is the apparent overestimation of proportions of certain dominant
taxa involved in oil hydrocarbon degradation (e.g., Pseudomonas and Cycloclasticus) by
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metagenome-based classifiers. This suggests that amplicon and shotgun metagenomics-
based estimates should be accompanied by other methods with different backgrounds (e.g.,
qPCR) to achieve ecologically truthful estimates of particular taxa. In addition, the joint
analysis based on the integration of several estimates of microbial community structure
is less prone to variations in individual taxa proportion estimates provided by different
methods, and it can produce a consensus estimate of microbial community dynamics.
Based on our results, biostimulation with nutrients promotes naphthenic oil degradation
in Arctic seawater, but this strategy alone might not be sufficient to effectively achieve
bioremediation goals within a reasonable timeframe. Coupling nutrient addition with
the dispersion of oil into smaller droplets could enhance the oil degradation and thus the
environmental clean-up rate. However, the effect of adding a combination of nutrients
and dispersants on the microbial community structure and oil-degradation potential as
well alterations on metabolism of nitrogen, phosphorous and sulphur in Arctic seawater
requires further research.
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