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Microbial life in the oceans impacts the entire marine ecosystem, global biogeochemistry
and climate. The marine cyanobacterium Prochlorococcus, an abundant component
of this ecosystem, releases a significant fraction of the carbon fixed through
photosynthesis, but the amount, timing and molecular composition of released
carbon are still poorly understood. These depend on several factors, including
nutrient availability, light intensity and glycogen storage. Here we combine multiple
computational approaches to provide insight into carbon storage and exudation
in Prochlorococcus. First, with the aid of a new algorithm for recursive filling of
metabolic gaps (ReFill), and through substantial manual curation, we extended an
existing genome-scale metabolic model of Prochlorococcus MED4. In this revised
model (iSO595), we decoupled glycogen biosynthesis/degradation from growth,
thus enabling dynamic allocation of carbon storage. In contrast to standard
implementations of flux balance modeling, we made use of forced influx of carbon
and light into the cell, to recapitulate overflow metabolism due to the decoupling
of photosynthesis and carbon fixation from growth during nutrient limitation. By
using random sampling in the ensuing flux space, we found that storage of
glycogen or exudation of organic acids are favored when the growth is nitrogen
limited, while exudation of amino acids becomes more likely when phosphate
is the limiting resource. We next used COMETS to simulate day-night cycles
and found that the model displays dynamic glycogen allocation and exudation of
organic acids. The switch from photosynthesis and glycogen storage to glycogen
depletion is associated with a redistribution of fluxes from the Entner–Doudoroff to
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the Pentose Phosphate pathway. Finally, we show that specific gene knockouts in
iSO595 exhibit dynamic anomalies compatible with experimental observations, further
demonstrating the value of this model as a tool to probe the metabolic dynamic of
Prochlorococcus.

Keywords: constraint-based reconstruction and analysis (COBRA), flux balance analysis (FBA), computation
of microbial ecosystems in time and space (COMETS), cyanobacteria, exudation, gap-filling algorithm,
photosynthesis

INTRODUCTION

Marine phytoplankton perform about one-half of the
photosynthesis on Earth (Field et al., 1998). Prochlorococcus is
one of the most abundant phytoplankton clades in the world’s
oceans and is estimated to produce about 4 Gt of organic carbon
annually (Flombaum et al., 2013). As such, these clades play a
key role in a variety of ecosystems (Partensky and Garczarek,
2010; Biller et al., 2015). Recent evolutionary studies suggested
several evolved metabolic innovations contributing to high
picocyanobacterial abundance in the harsh oligotrophic ocean
waters, usually limited by several nutrients such as nitrogen,
phosphorus, and iron. These innovations include a proteome
that contains less nitrogen rich amino acids (Gilbert and Fagan,
2011), membranes that contain glyco- and sulfolipids rather
than phospholipids (Van Mooy et al., 2006) and streamlining of
the genome associated with outsourcing of important cellular
functions to co-occurring organisms (Holtzendorff et al., 2008;
Partensky and Garczarek, 2010; Morris et al., 2012; Ma L. et al.,
2018; Braakman, 2019).

Another innovation employed by these organisms is an
increased metabolic rate that in turn manifest in the exudation
of organic compounds (Fogg et al., 1965; Mague et al., 1980;
López-Sandoval et al., 2013; Braakman et al., 2017; Braakman,
2019; Moran and Durham, 2019). Typically, 2–25% of the
carbon fixed by photosynthesis is released by exudation from
the cell, although values as high as 90% have been reported
(Bertilsson et al., 2005; López-Sandoval et al., 2013; Roth-
rosenberg et al., 2019; Szul et al., 2019). This exudation,
combined with cell death, lytic viral infections, and grazing
debris made by predators (“sloppy feeding”), makes dissolved
organic matter of phytoplankton origin omnipresent in natural
waters (Thornton, 2014). However, it is currently impossible to
provide a universal chemical description of dissolved organic
matter (Kujawinski, 2011; Arrieta et al., 2015; Moran et al.,
2016), partly because the exuded organic compounds differ
between strains and environmental conditions (Becker et al.,
2014; Ma X. et al., 2018). Nevertheless, in general, phytoplankton
exudate includes a small proportion of low-molecular weight
compounds, such as organic acids, carbohydrates, and amino
acids (Bertilsson et al., 2005), as well as a larger proportion of
complex, high-molecular weight compounds (Kujawinski, 2011).
Another strategy employed by these bacteria to manage their
carbon budget is the internal storage of carbon in polymeric
form, specifically, glycogen (Zinser et al., 2009; Reimers et al.,
2017; Luan et al., 2019). The extent to which Prochlorococcus,
in particular, also stores glycogen has recently been measured,

showing increased glycogen pools (up to 40 fg cell−1) in nitrogen-
limited conditions compared to nitrogen-replete (Szul et al.,
2019). Glycogen accumulates in the bacterial cell during the light
hours and was recently suggested to have two primary roles; as
energy storage in preparation for darkness and as a regulation
strategy to manage high-light photosynthesis products (Welkie
et al., 2019). The allocation of glycogen is suggested to be tightly
associated with the overflow metabolism hypothesis and also
known to be widely affected by nutrient limitations (Damrow
et al., 2016; Cano et al., 2018; Forchhammer and Schwarz, 2019;
Szul et al., 2019). Importantly, the carbon fixed and released
by phytoplankton is then used by heterotrophic organisms as a
source of energy, whereas the heterotrophic bacteria may recycle
nutrient elements and support the growth of phytoplankton
in other ways, as suggested by the Black Queen Hypothesis
(Amin et al., 2012; Morris et al., 2012; Moran et al., 2016; Cirri
and Pohnert, 2019; Moran and Durham, 2019). Thus, carbon
fixation, storage and release are tightly intertwined with microbial
interactions and microbial ecosystem dynamics.

Quantitative models at various scales have provided critical
insights into how ocean microbial ecosystems function, and how
they are related to broader biogeochemical cycles (Deutsch et al.,
2007; Follows et al., 2007; Arteaga et al., 2016; Coles et al.,
2017; Foster et al., 2018; Moradi et al., 2018; Nicholson et al.,
2018; Braakman, 2019; Oschlies et al., 2019; Ward et al., 2019).
Most of these models represent organisms in terms of simplified
stoichiometric reactions converting elements into biomass, thus
making it possible to incorporate biological processes into
dynamic-coupled Earth System models (Follows et al., 2007;
Reid, 2012). The exponential increase in genomic information
on marine organisms provides an opportunity to seek methods
to link such detailed genome-scale information to biochemical
flows (Coles et al., 2017). In recent years, genome-scale metabolic
models (GEMs), combined with linear programming, have
made it possible to produce testable predictions of metabolic
phenotypes of individual organisms or microbial communities
(Gu et al., 2019). This computational framework is based on
the identification of individual enzymes and transporters in
an organism’s genome, and on simplifying assumptions that
bypass the need for kinetic parameters (Maarleveld et al., 2013;
O’Brien et al., 2015; Casey et al., 2016; Kim et al., 2016;
Reimers et al., 2017). While genome-scale modeling has proven
to be a powerful approach in cyanobacterial model organisms
such as Synechocystis sp. PCC 6803, Synechococcus elongatus
PCC 7942 and Prochlorococcus MED4 (Kettler et al., 2007;
Knoop et al., 2013; Broddrick et al., 2016; Casey et al., 2016;
Yoshikawa et al., 2017), the exudation of organic compounds in
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phototrophic organisms has not been studied in detail through
Flux Balance Analysis (FBA) or similar methods (Varma and
Palsson, 1994; Orth et al., 2010). On the other hand, several
examples exist of FBA-based predictions of exudation-mediated
interactions between different species, including those generated
using the Computational of Microbial Ecosystems in Time and
Space (COMETS) platform (Harcombe et al., 2014). In fact,
FBA calculations also suggest that “costless” secretions (i.e.,
secretions that do not induce a fitness cost) might be quite
common, and can support the growth of co-occurring organisms
(Pacheco et al., 2018).

Experimental evidence and theoretical considerations indicate
that Prochlorococcus exudes different metabolites in a way that
strongly depends on environmental conditions (Dubinsky and
Berman-Frank, 2001; Szul et al., 2019) as well as on the strain’s
genetic makeup (Becker et al., 2014; Roth-rosenberg et al., 2019).
While GEMs can be used to predict these fluxes, they require
modifications to deal with processes not usually considered in
FBA, including: (a) the special nature of photon fluxes [which,
unlike molecular fluxes, cannot easily be “shut off” at short time
scales (Dubinsky and Berman-Frank, 2001)]; (b) the buffering
role of intracellular storage molecules such as glycogen. The
primary focus of this study is to obtain better knowledge of
the potential metabolic effect of a combination of key nutrients
(carbon, nitrogen, phosphorous, and light) and carbon fixation
rate on the allocation (including storage and exudation) of carbon
in Prochlorococcus using a revised genome-scale metabolic model
(Figure 1). We start by describing model revisions and updates
to capture the current, most complete metabolic knowledge
available for Prochlorococcus. Next, we use a variety of FBA
approaches to uncover the potential relationships between a set of
key nutrients, carbon storage and exudates in static and dynamic
(time dependent) settings. The implementation and use of these
approaches improve our understanding of the intricate metabolic
workings of Prochlorococcus and provide insights on its storage
and exudation trends under different environmental conditions.

MATERIALS AND METHODS

Model Update and Curation
The iJC568 genome-scale reconstruction of Prochlorococcus
marinus subsp. pastoris str. CMP1986 (referred to throughout the
manuscript as MED4) as described by Casey et al. (2016), was
used as the starting point for model enhancement. The update
process started with an in-depth study of the reconstructed
network and available knowledge not previously incorporated
into the model of the organism. During this process, we ended
up implementing the following specific steps of curation and
update: (i) A key modification to the model was the decoupling
between the glycogen storage flux and the biomass production.
In standard stoichiometric reconstructions for FBA modeling
(Thiele et al., 2011; Nogales et al., 2012; Feist et al., 2014;
Broddrick et al., 2016; Monk et al., 2017; Kavvas et al., 2018),
glycogen is listed as one of the biomass components, thus
accounting for the carbon flux into storage. However, given
the fixed stoichiometry of biomass composition, this classical

implementation cannot account for the time-dependent storage
and re-utilization of glycogen observed in picocyanobacteria.
We thus removed the glycogen from the biomass function
and streamlined the existing glycogen granule representation
to a direct link between ADP-Glucose to the production of
glycogen (Figure 1B). (ii) In addition to targeted refinement
of selected reactions, we used the KEGG database (Kanehisa
and Goto, 2000) to perform an extensive search for previously
known but missing metabolic reaction annotations. Indeed, we
found 354 reactions that could be potentially added to the
existing network. To incorporate this knowledge, we developed
a semi-automated algorithm (ReFill, described below). (iii) We
coupled the implementation of the algorithm with several steps
of manual curation. These included the addition of transports,
such as that of hydrogen peroxide and ethanol, known to
diffuse across the cell membrane (Seaver and Imlay, 2001;
Noreña-Caro and Benton, 2018), and the addition of the
complete Entner–Doudoroff pathway, that has recently been
discovered in cyanobacteria (Chen et al., 2016). Additionally,
we performed a BLAST search (Supplementary Material 1)
(Altschul et al., 1990) from which we identified 6PG-dehydratase
(EC: 4.2.1.12) encoded by PMM0774, thereby completing
this pathway in the model reconstruction. (iv) The revised
model was checked for redox and elemental balance. Since
the biomass function was based on experimental data (Casey
et al., 2016), it was not updated. In line with best practices, a
memote quality assessment (Supplementary Material 2) (Lieven
et al., 2020), as well as model files and a detailed changelog,
are provided at https://github.com/segrelab/Prochlorococcus_
Model. All reactions added to iJC658 to form iSO595 are found
in Supplementary Table 1 and modified reactions are found in
Supplementary Table 2.

ReFill Algorithm
Following an extensive search of literature and the KEGG
(Kanehisa and Goto, 2000), TransportDB (Elbourne et al., 2017)
and Metabolights (Haug et al., 2013) databases, we found a
large number of new or previously known but missing reaction,
transporter, and metabolite annotations. Adding large amounts
of data to an existing network might create new gaps and may
give rise to new blocked reactions and orphan metabolites that
in general reduce model quality and can convolute later curation
efforts, quality control or assessment of model predictions. To
add this knowledge to the network in a controlled approach,
we developed the semi-automated recursive algorithm ReFill
(Recursive Filler of metabolic gaps). The algorithm is based
on the principle of using diverse information, such as enzyme
and reaction annotations, and experimental data (such as
metabolomics), to selectively increase the metabolic knowledge of
an organism’s existing curated genome-scale metabolic network.
ReFill makes use of a repository of reactions, in this case
KEGG reaction annotations for MED4 absent from the model,
to construct all potential chains of reactions connecting two
metabolites in the existing network. It systematically tests the
potential of adding each new reaction and suggests adding it
only if it can be a part of a chain in which all the metabolites
are part of a path in the network (Figure 2). This prevents
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FIGURE 1 | iSO595 is an updated reconstruction of Prochlorococcus marinus MED4, featuring a complete Entner–Doudoroff pathway, rewired glycogen
metabolism and increased coverage of the genome. The central panel is a simplified illustration covering the most relevant metabolic features. (A) To simulate the
natural environmental constraints experienced by Prochlorococcus we use “Push-FBA”: Light and bicarbonate uptake are given a fixed flux independent of growth
rate. This contrasts standard FBA where light and bicarbonate would be “pulled” in by the demand needed to support maximal growth rate up to a given bound.
(B) We rewired the glycogen metabolism in iSO595 to study the dynamic allocation the dynamic allocation of glycogen. (C) Additionally, we implemented dynamic
light conditions and light absorption in COMETS to simulate the growth of P. marinus during the diel cycle. (D) iSO595 has increased coverage both in terms of
genes, reactions and metabolites compared to its ancestor iJC568.

the creation of new orphan metabolites and potential blocked
reactions. The algorithm starts by selecting a reaction from
the repository. It then inspects each metabolite in the reaction
for presence in the existing network. In case a metabolite is
not present, the set of available reactions is scanned for other
reactions using this metabolite as a substrate or product. If such
a reaction is found, it is added to the chain of potential reactions.
The algorithm then iteratively expands the chain until either
the repository is exhausted or all the metabolites in the most
recent reaction added are present in the network. After all the

possible chains of new reactions are expanded, the algorithm
examines the connectivity of all the metabolites in each chain
(see example in Figure 2B). Following the manual addition
of transporters found through TransportDB (Elbourne et al.,
2017) and Metabolights (Haug et al., 2013) (Study MTBLS567),
using the ReFill algorithm, we updated reactions that belong to
several different pathways, including metabolism of cofactors and
vitamins, carbohydrate metabolism, amino acid metabolism and
nucleotide metabolism. A complete list of added reactions can
be found in Supplementary Table 1. ReFill was coded in python
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FIGURE 2 | Schematic description of the ReFill algorithm. New reaction annotations are added only if all the metabolites are connected to the existing network.
A connected metabolite is denoted in a green circle. An orphan (unconnected metabolite) is denoted in a red circle. (A) A simple case in which all the metabolites
comply with the selection rule. (B) In case one or more metabolites are not connected to the existing network, other new reactions may be added to complete the
missing connections. For example, consider reaction a to be composed of two substrates and two products, one of which, x (a metabolite that did not exist in the
initial network), is not connected to the existing network and is currently an orphan. After the expansion step, the algorithm identified one reaction, b, in which x is
used as a substrate. All other metabolites in b exist in the network thus creating a path from reaction a through reaction b to the network.

3.7 and generates MATLAB-compatible files formatted to be used
with the COBRA Toolbox (Heirendt et al., 2019), including a list
of suggested reactions to add and their gene-reaction rules. Other
outputs include the added reaction chains and possible metabolic
circuits that can be formed by these additions.

Parameter Sampling
To study the effects of combinations of key nutrients on
glycogen production and exudation in the iSO595 model
we focused on four parameters representing the uptake
fluxes of light, bicarbonate, ammonium, and phosphate. Light
and inorganic carbon (bicarbonate) are the substrates for
photosynthesis, whereas nitrogen and phosphorus limit the
growth of Prochlorococcus in large regions of the world ocean
(Davey et al., 2008; Moore et al., 2013; Saito et al., 2014),
and nutrient limitation is likely to influence the exudation of
fixed carbon (Dubinsky and Berman-Frank, 2001). We sampled
10,000 different environmental conditions by drawing random
values from uniform distributions of these four parameters.
The range of each parameter was based on physiologically
relevant ranges we extracted from the literature and on the
requirement that each range covers important phase transitions,
such as nutrient and light limitations (Supplementary Table 3).

Light flux was converted from micromole quanta m−2 sec−1 to
mmol gDW−1h−1 similarly to Nogales et al. (2012) using 8%
photosynthesis efficiency rate (Zinser et al., 2009). All uptake
flux parameters are described in FBA-compatible units (mmol
gDW−1h−1), while corresponding values in biogeochemistry
relevant units are illustrated in Supplementary Table 3. As
MED4 is a photoautotroph, it is exposed to a constant stream
of light during daylight hours. The bacterium is then forced, or
‘pushed,’ to fix carbon even when there is not enough of other
elements, such as nitrogen or phosphate, to combine the fixed
carbon into biomass. To capture this phenomenon in silico we
developed a ‘push’-FBA framework where we fixed both upper
and lower uptake rates of light and bicarbonate (Figure 1A).
For the other sampled nutrients, ammonium and phosphate, we
defined standard FBA bounds where the maximal uptake rate
was set to the sampled value and the lower bound was set to
zero. Note that we only considered uptake of sulfur in the form
of sulfate (not hydrogen sulfide), and no upper limit was set
for the uptake of sulfate because of its abundance in seawater.
The maximum rate of RuBisCO (R00024) was fixed to 4.7 mmol
gDW−1 h−1, as previously reported (Casey et al., 2016). Before
sampling we blocked a set of artificial exchange reactions that
were added in the previous version of the model, most likely
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to allow export of dead-end metabolites that would otherwise
limit flux feasibility (Supplementary Table 4). Subsequently, we
removed all unconditionally blocked reactions in the model to
speed up computations. For each random sample, we first tested
the model for feasibility using FBA (Varma and Palsson, 1994). If
the solver returned a solution that was feasible and optimal, we
further calculated optimal fluxes with parsimonious FBA (Lewis
et al., 2010), and determined the range of possible fluxes at
optimum with Flux Variability Analysis (FVA) (Gudmundsson
and Thiele, 2010). Exchange fluxes from FBA, parsimonious
FBA and FVA were recorded and used in subsequent analyses.
All environmental sampling and calculations were performed
using CobraPy (Ebrahim et al., 2013) and GUROBI 8.1.1 (Gurobi
Optimization, Inc., Houston, TX, United States).

Statistical Analysis of the Sampled
Spaces
We sampled 10,000 different environmental conditions based
on the flux ranges described above, and analyzed the results
of FBA optimization, with the goal of characterizing the
distribution of, and correlation between, specific exchange
(import/export) fluxes. To that end, we calculated Pearson
correlations between exchange reaction fluxes in the sampling
data using the python (version 3.7) Pandas package version
1.0.3 (McKinney, 2010). While negative values are normally
used to define uptake in FBA, we converted them to
positive values for the uptake of light, bicarbonate, phosphate,
ammonium, and sulfate when calculating correlations to ease
interpretation of the results. We also performed hierarchical
clustering using the Nearest Point Algorithm in SciPy (Virtanen
et al., 2020) to sort the order of the compounds in the
correlation matrix.

We performed dimensionality reduction on normalized
exchange reaction fluxes using the T-distributed Stochastic
Neighbor Embedding (t-SNE) method (van der Maaten and
Hinton, 2008) in Scikit-learn (Pedregosa et al., 2011) with
perplexity of 50 and 3,000 iterations. The reaction fluxes were
normalized to [−1,1] by dividing by the maximum absolute
flux value of each reaction to ensure a consistent influence
on the t-SNE results from the different exchange reactions.
We considered other normalization schemes, in particular
standardization, but found that it was preferable not to center
the data to easily discriminate uptake and exudation without
further modifications in subsequent data visualization. Finally,
the t-SNE transformed data was clustered using HDBSCAN
(McInnes et al., 2017) with a minimum cluster size of
200. Transport of inorganic ions, water, and protons were
not considered when calculating correlations, dimensionality
reduction or clustering. We also discarded transport reactions
with no absolute flux value above 10−3 mmol gDW−1 h−1 in any
of the environmental samples.

Dynamic Modeling of Light Absorption
During the Diel Cycle in COMETS
Cyanobacteria follow a diel cycle. To capture this dynamic
behavior, we extended the Computation Of Microbial Ecosystems

in Time and Space (COMETS) platform (Harcombe et al., 2014;
Dukovski et al., 2020), and developed a module for diurnal-
cycle simulations allowing oscillations of light intensity and
light absorption. Attenuation of light through each grid cell was
modeled using the Beer–Lambert law, as described previously
(Yang, 2011; Gomez et al., 2014):

I (t, z) = I0(t)e−(aw+adwX(t))z (1)

Here, I(t, z) is the light irradiance given in
mmol photons m−2 s−1, t is the time, z is the depth (from
the top of the grid cell), adw is the cell- and wavelength-specific
absorption coefficient given in m2 gDW−1, aw the absorption
coefficient of pure water given in m−1, X(t) the biomass
concentration in gDW m−3, and I0 (t) the time-dependent
incident light irradiance at the top of the grid cell. In the current
version, we simplified the process by assuming that the light
irradiance is either monochromatic or a sum of the total light
bandwidth, and the absorption coefficient should match the
wavelength(s) of the light source. The total light attenuation (1I)
through a grid cell of thickness 1z is then

1I (t) = I (t, 0)− I (t, 1z) = I0
(

1− e−(aw+adwX(t))1z
)

(2)

The light absorbed by the cells is a fraction of the total light
attenuation, i.e.,

Iabs (t) =
1I(t) · adwX(t)
aw + adwX(t)

. (3)

The total number of photons absorbed per dry cell weight [8(t)]
in mmol photons gDW−1 s−1 by the cells within a grid cell of
thickness 1z, volume V, and surface area A is then

8 (t) =
Iabs (t) · A
X(t) · V

=
I0 (t)
1z

adw

aw + adwX(t)

(
1− e−(aw+adwX(t))1z

)
.

(4)
For all COMETS simulations presented here we have used

monochromatic light at 680 nm with a calculated biomass-
specific absorption coefficient adw as previously described (Morel
and Bricaud, 1981; Bricaud et al., 2004). Briefly, the biomass-
specific absorption is the weighted sum of the absorption
coefficients of the light-absorbing pigments divinyl-chlorophyll
A and B, since none of the other pigments in Prochlorococcus
absorb light at 680 nm. Additionally, to account for the discrete
distribution of chlorophyll into separate cells, the absorption
coefficient is scaled by the packaging factor. All coefficients
used to calculate light attenuation and absorption are provided
in Table 1.

The changing light conditions throughout a diel cycle was
modeled as

I0 (t) = Amax(sin (ωt) , 0), (5)

where the angular frequency is ω = 2π
T .

Following the development of the diel cycle simulation
capability in COMETS we set out to dynamically simulate the
growth of MED4. Since the nutrient uptake follows Michaelis–
Menten kinetics, we estimated the kinetic parameters Vmax
and Km using a heuristic approach from experimental data
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TABLE 1 | Coefficients and values used to calculate light absorption in COMETS.

Symbol Description Value Unit Reference

λ Wavelength 680 nm

aw Absorption coefficient of water at 680 nm 0.465 m−1 Pope and Fry, 1997

adw Biomass-specific absorption coefficient 0.285 m2 gDW−1

advchl−A Absorption coefficient of divinyl-chlorophyll A at 680 nm 0.0184 m2 (mg dvchl-A)−1 Bricaud et al., 2004

advchl−B Absorption coefficient of divinyl-chlorophyll B at 680 nm 0.0018 m2 (mg dvchl-B)−1 Bricaud et al., 2004

cdvchl−A Amount of divinyl-chlorophyll A 0.0163 g dvchl-A gDW−1 Casey et al., 2016

cdvchl−B Amount of divinyl-chlorophyll B 0.0013 g dvchl-B gDW−1 Casey et al., 2016

d Average diameter of MED4 0.6 µm

n′ Imaginary part of the refractive index at 675 nm 0.01377 Stramski et al., 2001

Q* Packaging effect at 680 nm 0.945

(Grossowicz et al., 2017), first by finding the range of possible
parameter combinations corresponding to the gross growth
rate of 0.5 d−1 (Supplementary Figure 1A), and secondly by
comparing predicted growth and ammonium depletion with
the experimental time-series cultivation data (Supplementary
Figures 1B,C). The estimated parameters were used in the
remaining dynamic FBA simulations in COMETS. Finally, to
simulate the dynamic storage and consumption of glycogen
we applied a multiple objective approach consisting of the
following four steps: (1) Maximization of the flux through the
non-growth associated maintenance reaction. Note that, this
reaction has an upper bound of 1 mmol gDW−1 h−1 (Casey
et al., 2016). In contrast to standard practice, where one uses
a lower bound for the non-growth associated maintenance
reaction, this method provides a more realistic scenario where
the organism continues to consume resources trying to keep
up cellular maintenance even at zero growth; (2) Maximization
of growth; (3) Maximization of glycogen production (storage);
and (4) Parsimonious objective which minimizes the sum of
absolute fluxes. To simulate nitrogen-abundant and nitrogen-
poor growth conditions, we used the PRO99 medium with
standard (800 µMol) and reduced (100 µMol) ammonium
concentration, as previously described (Grossowicz et al., 2017).
Light availability was modeled as described in Equation 5,
with an amplitude of 40 µmol Q m−2 s−1 and a period of
24 h. We also incorporated a death rate of 0.1 d−1, similar to
previous modeling efforts on Prochlorococcus (Grossowicz et al.,
2017). All parameter values used in the COMETS simulations
are given in Supplementary Table 5. All dynamic growth
simulations were performed using COMETS v.2.7.4 with the
Gurobi 8.1.1 solver, invoked using the associated MATLAB
toolbox1.

Simulating Growth of Knockout Mutants
Simulations of the knockout mutants where performed by
constraining the flux to zero for the reactions catalyzed by the
enzymes encoded by glgC (PMM0769) and gnd (PMM0770),
respectively. For glgC, the reaction is glucose-1-phosphate
adenylyltransferase (R00948) and for gnd the two reactions
are NADP+ and NAD+ associated 6-phosphogluconate

1https://github.com/segrelab/comets-toolbox

dehydrogenases (R01528 and R10221). We then used dynamic
FBA in COMETS with PRO99 medium (Moore et al., 2007) with
limited ammonium and diel light conditions to simulate growth
over 7 days. The growth curves where qualitatively compared
with experimental data from Shinde et al. (2020).

RESULTS AND DISCUSSION

Model Curation and Update
Prochlorococcus fixes carbon through photosynthesis during
daytime. Fixed carbon that is neither used for cell growth nor
stored in the form of glycogen is exuded. Here, we set out to
study dynamic changes in the carbon allocation and storage
mechanisms in MED4 using a genome-scale metabolic modeling
approach. To that end, we first re-curated and updated the
available iJC586 model (Casey et al., 2016), as described in detail
in the “Materials and Methods” section. The update involved
the development of a new semi-automatic algorithm (ReFill),
which can be broadly applied to other reconstructions (see
section Materials and Methods). Concurrently, we introduced
a revised mechanism for carbon storage, effectively treating
glycogen as an independent component of biomass. This
dynamic implementation of glycogen storage, introduced here
in dFBA, makes it possible for glycogen to be accumulated
and depleted at variable rates (Figure 1), aligning with the
overflow metabolism hypothesis (Szul et al., 2019; de Groot
et al., 2020). Other key modifications induced by the ReFill
algorithm and subsequent manual curation (see section Materials
and Methods) include the completion of the Entner–Doudoroff
(ED) pathway, recently discovered in cyanobacteria (Chen et al.,
2016) and proposed as the primary Prochlorococcus glucose
metabolism pathway under mixotrophic conditions (Biller et al.,
2018; Muñoz-Marín et al., 2020). Additional revisions focused on
the exudation of fixed carbon products from the cell and included
various transports such as pyruvate, fumarate, citrate, ethanol,
various nucleotides and hydrogen peroxide as well as metabolites
found in both the endo- and exo- metabolome of Prochlorococcus
(Metabolights study MTBLS567). The end product of our
revision, reconstruction iSO595, has 595 genes, 802 metabolites
and 994 reactions, i.e., 27 genes, 123 metabolites and 196
reactions more than the previous version, iJC568 (Figure 1D).
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Carbon Fixation and Storage Are
Affected by Nutrient Uptake Rate
Prochlorococcus thrive in oligotrophic environments (Johnson
et al., 2006), where, in surface waters, its growth and carbon
fixation rates are usually limited by the abundance of nitrogen,
phosphate or iron (Krumhardt et al., 2013; Saito et al., 2014;
Szul et al., 2019). Deeper in the water column Prochlorococcus
growth becomes limited by light (Vaulot et al., 1995). We set
out to explore the combined effect of different levels of light and
nutrients on carbon fixation, storage and exudation. Similarly
to Phenotypic Phase Plane analysis (Edwards et al., 2002), we
sought a global perspective of metabolism in this multi-parameter
spaces while explicitly taking into account the fact that the
inflow of light and bicarbonate may not be easily controllable
by the cell, and that Prochlorococcus may need to deal with
excess amounts of fixed carbon. Thus, in contrast to normal
FBA where the uptake of metabolites is constrained by an upper
bound, we introduced a ‘push- FBA’ approach (Figure 1A), in
which the influx of bicarbonate and light have a fixed imposed
value (see section “Materials and Methods” and Supplementary
Table 3 for specific values used). This approach attempts to mimic
implications of photosynthesis, in which light is the driving
force. Once photons are absorbed by the chlorophyll in the
photosynthetic reaction centers, most of the energy must be used
to produce ATP and reducing power, otherwise it is dissipated
in ways that may cause cell damage (Long et al., 1994). We
note that this modeling approach over-simplifies the complex
process of photosynthesis; for example, we do not account for
the dynamics of photoprotective pigments, which allow some of
the incident photons to be dissipated as heat. Indeed, the ratio
of the photoprotective pigment zeaxanthin to divinyl chlorophyll
a increases under nitrogen starvation, suggesting that, under
these conditions, some of the photon flux may be diverted from
the reaction centers (Steglich et al., 2001; Roth-rosenberg et al.,
2019). Nevertheless, Prochlorococcus undergo photoinhibition at
high light intensities (Moore et al., 1995; Mella-Flores et al.,
2012), despite the presence of photoprotective pigments and
other protection mechanisms such as cyclic electron flow [which
is represented in the model (Casey et al., 2016)]. Thus, these
mechanisms do not allow the cell to fully control the flux of
photons through the photosystem and the resulting fluxes in ATP
and reducing power, in a manner that is reflected in the push-FBA
approach. This subtle difference in applied constraints has major
effects on model predictions. While flux rearrangement is usually
viewed as a consequence of environmental nutrient limitations,
the results of this analysis show that a substantial rewiring of
fluxes is caused by this imposed excess of fixed carbon as well.

To understand how different combinations of environmental
parameters (availability of nitrogen, phosphate, light and
bicarbonate) affect the way Prochlorococcus can manage its
carbon budget, we implemented FBA under 10,000 randomly
sampled growth environments. Overall, this sampling analysis
demonstrated that the exudation of organic acids, amino-
acids, and nucleobases/nucleosides, as well as the extent of
glycogen storage, are strongly modulated by environmental
factors (Figure 3). To observe the full range of possible optimal

solutions per sample, we implemented and compared different
flux balance analysis methods, including flux variability analysis
(FVA) and parsimonious FBA (pFBA). These two methods
provide complementary insight: FVA estimates the range of
possible values for the flux of each reaction at the optimum,
providing insight into the structure of the phenotypic space
at maximal growth rate. In contrast, pFBA, by minimizing
the sum of fluxes at optimality, generates flux predictions less
likely to involve unrealistic loops, and thus potentially provides
predictions closer to experimental values (Lewis et al., 2010).
Together, these two FBA methods help analyze the solutions of
our high-dimensionality dataset.

Our predictions simulate the metabolic effects and variability
in glycogen production modulated by environmental constraints
(Figure 3). Glycogen production was observed only above light
levels of 50 mmol gDW−1 h−1 (corresponding to 7.5 micromole
quanta m−2 sec−1), and decreased as ammonium and phosphate
concentrations increase. These observations do not contradict
previous evidence showing increased glycogen accumulation in
faster growing cyanobacteria (Zavřel et al., 2019), rather they
align with previous studies finding that glycogen storage is
enhanced in nutrient-limiting conditions (Monshupanee and
Incharoensakdi, 2014; Szul et al., 2019). Interestingly, FVA
consistently predicted the glycogen production range minimal
value to be zero across all samples. This implies that glycogen
storage is possible, but not necessary to achieve optimal growth
in the feasible solution space. This was also the case in the more
stringent pFBA analysis, indicating that while metabolism may
be a strong modulator of glycogen metabolism, more types of
regulation, not accounted for in FBA, are involved. One example
of such regulation may be allosteric regulation of ADP-glucose
pyrophosphorylase by 3-phosphoglycerate (Iglesias et al., 1991),
possibly in combination with redox regulation (Díaz-Troya et al.,
2014). Specific regulation aimed at tuning up glycogen storage
may also occur at the transcriptional level, e.g., by multiple
transcription factors previously suggested to be involved in the
regulation of glycogen metabolism in fluctuating environments
(Luan et al., 2019).

The range of possible rates of glycogen production (through
FVA) displays a bell-shaped bicarbonate-dependent distribution,
indicating low storage of glycogen (zero flux) under both low
and high uptake rates of bicarbonate. When bicarbonate uptake
rates are low, all available carbon is diverted into growth. The
reduced glycogen storage at high bicarbonate uptake, when
RuBisCO is saturated, seems to be caused by the increased
ATP demand associated with the conversion of bicarbonate to
exudation-products, since the onset and rate of change of this
trade-off is modulated by the ATP availability, as demonstrated
by phenotypic phase planes analysis (Supplementary Figure 2).
This agrees with recent work suggesting that Prochlorococcus
use available ATP to drive pathways to saturation by shifting
reaction directions toward favoring dephosphorylation of ATP to
ADP, disrupting the cellular ATP/ADP ratio and increasing the
metabolic rate of the cell by pushing forward ATP consuming
reactions, until it is restored. Together with organic carbon
exudation this strategy allows for growth in lower nutrient
concentrations (Braakman, 2019).
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FIGURE 3 | Histograms of environmental sampling results provide insight into how the fixed uptake rates of light and bicarbonate and the upper bounds on
ammonium and phosphate affect exudation of organic acids, nucleobases and nucleotides, amino acids as well as glycogen storage. The y-axis represents the
fraction of all sampled environments yielding feasible models. Although we initially sample each parameter uniformly the final sample distribution is not uniform
because some combinations of parameters represent infeasible phenotypes (no solution can satisfy the constraints). The final sample distribution for each parameter
is therefore shown in the figure panels as a blue line. The black and red lines represent the histograms of samples where exudation is predicted by FBA and pFBA,
respectively. The shaded green region represents the span between histograms of samples as predicted by FVA: the lower and upper bounds represent the number
of samples where exudation is predicted using the minimum and maximum value of FVA, respectively. This FVA region covers the range of possible phenotypes. The
lower bound of the FVA region displays the number of samples where a certain outcome is obligatory to maximize growth, while the upper bound of the FVA region
displays the number of samples where the outcome is possible without reducing growth.

We next sought to explore the effect of combinations of key
nutrients on storage and exudation patterns in our sampling
spaces. To that end, we visualized the data using t-SNE clustering

(Figure 4A). To explore the strongest trends, we chose to
employ a high stringency approach and use only our set of
pFBA results in this context. Due to the nature of pFBA,
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FIGURE 4 | T-SNE clustering identifies typical phenotypes from the pFBA results from the random samples. (A) The random samples are reduced into two
dimensions with t-SNE. We have subsequently used HDBSCAN to cluster the data. HDBSCAN identified six disjoint clusters which represent different phenotypes.
(B) For each of the six clusters the mean uptake or exudation across all samples within the respective cluster is shown. Only exchange reactions with an absolute
flux above 1e-3 mmol gDW−1 h−1 in any of the random samples are included.
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any exudation observed in this analysis could not be easily
removed without imposing a cost on growth. We observed
6 typical phenotypes (clusters) rising out of the sampling
spaces (Figure 4). These 6 phenotypes are characterized by
subtle differences in combinations of environmental parameters,
yielding significantly different exudation patterns. Generally, we
observed the highest biomass value in phenotype 5, and the
lowest in phenotype 4. All key nutrient uptake rates were highly
variable (ranging from 33 to 44% variability). Phenotype 1 is
characterized by high light, bicarbonate, a maximum RuBisCO
flux (indicating maximal photosynthesis rate) but low nitrogen
uptake. Additionally, we observed high exudation of pyruvate
coming from the pentose phosphate and Entner–Doudoroff
pathways. Both are alternative routes coming out of carbon
fixation (Waldbauer et al., 2012; Chen et al., 2016). Together with
a low biomass value, this phenotype might indicate a scenario of
exudation due to overflow metabolism.

The two largest clusters (numbers 2 and 3, Supplementary
Figure 3), tie together high and low light, carbon and nitrogen
uptake rates, and different exudation patterns. Interestingly,
phenotype 3 (high light) showed exudation of fumarate and
malate while phenotype 2 (low light) did not. Recent work
suggested that, in high light conditions, fumarate is generated
through oxaloacetate and malate creating a broken acyclic form
of the TCA cycle, while in the dark, fluxes are diverted into
forming the cyclic form of it. This low light form of the TCA
cycle is then active and works toward energy generation (Xiong
et al., 2017). Similarly, we observed two forms of the TCA cycle
in the high and low light phenotypes (2 and 3, respectively)
with a difference in the direction of one reaction (KEGG
R00342, Supplementary Figure 3). Phenotype 2, describing low-
light conditions, showed the L-Malate/oxaloacetate balance to
shift in favor of oxaloacetate, completing the route toward 2-
Oxoglutarate, a key metabolite known to act as a starvation signal
and modulator of the C/N balance in cyanobacteria (Domínguez-
Martín et al., 2018; Zhang et al., 2018), and subsequently into
energy generation. On the other hand, Phenotype 3, describing
high light conditions, showed the L-Malate/oxaloacetate balance
to shift in favor of L-Malate and away from the formation of
2-oxoglutarate. In both phenotypes fumarate is converted to L-
Malate. While in Phenotype 2 it is fed into a semi-cyclic form of
the TCA cycle, fumarate is partly exuded and partly converted to
L-malate in phenotype 3, in agreement with overflow metabolism.

We observed a similar TCA cycle flux distribution in
phenotype 4 as in phenotype 3, leading to high exudation of
L-Malate. Interestingly, Phenotype 1 and 4 are comparable in
all key nutrients except light (High in phenotype 1 and low in
phenotype 4). As a result of an in-depth flux distribution analysis,
we observed a reaction direction change in UDP-glucose:NAD+
6-oxidoreductase [R00286, EC 1.1.1.22, PMM1261] between the
two phenotypes. In phenotype 4 this reaction shifted toward
the creation of UDP-glucose, a precursor for the production of
glycogen (due to the high stringency of this analysis we did
not observe the direct formation of glycogen). In phenotype 1,
this reaction favored the formation of UDP-glucuronate which
in turn was diverted into the formation of amino sugars. These
phenotypes may correlate to the 12:00 (phenotype 1) and 16:00

(phenotype 4) scenarios described in Szul et al. (2019). Finally,
Phenotypes 5 and 6 may represent a high-light nutrient-rich
environment resulting in a high biomass value.

Nutrient Uptake Rates Modulate
Exudation of Organic Compounds
The use of genome-scale metabolic models captures a
comprehensive picture of the metabolic processes taking place
in the cell, including those that lead to metabolite exudation.
From the random sampling of environmental conditions, we
identified conditions in which organic acids must be exuded.
This was noticeable by a non-zero lower bound of the FVA
region (Figure 3). Interestingly, organic acids were more likely
to be exuded when the growth became limited by phosphate or
nitrogen. Since Prochlorococcus is known to thrive in oligotrophic
ocean gyres where nitrogen or phosphate is limited (Partensky
et al., 1999; Flombaum et al., 2013), this represents a likely
natural phenotype, and as such, supports previous findings
(Bertilsson et al., 2005; Szul et al., 2019). Costly metabolites,
essential for cell survival and growth, such as amino acids,
nucleobases and nucleotides, tend to be exuded in nitrogen
and carbon rich conditions and might be a result of overflow
metabolism (Cano et al., 2018; Pacheco et al., 2018). To explore
this phenomenon in further detail, we looked into exudation
patterns of specific metabolites as a function of key nutrient
limitations (Figure 5). Of the environmental factors, the uptake
of nitrogen (ammonium) is a decisive factor differentiating
between exudation of organic acids or amino acids. While it
is positively correlated with the exudation of nitrogen-rich
compounds such as amino acids, it is negatively correlated with
exudation of organic acids and glycogen. Additionally, glycogen
formation is positively correlated with the exudation of malate,
citrate, fumarate, and succinate, which are most of the TCA cycle
constituents. This is in line with previous findings suggesting
the re-direction of carbon metabolism toward the formation
of macromolecules (including glycogen) in nitrogen limiting
conditions (Forchhammer and Selim, 2019; Szul et al., 2019).
Thus, our reconstruction captured known possible aspects of the
carbon/nitrogen balance in Prochlorococcus.

Finally, we observed a general pattern of strong positive
correlations between amino acids, nucleobases, nucleosides, as
well as a range of other compounds. In an interesting deviation
from this general pattern, L-aspartate showed a decreased
correlation with other exudates. L-aspartate, together with its role
in protein nucleic acid biosynthesis, can serve as a precursor
for nitrogen storage metabolites such as polyamines (Szul
et al., 2019). Indeed, we observed a slightly stronger correlation
between L-aspartate and the uptake of nitrogen compared
to other amino acids. Finally, In contrast to other amino
acids, L-aspartate is negatively correlated with light uptake and
hydrogen peroxide exudation. Hydrogen peroxide is produced
from L-aspartate and oxygen by L-aspartate oxidase [R00481, EC
1.4.3.16, PMM0100]. L-amino acid oxidases have been previously
described in cyanobacteria and have been related to the use of
amino acids as carbon sources (Campillo-Brocal et al., 2015). The
production of hydrogen peroxide is also strongly correlated with
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FIGURE 5 | Correlations between maximal FVA values demonstrate which compounds can be secreted in similar environmental conditions. There are two clearly
correlated groups of compounds: The first group comprises nucleobases, nucleotides, and amino acids while the second contains organic acids, glycogen and
glycerol 3-phosphate. From the correlation of each of these groups with the uptake bounds on ammonium and phosphate we observe that these factors determine
which of the groups can be secreted. Note that the environmental constraints have been converted to positive values prior to calculating the correlation.

light, a result consistent with the expectation that reactive oxygen
species are created during photosynthesis.

Dynamic Allocation of Carbon Storage
Nutrient and light limitations are well-known modulators of
carbon storage in Prochlorococcus (Zinser et al., 2009; Szul
et al., 2019). Recent work has suggested the storage of carbon
to be one of the major metabolic tasks during the day-night
cycle (Cano et al., 2018; Szul et al., 2019; Shinde et al., 2020).

To explore time-modulated trade-offs and trends related to
carbon storage, we performed in silico dynamic FBA diel-cycle
simulations using the Computational of Microbial Ecosystems
in Time and Space (COMETS) platform (Harcombe et al., 2014;
Dukovski et al., 2020). COMETS is a population-based dynamic
FBA implementation that can simulate growth of millions of
cells, but it is important to note that the framework assumes
continuous growth on a mesoscopic scale and does therefore
not explicitly account for individual cells nor regulated cell
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cycle events such as cell division. COMETS relies on uptake
flux kinetic information such as Km and Vmax to simulate
the spatial growth and exudation patterns of microbes in a
simulated discretized time course. To improve the accuracy and
biological relevance of our simulations we used kinetic constants
either obtained from experimental measurements reported in
the literature (Krumhardt et al., 2013; Hopkinson et al., 2014)
(Supplementary Table 3) or from fitting model simulations to
measured growth and depletion of ammonium rates (Grossowicz
et al., 2017). We found Km and Vmax values of 0.39 mM and
0.9 mmol gDW−1 h−1 for the uptake of ammonium to best fit
the experimental data (Grossowicz et al., 2017) (Supplementary
Figure 1). Surprisingly, the estimated Km value is 3 orders
of magnitude larger than previous estimates (Marañón et al.,
2013). This deviation might occur due to several reasons.
First, our estimates are based on the assumption that growth
is indeed limited by the availability of ammonium and that
Prochlorococcus operates at a metabolic state close to optimal
growth. Other limiting factors or non-optimal growth may lead
to incorrect estimates. Nevertheless, it is challenging to fit Km
values accurately from batch cultivation data, as this parameter
only becomes dominant in the short time-period immediately
prior to nutrient depletion. Furthermore, the accuracy of the
fitted Km value can suffer from the rather high uncertainty in
the measured ammonium concentrations, although not more
than 2 orders of magnitude (Supplementary Figure 1). Finally,
we raise the possibility that Prochlorococcus may possess several
ammonium transporters with different affinity as previously
observed in marine eukaryotic phytoplankton (McDonald et al.,
2010) and cyanobacteria (Kashyap and Singh, 1985). To account
for this uncertainty we assessed the sensitivity of our dFBA
simulations to variation in the value of Km, in combination with
variation in the maximum uptake rate of ammonium (Vmax),
ammonium concentration and light intensity (Supplementary
Figure 4). The parameters that dictate light absorption (Table 1)
affect the number of available photons, so that by including
a large span of light intensities in our sensitive analysis, we
also cover their associated uncertainty. We find that ammonium
concentration, kinetic coefficients for ammonium uptake and
the availability of photons combined have a considerable impact
on whether carbon is stored during daytime in our dynamic
FBA simulations, underpinning the importance of accurate and
context specific values for these parameters. This echoes the
well-known modulation of carbon storage by nutrient and light
limitations (Zinser et al., 2009; Szul et al., 2019). We note that,
despite the potentially large impact of Prochlorococcus on marine
nitrogen budgets, to the best of our knowledge there are currently
no direct experimental measurements of the kinetics (Km, Vmax)
of nitrogen uptake by Prochlorococcus.

Since the tight coupling between carbon and nitrogen
metabolism in cyanobacteria is known to influence carbon
allocation and storage (Zhang et al., 2018; Szul et al., 2019), it was
chosen as a case study. As such, we focused in more detail on
the dynamic changes in metabolism in nitrogen-abundant and
nitrogen-poor media, as previously defined (Grossowicz et al.,
2017). Specifically, we set out to explore glycogen production
and consumption with COMETS in these conditions (Figure 6).

We did not observe glycogen storage in nitrogen-abundant
simulations, and therefore no growth nor cellular maintenance
during nighttime. One explanation for this may arise from the
limitations of the platform. First, the simulations performed in
this work were performed in a modeling framework based on
linear programming with ordered multi-objective optimization:
(1) cellular maintenance; (2) growth; (3) glycogen storage. Thus,
glycogen was only stored when there were excess energy and
carbon available, which occurred when growth was nitrogen
limited. Although some observer bias was introduced by
assuming that Prochlorococcus is striving toward these cellular
objectives, in this order, we found a reasonable conceptual
alignment with previous work showing that bacterial metabolism
balances a trade-off between maximal growth and the ability to
adapt to changing conditions (Schuetz et al., 2012). However, we
do note that one might obtain more nuanced results by taking
into account suboptimal solutions (Segrè et al., 2002; Fischer and
Sauer, 2005; Wintermute et al., 2013), and that real phenotypes
may be in the continuum between the two extremes found here.
Another limitation that might affect glycogen storage is the
lack of regulatory mechanisms not usually accounted for in this
version of dynamic FBA (Mahadevan et al., 2002). The addition of
regulatory layers or more specifically tailored objective functions,
such as global optimization over the entire diel cycle (Reimers
et al., 2017), could lead to smaller but non-zero generation of
glycogen also during nitrogen-rich conditions.

In agreement with previous work (Szul et al., 2019), under
nitrogen-limiting conditions, glycogen accumulates throughout
the day and is subsequently used to support respiration and
growth during the night (Figure 6A). However, the predicted
glycogen storage is simulated as not sufficient to support neither
growth nor cellular maintenance throughout the night. This
may contribute to the increased death rate during night time
(Zinser et al., 2009; Ribalet et al., 2015). However, the rate
of glycogen depletion is strongly affected by the associated
kinetic parameters (Supplementary Figure 5), emphasizing
the value of accurate kinetic coefficients for GlgP, the main
contributing factor to glycogen catabolism in bacteria (Dauvillée
et al., 2005; Alonso-Casajús et al., 2006; Fu and Xu, 2006),
in future work. Furthermore, the rate of glycogen depletion
might be modulated by transcriptional regulation. Previous
work suggested that glycogen storages are not sustained beyond
dawn, because the genes responsible for glycogen degradation
are depleted during the first 5 h of darkness (Biller et al.,
2018). Interestingly, the model predicts consumption of glycogen
during dusk to increase growth when photosynthesis is declining
(Figure 6), closely resembling observations in Synechococcus, in
particular for the 1kaiC mutant with a dysfunctional circadian
clock (Diamond et al., 2015). The closer resemblance of the
dysfunctional circadian clock phenotype might be a result from
the limitations of the applied modeling framework that does not
include regulatory mechanisms.

The switch from photosynthesis at daytime to glycogen
consumption at nighttime is reflected in the metabolic shifts
observed in key pathways (Figure 6B). Interestingly, we
observed higher fluxes through the Calvin cycle in nitrogen-poor
conditions. This difference may be caused by the increased

Frontiers in Genetics | www.frontiersin.org 13 February 2021 | Volume 12 | Article 586293

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-586293 February 2, 2021 Time: 18:54 # 14

Ofaim et al. Dynamic Metabolic Modeling of Prochlorococcus

FIGURE 6 | Insight into metabolic rearrangements during the diel cycle. (A) Light irradiance, biomass and glycogen storage throughout the diel cycle. We observe
that the largest accumulated growth is found in the nitrogen-abundant condition (green), but glycogen is only predicted to be stored in the nitrogen-poor condition
(orange). (B) The flux distributions shifts when the metabolism switches from photosynthesis to glycogen catabolism, displayed by five reactions representing the
Calvin Cycle (CBB), Glycogen metabolism, lower part of glycolysis, The Entner–Doudoroff (ED) and the Pentose Phosphate Pathway (PPP). (C) iSO595 predicts that
the depletion of glycogen is accompanied by exudation of formate and pyruvate.

ATP demand necessary to support higher growth rates in
nitrogen-abundant conditions. Additionally, our simulations
predicted that the use of the Entner–Doudoroff pathway during
photosynthesis creates precursor metabolites for growth during

light hours, and a shift to the Pentose Phosphate Pathway (PPP)
during nighttime. This trend might occur as an alternative for
generating NADPH (Supplementary Figure 6). Upregulation of
the PPP enzymes during dusk and the first half of the night time
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was also observed in the proteome of Prochlorococcus (Waldbauer
et al., 2012). Several enzymatic transformations participate in
both the Calvin cycle and the PPP, although in opposite directions
(Waldbauer et al., 2012). These transformations were captured
in our simulations, specifically as demonstrated by transketolase
(Figure 6B). Additionally, the consumption of glycogen during
nighttime might lead to exudation of pyruvate and formate
(Figure 6C). This prediction is supported by recent observations;
formate is exuded during both nutrient-replete and phosphate-
limited growth in Prochlorococcus strains MED4 and MIT9312
under constant light (Bertilsson et al., 2005), as well as when
phosphonates are metabolized in Prochlorococcus strain MIT9301
(Sosa et al., 2019). Thus, Prochlorococcus are potential formate
sources for heterotrophs. However, degradation of phosphonates
yields formate as an immediate byproduct, and the current
modeling framework is not suited to evaluate whether a
equally high amount of intracellular formate is feasible during
glycogen degradation, as intracellular metabolite concentrations
are not readily represented in dFBA. Pyruvate exudation in
Prochlorococcus is indicated from previous co-cultivations with
SAR11 (Becker and Hogle, 2019), and from upregulation of
genes encoding pyruvate kinase and a pyruvate efflux transporter
during extended darkness (Biller et al., 2018). Furthermore,
pyruvate is exuded when fixed carbon is consumed in the closely
related strains S. elongatus PCC 7942 and S. sp. PCC 6803
(Carrieri et al., 2012; Benson et al., 2016).

The shift from photosynthesis and carbon fixation to glycogen
catabolism is also associated with a switch in production and
consumption of energetic cofactors (Supplementary Figure 6).
Generation of ATP is performed concomitantly by ATP synthase
in both the thylakoid membrane and the periplasmic membrane
during photosynthesis. The periplasmic ATP synthase is first
driven by reduced cofactors (NADPH) generated by the electron
transport chain in the light-dependent part of photosynthesis
(Supplementary Figure 6). ATP is consumed by two separate
processes: growth- and maintenance-associated reactions reach
a threshold once growth is limited by the nitrogen abundance,
while the recycling of precursors for the Calvin cycle follows the
shape of light absorption throughout the day. In agreement with
previous work (Park and Choi, 2017), our model predicted higher
rates of NADPH production than NADH.

Next, we explored the ability of our model to dynamically
capture biologically relevant phenotypes by performing dynamic
FBA simulations of knock-out mutants in Prochlorococcus,
focusing on two gene deletions disrupting different parts of
glycogen metabolism. 1glgC breaks synthesis of ADP-glucose
and thus the storage of glycogen and 1gnd, knocking out
6-phosphogluconate dehydrogenase, a key reaction in the
Pentose Phosphate pathway found to fuel the Calvin cycle
with precursor metabolites during the onset of photosynthesis
(Shinde et al., 2020). Our dynamic FBA simulations in COMETS
(Supplementary Figure 7) showed similar growth between 1gnd
and the wild type and slightly lower growth for 1glgC. We set
out to compare these observations with available experimental
data. Since genetic tools for the modification of Prochlorococcus
are still lacking (Laurenceau et al., 2020), we chose data from
the closely related cyanobacteria Synechococcus as recent work

described the impact of 1glgC and 1gnd on its growth during
diel cycles (Shinde et al., 2020). Indeed, we found very good
agreement between measured and predicted growth for both
the wild-type and 1glgC mutant where glycogen storage is
disrupted (Shinde et al., 2020) (Supplementary Figure 7). One
of the notable limitations of dynamic FBA is the ability to
quantify intermediates and precursor pools that might drive the
initiation of a pathway. This comes mainly from the assumption
of a quasi steady-state of intracellular metabolite pools at each
time point. Although the comparison is strictly qualitative and
concerns strains with known differences (Mary et al., 2004),
these findings demonstrated the ability of our reconstruction to
capture metabolic trends in response to genetic perturbations,
indicating that iSO595 will be a valuable tool in future research
of Prochlorococcus. Overall, our dynamic simulations display
biological and physiological behaviors that are consistent with
expectations, and at the same time provide valuable insight into
the putative internal metabolic processes that might modulate
the Prochlorococcus growth under environmental and genome-
induced constraints.

CONCLUSION

Our study provides a detailed systematic view of the underlying
metabolic trends modulating carbon storage and exudation in
Prochlorococcus. Prochlorococcus is known to interact with other
bacteria in its surroundings (Sher et al., 2011; Aharonovich
and Sher, 2016; Biller et al., 2018; Hennon et al., 2018). It
is currently impossible to predict the fluxes of organic matter
(or of the myriad metabolites comprising it, such as amino
acids, sugars, and organic acids) between phytoplankton and
bacteria. Yet, quantifying such fluxes and predicting them from
genomic surveys, as shown here, serves a number of roles: (1) It
can provide experimentally testable and mechanistic hypotheses
on inter-microbial exchanges and competition, (2) It has the
potential to increase knowledge about the specific metabolites
that may mediate these interactions; and (3) It would enable the
construction of improved models of biogeochemical cycles which
consider the diverse and powerful metabolic capabilities of the
ocean microbiome.

Genome-scale metabolic-network reconstructions are
powerful tools, but not without limitations. Mainly, the
predictive accuracy rests on the quality and completeness of
the metabolic network. The construction and curation of these
metabolic networks depend heavily on data availability and
annotation accuracy, which may be scarce for less studied
organisms. Several methods have been developed to fill the gaps
of incomplete network reconstructions. For example, FastGapFill
incorporates missing knowledge from universal, non-organism
specific data (Thiele et al., 2014), ModelSEED fills gaps through
the use of thermodynamic parameters and FBA simulations to
achieve minimal growth (Henry et al., 2010), and MENECO uses
a topology graph based approach to look for minimal sets of
metabolic reactions that support growth and the producibility
of target metabolites (Prigent et al., 2017). In this work we
used a novel semi-automated gap-filling method (ReFill) to
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increase existing knowledge in the reconstruction by up to 25%.
In contrast to other standard gap filling approaches, ReFill has
the specific capability to add individual reactions through a
recursive algorithm that guarantees complete connectivity to the
existing network, incorporating the maximal possible amount
of validated, organism specific metabolic annotations. However,
this approach employs high stringency and thus adds limited
amounts of knowledge. Considering that Prochlorococcus strains
have some of the smallest known genomes among free-living
organisms, a 25% increase in knowledge serves as a significant
improvement in the predictive capacity of the model. However,
reconstruction of high-quality genome-scale metabolic models is
an iterative process, where new data, knowledge, and scope create
opportunities for further model improvement. One example
of this possibility is the CO2 concentrating mechanisms in
Prochlorococcus. This mechanism is known to be sustained
by proton and ion gradients across the cell membrane at an
energetic cost (Hopkinson et al., 2014; Burnap et al., 2015).
However, the comprehensive knowledge and annotation of ion
transporters necessary to model this mechanism are lacking, and
are therefore not included in iSO595. With the advancement of
data collection and annotation tools, together with the use of
ReFill or similar algorithms, metabolic knowledge can be added
to such reconstructions, improving their predictive abilities and
mimicry of biological and physiological processes.

Other limitations of static and dynamic FBA simulations
include the inability to represent metabolite concentrations and
the lack of regulatory effects. Furthermore, since COMETS, like
most other implementations of dFBA, simulates millions of
asynchronously growing and dividing cells on the mesoscopic
scale, cell cycle processes are not readily incorporated into
this framework. Thus, future extensions to this work include
the implementation of cell division in Prochlorococcus, known
to occur in the afternoon (Vaulot et al., 1995). Another
improvement would be an accurate representation of the costs
associated with light damage and the production of protective
pigments required to combat excessive light absorption.
This could potentially be accounted for by extending the
current Prochlorococcus GEM to a framework that includes
macromolecular allocation, such as Resource Balance Analysis
(Goelzer et al., 2011), conditional FBA (Rügen et al., 2015)
or models of metabolism and macromolecular expression (ME
models) (Thiele et al., 2012). Along these lines, one could relate
mortality with an inability to maintain basic cellular functions,
rather than a fixed death rate. However, the relationship between
cell mortality and metabolism is not well constrained, and its
representation in dFBA models is currently rudimentary. Future
work is needed to better understand mortality and represent it
in models of cell metabolism, ecosystems and biogeochemistry.
Finally, our findings contribute to a growing body of work
on the underlying metabolic mechanisms modulating the
metabolic success of Prochlorococcus. The approaches shown
here provide systematic insights corroborated in recent and
well-known works and provide strong foundations for future
studies of Prochlorococcus metabolism with particular interest in
its interaction with other microorganisms and the effects of these
on community composition and larger biogeochemical cycles.
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Supplementary Figure 1 | Estimation of kinetic parameters for the uptake of
ammonium in Prochlorococcus. (A) All combinations of Km and Vmax along the
red trajectory matches the observed gross growth rate of 0.5 d−1 (Grossowicz
et al., 2017). However, when we compare the dynamics of cell density (B) and
ammonium concentration (C) we find that the best overall prediction is achieved
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using Km = 0.39 mM and Vmax = 0.9 mmol gDW−1 h−1 (marked by an orange
dot in A).

Supplementary Figure 2 | ATP availability influence modulates the trade-off
between glycogen storage and growth. Phenotypic phase planes (Edwards et al.,
2002) illustrate the combined effect of glycogen storage and bicarbonate uptake
on the maximal growth rate. Compared to the base model (A), we observe how
that the trade-off is strongly affected by modulated ATP availability, either from an
artificial reaction providing extra ATP (B) or by increasing (C) or decreasing (D) the
amount of available light. Increasing ATP allows more glycogen storage without
reducing the growth rate.

Supplementary Figure 3 | TCA cycle flux diagram differences between the most
common phenotypes. Flux diagrams of the TCA cycle in the most common
phenotypes 2 (colored orange) and 3 (colored blue). Reactions are denoted by
KEGG reaction ids. Reaction colors correspond to cluster colors presented
in Figure 4.

Supplementary Figure 4 | Sensitivity analysis of dFBA simulations to
variability in ammonium concentration, kinetic coefficients of ammonium uptake
and light irradiance. (A) These phase diagrams display which combinations of Km

and Vmax, describing the uptake of ammonium, that leads to glycogen
accumulation (red area) at peak irradiance based on the light amplitude and
ammonium concentration used to simulate nitrogen-abundant (left) and
nitrogen-poor (right) conditions in Figure 6. In the orange area no glycogen
accumulation is predicted as the growth is limited by the available light, rather than
nitrogen. (B) These panels display similar phase diagrams as in (A), but for
different amplitudes of light irradiance, represented by black curves, and for
different ammonium concentrations (indicated on top of each panel). The number
written on each black curve represents the light irradiance amplitude in µmol Q
m−2 s−1. The ammonium concentration in the top left panel is equal to the
concentration in our simulated nitrogen-poor conditions, and thus, the 40.0
40 µmol Q m−2 s−1 line in this panel is identical to the boundary between the two
phases in the right panel in (A). The range of ammonium concentrations is chosen
so that it covers both our simulated environment and the ammonium
concentration in oligotrophic oceans. The blue, green, and orange points display
the combinations of Km and Vmax used/provided in this work and previous
publications, respectively.

Supplementary Figure 5 | Sensitivity analysis of dFBA simulation to different
parametrization of glycogen consumption. All panels display results obtained from
dFBA simulations in COMETS with different combinations of Km and Vmax,
describing the consumption of intracellular glycogen, with line colors and
corresponding values as shown in the bottom right corner color matrix. The purple
color corresponds to the values used to run the simulations shown in Figure 6.
(A) Growth curves. (B) Accumulated glycogen per gram dry weight of biomass.
(C) Predicted reaction fluxes for the same 8 reactions as shown in Figure 6.

Supplementary Figure 6 | The transition from daytime to nighttime is associated
with a drastic change in the production and consumption of the energy-carrying

cofactors. The figure panels show the major sources (left) and drains (right) of the

cofactors ATP, NAPDH and NADH. The legend shows the reaction IDs used in
iSO595. (A) ATP is produced by both the thylakoid (R00086th) and the
periplasmic (R00086p) ATP synthase during daytime, but mostly by the
periplasmic ATP synthase (respiration) during nighttime. ATP is consumed by
reactions associated with growth (BIOMASS and BProtein), cellular maintenance
(Maintenance) and storage of glycogen (R00948) in addition to reactions recycling

precursors for the Calvin cycle (R01512 and R01523) and acetyl-CoA carboxylase
(R00742). (B) NADPH is produced by ferredoxin reductase (fdr) during daytime
and by the pentose phosphate pathway (R02736 and R01528) during nighttime.
The NADPH is either used to drive the proton gradient across the periplasmic
membrane (NADPHDHp) or in Gluconeogenesis (R01063) to refuel the Calvin
cycle during photosynthesis. (C) NADH production is correlated with the growth
rate and dominated by pyruvate dehydrogenase (R00209) during daytime and the
glycine cleavage system (R01221) during nighttime. NADH is consumed by
6-phosphogluconate dehydrogenase (reverse, R10221) during daytime, NADH
transhydrogenase (R00112) solely during dusk and concomitant with
methylenetetrahydrofolate reductase (R07168) during nighttime.

Supplementary Figure 7 | Predicted growth curves show good agreement in a
qualitative comparison with experimental growth of Synechococcus. To compare
growth data we have overlaid growth curves predicted for the wild-type, the
1glgC-mutant and the 1gnd-mutant of Prochlorococcus with experimental OD
measurements of Synechococcus elongatus PCC 794 (Shinde et al., 2020). We
find a very good agreement for the wild-type and 1glgC-mutant, but not for the
1gnd-mutant. The lower panel shows how the model predicts the allocation and
consumption of each of the three strains.

Supplementary Table 1 | List of reactions added to iJC568 to form iSO595.

Supplementary Table 2 | List of reactions from iJC568 that are modified
in iSO595.

Supplementary Table 3 | Parameter ranges used in the sampling of
nutrient environments.

Supplementary Table 4 | List of blocked exchange reactions prior to sampling of
nutrient environments.

Supplementary Table 5 | Parameter values used to run dynamic FBA in
COMETS.

Supplementary Material 1 | Results from the BLAST-search used to identify
6PG-dehydratase (EC: 4.2.1.12) encoded by PMM0774 in P. marinus MED4.

Supplementary Material 2 | Memote snapshot report of iSO595.
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Dukovski, I., Bajić, D., Chacón, J. M., Quintin, M., Vila, J. C., Sulheim, S., et al.
(2020). ). Computation of Microbial Ecosystems in Time and Space (COMETS):
An Open Source Collaborative Platform for Modeling Ecosystems Metabolism.
Available online at: http://arxiv.org/abs/2009.01734 (accessed December 17,
2020).

Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013). COBRApy:
constraints-based reconstruction and analysis for python. BMC Syst. Biol. 7:74.
doi: 10.1186/1752-0509-7-74

Edwards, J. S., Ramakrishna, R., and Palsson, B. O. (2002). Characterizing the
metabolic phenotype: a phenotype phase plane analysis. Biotechnol. Bioeng. 77,
27–36. doi: 10.1002/bit.10047

Elbourne, L. D. H., Tetu, S. G., Hassan, K. A., and Paulsen, I. T. (2017).
TransportDB 2.0: a database for exploring membrane transporters in sequenced
genomes from all domains of life. Nucleic Acids Res. 45, D320–D324. doi:
10.1093/nar/gkw1068

Feist, A. M., Nagarajan, H., Rotaru, A. E., Tremblay, P. L., Zhang, T., Nevin, K. P.,
et al. (2014). Constraint-based modeling of carbon fixation and the energetics of
electron transfer in geobacter metallireducens. PLoS Comput. Biol. 10:e1003575.
doi: 10.1371/journal.pcbi.1003575

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998). Primary
production of the biosphere: integrating terrestrial and oceanic components.
Science 281, 237–240. doi: 10.1126/science.281.5374.237

Fischer, E., and Sauer, U. (2005). Large-scale in vivo flux analysis shows rigidity
and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37,
636–640. doi: 10.1038/ng1555

Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincón, J., Zabala, L. L., Jiao, N., et al.
(2013). Present and future global distributions of the marine Cyanobacteria
Prochlorococcus and Synechococcus. Proc. Natl. Acad. Sci. U.S.A. 110, 9824–
9829. doi: 10.1073/pnas.1307701110

Fogg, G. E., Nalewajko, C., and Watt, W. D. (1965). Extracellular products of
phytoplankton photosynthesis. Proc. R. Soc. London. Ser. B. Biol. Sci. 162,
517–534. doi: 10.1098/rspb.1965.0054

Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W. (2007). Emergent
biogeography of microbial communities in a model ocean. Science 315, 1843–
1846. doi: 10.1126/science.1138544

Forchhammer, K., and Schwarz, R. (2019). Nitrogen chlorosis in unicellular
cyanobacteria – a developmental program for surviving nitrogen deprivation.
Environ. Microbiol. 21, 1173–1184. doi: 10.1111/1462-2920.14447

Forchhammer, K., and Selim, K. A. (2019). Carbon/nitrogen homeostasis control
in cyanobacteria. FEMS Microbiol. Rev. 44, 33–53. doi: 10.1093/femsre/fuz025

Foster, S. Q., Al-haj, A., Church, M. J., van Dijken, G. L., Dutkiewicz, S., Fulweiler,
R. W., et al. (2018). Ecological control of nitrite in the upper ocean. Nat.
Commun. 9:1206. doi: 10.1038/s41467-018-03553-w

Fu, J., and Xu, X. (2006). The functional divergence of two glgP homologues in
Synechocystis sp. PCC 6803. FEMS Microbiol. Lett. 260, 201–209. doi: 10.1111/
j.1574-6968.2006.00312.x

Gilbert, J. D. J., and Fagan, W. F. (2011). Contrasting mechanisms of proteomic
nitrogen thrift in Prochlorococcus. Mol. Ecol. 20, 92–104. doi: 10.1111/j.1365-
294X.2010.04914.x

Goelzer, A., Fromion, V., and Scorletti, G. (2011). Cell design in bacteria as
a convex optimization problem. Automatica 47, 1210–1218. doi: 10.1016/j.
automatica.2011.02.038

Gomez, J. A., Höffner, K., and Barton, P. I. (2014). DFBAlab: a fast and reliable
MATLAB code for dynamic flux balance analysis. BMC Bioinform. 15:409.
doi: 10.1186/s12859-014-0409-8

Frontiers in Genetics | www.frontiersin.org 18 February 2021 | Volume 12 | Article 586293

https://doi.org/10.1016/j.freeradbiomed.2019.05.004
https://doi.org/10.1016/j.freeradbiomed.2019.05.004
https://doi.org/10.1073/pnas.1619573114
https://doi.org/10.1029/2004JC002419
https://doi.org/10.1029/2004JC002419
https://doi.org/10.1073/pnas.1613446113
https://doi.org/10.1073/pnas.1613446113
https://doi.org/10.3390/life5010348
https://doi.org/10.3390/life5010348
https://doi.org/10.3390/md13127073
https://doi.org/10.1016/j.celrep.2018.03.083
https://doi.org/10.1016/j.celrep.2018.03.083
https://doi.org/10.1039/c2ee23181f
https://doi.org/10.1128/mSystems.00065-16.Editor
https://doi.org/10.1128/mSystems.00065-16.Editor
https://doi.org/10.1073/pnas.1521916113
https://doi.org/10.1073/pnas.1521916113
https://doi.org/10.1111/nph.15765
https://doi.org/10.1126/science.aan5712
https://doi.org/10.3389/fmicb.2016.00966
https://doi.org/10.1128/JB.187.4.1465-1473.2005
https://doi.org/10.4319/lo.2008.53.5.1722
https://doi.org/10.4319/lo.2008.53.5.1722
https://doi.org/10.1007/s00018-019-03380-2
https://doi.org/10.1038/nature05392
https://doi.org/10.1073/pnas.1504576112
https://doi.org/10.1073/pnas.1504576112
https://doi.org/10.1093/mp/sst137
https://doi.org/10.3389/fmicb.2017.02641
https://doi.org/10.3389/fmicb.2017.02641
https://doi.org/10.1007/PL00001343
http://arxiv.org/abs/2009.01734
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1002/bit.10047
https://doi.org/10.1093/nar/gkw1068
https://doi.org/10.1093/nar/gkw1068
https://doi.org/10.1371/journal.pcbi.1003575
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1038/ng1555
https://doi.org/10.1073/pnas.1307701110
https://doi.org/10.1098/rspb.1965.0054
https://doi.org/10.1126/science.1138544
https://doi.org/10.1111/1462-2920.14447
https://doi.org/10.1093/femsre/fuz025
https://doi.org/10.1038/s41467-018-03553-w
https://doi.org/10.1111/j.1574-6968.2006.00312.x
https://doi.org/10.1111/j.1574-6968.2006.00312.x
https://doi.org/10.1111/j.1365-294X.2010.04914.x
https://doi.org/10.1111/j.1365-294X.2010.04914.x
https://doi.org/10.1016/j.automatica.2011.02.038
https://doi.org/10.1016/j.automatica.2011.02.038
https://doi.org/10.1186/s12859-014-0409-8
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-586293 February 2, 2021 Time: 18:54 # 19

Ofaim et al. Dynamic Metabolic Modeling of Prochlorococcus

Grossowicz, M., Roth-Rosenberg, D., Aharonovich, D., Silverman, J., Follows, M. J.,
and Sher, D. (2017). Prochlorococcus in the lab and in silico: the importance of
representing exudation. Limnol. Oceanogr. 62, 818–835. doi: 10.1002/lno.10463

Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., and Lee, S. Y. (2019). Current status
and applications of genome-scale metabolic models. Genome Biol. 20, 1–18.
doi: 10.1186/s13059-019-1730-3

Gudmundsson, S., and Thiele, I. (2010). Computationally efficient flux variability
analysis. BMC Bioinform. 11:489. doi: 10.1186/1471-2105-11-489

Harcombe, W. R., Riehl, W. J., Dukovski, I., Granger, B. R., Betts, A., Lang, A. H.,
et al. (2014). Metabolic resource allocation in individual microbes determines
ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115. doi: 10.
1016/j.celrep.2014.03.070

Haug, K., Salek, R. M., Conesa, P., Hastings, J., De Matos, P., Rijnbeek, M.,
et al. (2013). MetaboLights–an open-access general-purpose repository for
metabolomics studies and associated meta-data. Nucleic Acids Res. 41, 781–786.
doi: 10.1093/nar/gks1004

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., et al.
(2019). Creation and analysis of biochemical constraint-based models using
the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702. doi: 10.1038/s41596-018-
0098-2

Hennon, G. M., Morris, J. J., Haley, S. T., Zinser, E. R., Durrant, A. R., Entwistle, E.,
et al. (2018). The impact of elevated CO 2 on Prochlorococcus and microbial
interactions with â € helper’ bacterium Alteromonas. ISME J. 12, 520–531.
doi: 10.1038/ismej.2017.189

Henry, C. S., Dejongh, M., Best, A. A., Frybarger, P. M., Linsay, B., and Stevens, R. L.
(2010). High-throughput generation, optimization and analysis of genome-
scale metabolic models. Nat. Biotechnol. 28, 977–982. doi: 10.1038/nbt.1672

Holtzendorff, J., Partensky, F., Mella, D., Lennon, J.-F., Hess, W. R., and Garczarek,
L. (2008). Genome streamlining results in loss of robustness of the circadian
clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. J. Biol.
Rhythms 23, 187–199. doi: 10.1177/0748730408316040

Hopkinson, B. M., Young, J. N., Tansik, A. L., and Binder, B. J. (2014). The minimal
CO2-concentrating mechanism of prochlorococcus spp. MED4 is effective and
efficient. Plant Physiol. 166, 2205–2217. doi: 10.1104/pp.114.247049

Iglesias, A. A., Kakefuda, G., and Preiss, J. (1991). Regulatory and structural
properties of the cyanobacterial ADPglucose pyrophosphorylases. Plant
Physiol. 97, 1187–1195. doi: 10.1104/pp.97.3.1187

Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S., and
Chisholm, S. W. (2006). Niche partitioning among Prochlorococcus ecotypes
along ocean-scale environmental gradients. Science 311, 1737–1740. doi: 10.
1126/science.1118052

Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and
genomes. Nucleic Acids Res. 28, 27–30.

Kashyap, A. K., and Singh, D. P. (1985). Ammonium transport in unicellular
cyanobacterium anacystis nidulans. J. Plant Physiol. 121, 319–330. doi: 10.1016/
S0176-1617(85)80025-0

Kavvas, E. S., Seif, Y., Yurkovich, J. T., Norsigian, C., Poudel, S., Greenwald,
W. W., et al. (2018). Updated and standardized genome-scale reconstruction of
Mycobacterium tuberculosis H37Rv, iEK1011, simulates flux states indicative of
physiological conditions. BMC Syst. Biol. 12:25. doi: 10.1186/s12918-018-0557-
y

Kettler, G. C., Martiny, A. C., Huang, K., Zucker, J., Coleman, M. L., Rodrigue, S.,
et al. (2007). Patterns and implications of gene gain and loss in the evolution of
prochlorococcus. PLoS Genet. 3:e231. doi: 10.1371/journal.pgen.0030231

Kim, J., Fabris, M., Baart, G., Kim, M. K., Goossens, A., Vyverman, W., et al. (2016).
Flux balance analysis of primary metabolism in the diatom Phaeodactylum
tricornutum. Plant J. 85, 161–176. doi: 10.1111/tpj.13081

Knoop, H., Gründel, M., Zilliges, Y., Lehmann, R., Hoffmann, S., Lockau, W.,
et al. (2013). Flux balance analysis of cyanobacterial metabolism: the metabolic
network of Synechocystis sp. PCC 6803. PLoS Comput. Biol. 9:e1003081. doi:
10.1371/journal.pcbi.1003081

Krumhardt, K. M., Callnan, K., Roache-Johnson, K., Swett, T., Robinson, D.,
Reistetter, E. N., et al. (2013). Effects of phosphorus starvation versus limitation
on the marine cyanobacterium ProchlorococcusMED4 I: uptake physiology.
Environ. Microbiol. 15, 2114–2128. doi: 10.1111/1462-2920.12079

Kujawinski, E. B. (2011). The impact of microbial metabolism on marine dissolved
organic matter. Ann. Rev. Mar. Sci. 3, 567–599. doi: 10.1146/annurev-marine-
120308-081003

Laurenceau, R., Bliem, C., Osburne, M. S., Becker, J. W., Biller, S. J., Cubillos-
Ruiz, A., et al. (2020). Toward a genetic system in the marine cyanobacterium
Prochlorococcus. Access Microbiol. 2:e000107. doi: 10.1099/acmi.0.000107

Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya,
A. D., et al. (2010). Omic data from evolved E. coli are consistent with computed
optimal growth from genome−scale models. Mol. Syst. Biol. 6:390. doi: 10.1038/
msb.2010.47

Lieven, C., Beber, M. E., Olivier, B. G., Bergmann, F. T., Ataman, M., Babaei, P.,
et al. (2020). MEMOTE for standardized genome-scale metabolic model testing.
Nat. Biotechnol. 38, 272–276. doi: 10.1038/s41587-020-0446-y

Long, S. P., Humphries, S., and Falkowski, P. G. (1994). Photoinhibition of
photosynthesis in nature.Annu. Rev. Plant Physiol. PlantMol. Biol. 45, 633–662.
doi: 10.1146/annurev.pp.45.060194.003221

López-Sandoval, D. C., Rodríguez-Ramos, T., Cermeño, P., and Marañón, E.
(2013). Exudation of organic carbon by marine phytoplankton: dependence
on taxon and cell size. Mar. Ecol. Prog. Ser. 477, 53–60. doi: 10.3354/meps1
0174

Luan, G., Zhang, S., Wang, M., and Lu, X. (2019). Progress and perspective on
cyanobacterial glycogen metabolism engineering. Biotechnol. Adv. 37, 771–786.
doi: 10.1016/j.biotechadv.2019.04.005

Ma, L., Calfee, B. C., Morris, J. J., Johnson, Z. I., and Zinser, E. R. (2018).
Degradation of hydrogen peroxide at the ocean’s surface: the influence of the
microbial community on the realized thermal niche of Prochlorococcus. ISME
J. 12, 473–484. doi: 10.1038/ismej.2017.182

Ma, X., Coleman, M. L., and Waldbauer, J. R. (2018). Distinct molecular signatures
in dissolved organic matter produced by viral lysis of marine cyanobacteria.
Environ. Microbiol. 20, 3001–3011. doi: 10.1111/1462-2920.14338

Maarleveld, T. R., Khandelwal, R. A., Olivier, B. G., Teusink, B., and Bruggeman,
F. J. (2013). Basic concepts and principles of stoichiometric modeling of
metabolic networks. Biotechnol. J. 8, 997–1008. doi: 10.1002/biot.201200291

Mague, T. H., Friberg, E., Hughes, D. J., and Morris, I. (1980). Extracellular
release of carbon by marine phytoplankton; a physiological approach. Limnol.
Oceanogr. 25, 262–279. doi: 10.4319/lo.1980.25.2.0262

Mahadevan, R., Edwards, J. S., and Doyle, F. J. (2002). Dynamic Flux Balance
Analysis of diauxic growth in Escherichia coli. Biophys. J. 83, 1331–1340. doi:
10.1016/S0006-3495(02)73903-9

Marañón, E., Cermeño, P., López-Sandoval, D. C., Rodríguez-Ramos, T., Sobrino,
C., Huete-Ortega, M., et al. (2013). Unimodal size scaling of phytoplankton
growth and the size dependence of nutrient uptake and use. Ecol. Lett. 16,
371–379. doi: 10.1111/ele.12052

Mary, I., Tu, C.-J., Grossman, A., and Vaulot, D. (2004). Effects of high light
on transcripts of stress-associated genes for the cyanobacteria Synechocystis
sp. PCC 6803 and Prochlorococcus MED4 and MIT9313. Microbiology 150,
1271–1281. doi: 10.1099/mic.0.27014-0

McDonald, S. M., Plant, J. N., and Worden, A. Z. (2010). The mixed lineage nature
of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a
case study of Micromonas. Mol. Biol. Evol. 27, 2268–2283. doi: 10.1093/molbev/
msq113

McInnes, L., Healy, J., and Astels, S. (2017). hdbscan: hierarchical density based
clustering. J. Open Source Softw. 2:205. doi: 10.21105/joss.00205

McKinney, W. (2010). pandas: a Foundational Python Library for Data Analysis
and Statistics | R (Programming Language) | Database Index. Available online
at: https://www.scribd.com/document/71048089/pandas-a-Foundational-
Python-Library-for-Data-Analysis-and-Statistics (accessed April 29, 2020).

Mella-Flores, D., Six, C., Ratin, M., Partensky, F., Boutte, C., Le Corguillé, G., et al.
(2012). Prochlorococcus and synechococcus have evolved different adaptive
mechanisms to cope with light and UV Stress. Front. Microbiol. 3:285. doi:
10.3389/fmicb.2012.00285

Monk, J. M., Lloyd, C. J., Brunk, E., Mih, N., Sastry, A., King, Z., et al. (2017).
iML1515, a knowledgebase that computes Escherichia coli traits.Nat. Biotechnol.
35, 904–908. doi: 10.1038/nbt.3956

Monshupanee, T., and Incharoensakdi, A. (2014). Enhanced accumulation of
glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light
intensities in the cyanobacterium Synechocystis sp. PCC 6803. J. Appl. Microbiol.
116, 830–838. doi: 10.1111/jam.12409

Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W.,
et al. (2013). Processes and patterns of oceanic nutrient limitation. Nat. Geosci.
6, 701–710. doi: 10.1038/ngeo1765

Frontiers in Genetics | www.frontiersin.org 19 February 2021 | Volume 12 | Article 586293

https://doi.org/10.1002/lno.10463
https://doi.org/10.1186/s13059-019-1730-3
https://doi.org/10.1186/1471-2105-11-489
https://doi.org/10.1016/j.celrep.2014.03.070
https://doi.org/10.1016/j.celrep.2014.03.070
https://doi.org/10.1093/nar/gks1004
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/ismej.2017.189
https://doi.org/10.1038/nbt.1672
https://doi.org/10.1177/0748730408316040
https://doi.org/10.1104/pp.114.247049
https://doi.org/10.1104/pp.97.3.1187
https://doi.org/10.1126/science.1118052
https://doi.org/10.1126/science.1118052
https://doi.org/10.1016/S0176-1617(85)80025-0
https://doi.org/10.1016/S0176-1617(85)80025-0
https://doi.org/10.1186/s12918-018-0557-y
https://doi.org/10.1186/s12918-018-0557-y
https://doi.org/10.1371/journal.pgen.0030231
https://doi.org/10.1111/tpj.13081
https://doi.org/10.1371/journal.pcbi.1003081
https://doi.org/10.1371/journal.pcbi.1003081
https://doi.org/10.1111/1462-2920.12079
https://doi.org/10.1146/annurev-marine-120308-081003
https://doi.org/10.1146/annurev-marine-120308-081003
https://doi.org/10.1099/acmi.0.000107
https://doi.org/10.1038/msb.2010.47
https://doi.org/10.1038/msb.2010.47
https://doi.org/10.1038/s41587-020-0446-y
https://doi.org/10.1146/annurev.pp.45.060194.003221
https://doi.org/10.3354/meps10174
https://doi.org/10.3354/meps10174
https://doi.org/10.1016/j.biotechadv.2019.04.005
https://doi.org/10.1038/ismej.2017.182
https://doi.org/10.1111/1462-2920.14338
https://doi.org/10.1002/biot.201200291
https://doi.org/10.4319/lo.1980.25.2.0262
https://doi.org/10.1016/S0006-3495(02)73903-9
https://doi.org/10.1016/S0006-3495(02)73903-9
https://doi.org/10.1111/ele.12052
https://doi.org/10.1099/mic.0.27014-0
https://doi.org/10.1093/molbev/msq113
https://doi.org/10.1093/molbev/msq113
https://doi.org/10.21105/joss.00205
https://www.scribd.com/document/71048089/pandas-a-Foundational-Python-Library-for-Data-Analysis-and-Statistics
https://www.scribd.com/document/71048089/pandas-a-Foundational-Python-Library-for-Data-Analysis-and-Statistics
https://doi.org/10.3389/fmicb.2012.00285
https://doi.org/10.3389/fmicb.2012.00285
https://doi.org/10.1038/nbt.3956
https://doi.org/10.1111/jam.12409
https://doi.org/10.1038/ngeo1765
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-586293 February 2, 2021 Time: 18:54 # 20

Ofaim et al. Dynamic Metabolic Modeling of Prochlorococcus

Moore, L. R., Coe, A., Zinser, E. R., Saito, M. A., Sullivan, M. B., Lindell, D.,
et al. (2007). Culturing the marine cyanobacterium Prochlorococcus. Limnol.
Oceanogr. Methods 5, 353–362. doi: 10.4319/lom.2007.5.353

Moore, L. R., Goericke, R., and Chisholm, S. W. (1995). Comparative physiology
of Synechococcus and Prochlorococcus: influence of light and temperature on
growth, pigments, fluorescence and absorptive properties. Mar. Ecol. Prog. Ser.
116, 259–275.

Moradi, N., Liu, B., Iversen, M., Kuypers, M. M., Ploug, H., and Khalili, A. (2018).
A new mathematical model to explore microbial processes and their constraints
in phytoplankton colonies and sinking marine aggregates. Sci. Adv. 4, 1–10.
doi: 10.1126/sciadv.aat1991

Moran, M. A., and Durham, B. P. (2019). Sulfur metabolites in the pelagic ocean.
Nat. Rev. Microbiol. 17, 665–678. doi: 10.1038/s41579-019-0250-1

Moran, M. A., Kujawinski, E. B., Stubbins, A., Fatland, R., Aluwihare, L. I., Buchan,
A., et al. (2016). Deciphering ocean carbon in a changing world. Proc. Natl.
Acad. Sci. U.S.A. 113, 3143–3151. doi: 10.1073/pnas.1514645113

Morel, A., and Bricaud, A. (1981). Theoretical results concerning light absorption
in a discrete medium, and application to specific absorption of phytoplankton.
Deep Sea Res. Part A Oceanogr. Res. Pap. 28, 1375–1393. doi: 10.1016/0198-
0149(81)90039-X

Morris, J. J., Lenski, R. E., and Zinser, E. R. (2012). The black queen hypothesis:
evolution of dependencies through adaptive gene loss. MBio 3:e00036-12. doi:
10.1128/mBio.00036-12

Muñoz-Marín, M. C., Gómez-Baena, G., López-Lozano, A., Moreno-Cabezuelo,
J. A., Díez, J., and García-Fernández, J. M. (2020). Mixotrophy in
marine picocyanobacteria: use of organic compounds by Prochlorococcus
and Synechococcus. ISME J. 14, 1065–1073. doi: 10.1038/s41396-020-0
603-9

Nicholson, D. P., Stanley, R. H. R., and Doney, S. C. (2018). A Phytoplankton
model for the allocation of gross photosynthetic energy including the trade-
offs of diazotrophy. J. Geophys. Res. Biogeosci. 123, 1796–1816. doi: 10.1029/
2017JG004263

Nogales, J., Gudmundsson, S., Knight, E. M., Palsson, B. O., and Thiele, I. (2012).
Detailing the optimality of photosynthesis in cyanobacteria through systems
biology analysis. Proc. Natl. Acad. Sci. U.S.A. 109, 2678–2683. doi: 10.1073/pnas.
1117907109

Noreña-Caro, D., and Benton, M. G. (2018). Cyanobacteria as photoautotrophic
biofactories of high-value chemicals. J. CO2 Util. 28, 335–366. doi: 10.1016/j.
jcou.2018.10.008

O’Brien, E. J., Monk, J. M., and Palsson, B. O. (2015). Using genome-scale models to
predict biological capabilities. Cell 161, 971–987. doi: 10.1016/j.cell.2015.05.019

Orth, J. D., Thiele, I., and Palsson, B. O. (2010). What is flux balance analysis? Nat.
Biotechnol. 28, 245–248. doi: 10.1038/nbt.1614

Oschlies, A., Koeve, W., Landolfi, A., and Kähler, P. (2019). Loss of fixed nitrogen
causes net oxygen gain in a warmer future ocean. Nat. Commun. 10, 1–7.
doi: 10.1038/s41467-019-10813-w

Pacheco, A. R., Moel, M., and Segrè, D. (2018). Costless metabolic secretions as
drivers of interspecies interactions in microbial ecosystems. Nat. Commun.
10:103.

Park, J., and Choi, Y. (2017). Cofactor engineering in cyanobacteria to overcome
imbalance between NADPH and NADH: a mini review. Front. Chem. Sci. Eng.
11:66–71. doi: 10.1007/s11705-016-1591-1

Partensky, F., and Garczarek, L. (2010). Prochlorococcus: advantages and limits
of minimalism. Ann. Rev. Mar. Sci. 2, 305–331. doi: 10.1146/annurev-marine-
120308-081034

Partensky, F., Hess, W. R., and Vaulot, D. (1999). Prochlorococcus, a marine
photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63,
106–127. doi: 10.1128/mmbr.63.1.106-127.1999

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
et al. (2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res 12,
2825–2830.

Pope, R. M., and Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure
water. II. Integrating cavity measurements. Appl. Optics 33, 8710–8723. doi:
10.1364/AO.36.008710

Prigent, S., Frioux, C., Dittami, S. M., Thiele, S., Larhlimi, A., Collet, G., et al.
(2017). Meneco, a topology-based gap-filling tool applicable to degraded
genome-wide metabolic networks. PLoS Comput. Biol. 13:e1005276. doi: 10.
1371/journal.pcbi.1005276

Reid, A. (2012). Incorporating Microbial Processes into Climate Change Models.
A Report by the American Academy of Microbiology. Washington, DC.

Reimers, A.-M., Knoop, H., Bockmayr, A., and Steuer, R. (2017). Cellular trade-
offs and optimal resource allocation during cyanobacterial diurnal growth. Proc.
Natl. Acad. Sci. U.S.A. 114:201617508. doi: 10.1073/pnas.1617508114

Ribalet, F., Swalwell, J., Clayton, S., Jiménez, V., Sudek, S., Lin, Y., et al. (2015).
Light-driven synchrony of Prochlorococcus growth and mortality in the
subtropical Pacific gyre. Proc. Natl. Acad. Sci. U.S.A. 112, 8008–8012. doi: 10.
1073/pnas.1424279112

Roth-rosenberg, D., Aharonovich, D., Omta, A.-W., Follows, M. J., and Sciences,
P. (2019). Dynamic macromolecular composition and high exudation rates in
Prochlorococcus. bioRxiv [Preprint]. doi: 10.1101/828897

Rügen, M., Bockmayr, A., and Steuer, R. (2015). Elucidating temporal resource
allocation and diurnal dynamics in phototrophic metabolism using conditional
FBA. Sci. Rep. 5, 1–16. doi: 10.1038/srep15247

Saito, M. A., McIlvin, M. R., Moran, D. M., Goepfert, T. J., DiTullio, G. R., Post,
A. F., et al. (2014). Multiple nutrient stresses at intersecting Pacific Ocean
biomes detected by protein biomarkers. Science 345, 1173–1177. doi: 10.1126/
science.1256450

Schuetz, R., Zamboni, N., Zampieri, M., Heinemann, M., and Sauer, U. (2012).
Multidimensional optimality of microbial metabolism. Science 336, 601–604.
doi: 10.1126/science.1216882

Seaver, L. C., and Imlay, J. A. (2001). Hydrogen peroxide fluxes and
compartmentalization inside growing Escherichia coli. J. Bacteriol. 183, 7182–
7189. doi: 10.1128/JB.183.24.7182-7189.2001

Segrè, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in natural
and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 99, 15112–
15117. doi: 10.1073/pnas.232349399

Sher, D., Thompson, J. W., Kashtan, N., Croal, L., and Chisholm, S. W. (2011).
Response of Prochlorococcus ecotypes to co-culture with diverse marine
bacteria. ISME J. 5, 1125–1132. doi: 10.1038/ismej.2011.1

Shinde, S., Zhang, X., Singapuri, S. P., Kalra, I., Liu, X., Morgan-Kiss, R. M.,
et al. (2020). Glycogen metabolism supports photosynthesis start through the
oxidative pentose phosphate pathway in cyanobacteria. Plant Physiol. 182,
507–517. doi: 10.1104/pp.19.01184

Sosa, O. A., Casey, J. R., and Karl, D. M. (2019). Methylphosphonate oxidation
in Prochlorococcus strain MIT9301 supports phosphate acquisition, formate
excretion, and carbon assimilation into purines. Appl. Environ. Microbiol.
85:e00289-19. doi: 10.1128/AEM.00289-19

Steglich, C., Behrenfeld, M., Koblizek, M., Claustre, H., Penno, S., Prasil, O.,
et al. (2001). Nitrogen deprivation strongly affects Photosystem II but not
phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium
Prochlorococcus marinus. Biochim. Biophys. Acta Bioenerg. 1503, 341–349. doi:
10.1016/S0005-2728(00)00211-5

Stramski, D., Bricaud, A., and Morel, A. (2001). Modeling the inherent optical
properties of the ocean based on the detailed composition of the planktonic
community. Appl. Optics 18, 2929–2945. doi: 10.1364/ao.40.002929

Szul, M. J., Dearth, S. P., Campagna, S. R., and Zinser, E. R. (2019). Carbon fate
and flux in prochlorococcus under nitrogen limitation. mSystems 4:e00254-18.
doi: 10.1128/msystems.00254-18

Thiele, I., Fleming, R. M. T., Que, R., Bordbar, A., Diep, D., and Palsson, B. O.
(2012). Multiscale modeling of metabolism and macromolecular synthesis in
E. coli and its application to the evolution of codon usage. PLoS One 7:e45635.
doi: 10.1371/journal.pone.0045635

Thiele, I., Hyduke, D. R., Steeb, B., Fankam, G., Allen, D. K., Bazzani, S., et al.
(2011). A community effort towards a knowledge-base and mathematical model
of the human pathogen Salmonella Typhimurium LT2. BMC Syst. Biol. 5:8.
doi: 10.1186/1752-0509-5-8

Thiele, I., Vlassis, N., and Fleming, R. M. T. (2014). FASTGAPFILL: efficient
gap filling in metabolic networks. Bioinformatics 30, 2529–2531. doi: 10.1093/
bioinformatics/btu321

Thornton, D. C. O. (2014). Dissolved organic matter (DOM) release by
phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46.
doi: 10.1080/09670262.2013.875596

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

Van Mooy, B. A. S., Rocap, G., Fredricks, H. F., Evans, C. T., and Devol,
A. H. (2006). Sulfolipids dramatically decrease phosphorus demand by

Frontiers in Genetics | www.frontiersin.org 20 February 2021 | Volume 12 | Article 586293

https://doi.org/10.4319/lom.2007.5.353
https://doi.org/10.1126/sciadv.aat1991
https://doi.org/10.1038/s41579-019-0250-1
https://doi.org/10.1073/pnas.1514645113
https://doi.org/10.1016/0198-0149(81)90039-X
https://doi.org/10.1016/0198-0149(81)90039-X
https://doi.org/10.1128/mBio.00036-12
https://doi.org/10.1128/mBio.00036-12
https://doi.org/10.1038/s41396-020-0603-9
https://doi.org/10.1038/s41396-020-0603-9
https://doi.org/10.1029/2017JG004263
https://doi.org/10.1029/2017JG004263
https://doi.org/10.1073/pnas.1117907109
https://doi.org/10.1073/pnas.1117907109
https://doi.org/10.1016/j.jcou.2018.10.008
https://doi.org/10.1016/j.jcou.2018.10.008
https://doi.org/10.1016/j.cell.2015.05.019
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1038/s41467-019-10813-w
https://doi.org/10.1007/s11705-016-1591-1
https://doi.org/10.1146/annurev-marine-120308-081034
https://doi.org/10.1146/annurev-marine-120308-081034
https://doi.org/10.1128/mmbr.63.1.106-127.1999
https://doi.org/10.1364/AO.36.008710
https://doi.org/10.1364/AO.36.008710
https://doi.org/10.1371/journal.pcbi.1005276
https://doi.org/10.1371/journal.pcbi.1005276
https://doi.org/10.1073/pnas.1617508114
https://doi.org/10.1073/pnas.1424279112
https://doi.org/10.1073/pnas.1424279112
https://doi.org/10.1101/828897
https://doi.org/10.1038/srep15247
https://doi.org/10.1126/science.1256450
https://doi.org/10.1126/science.1256450
https://doi.org/10.1126/science.1216882
https://doi.org/10.1128/JB.183.24.7182-7189.2001
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1038/ismej.2011.1
https://doi.org/10.1104/pp.19.01184
https://doi.org/10.1128/AEM.00289-19
https://doi.org/10.1016/S0005-2728(00)00211-5
https://doi.org/10.1016/S0005-2728(00)00211-5
https://doi.org/10.1364/ao.40.002929
https://doi.org/10.1128/msystems.00254-18
https://doi.org/10.1371/journal.pone.0045635
https://doi.org/10.1186/1752-0509-5-8
https://doi.org/10.1093/bioinformatics/btu321
https://doi.org/10.1093/bioinformatics/btu321
https://doi.org/10.1080/09670262.2013.875596
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-586293 February 2, 2021 Time: 18:54 # 21

Ofaim et al. Dynamic Metabolic Modeling of Prochlorococcus

picocyanobacteria in oligotrophic marine environments. Proc. Natl. Acad. Sci.
U.S.A. 103, 8607–8612. doi: 10.1073/pnas.0600540103

Varma, A., and Palsson, B. O. (1994). Metabolic flux balancing: basic concepts,
scientific and practical use. Bio/Technology 12, 994–998. doi: 10.1038/nbt10
94-994

Vaulot, D., Marie, D., Olson, R. J., and Chisholm, S. W. (1995). Growth of
Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean.
Science 268, 1480–1482. doi: 10.1126/science.268.5216.1480

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0
686-2

Waldbauer, J. R., Rodrigue, S., Coleman, M. L., and Chisholm, S. W. (2012).
Transcriptome and proteome dynamics of a light-dark synchronized bacterial
cell cycle. PLoS One 7:e43432. doi: 10.1371/journal.pone.0043432

Ward, B. A., Collins, S., Dutkiewicz, S., Gibbs, S., Bown, P., Ridgwell, A., et al.
(2019). Considering the role of adaptive evolution in models of the ocean
and climate system. J. Adv. Model. Earth Syst. 11, 3343–3361. doi: 10.1029/
2018MS001452

Welkie, D. G., Rubin, B. E., Diamond, S., Hood, R. D., Savage, D. F., and Golden,
S. S. (2019). A hard day’s night: cyanobacteria in diel cycles. Trends Microbiol.
27, 231–242.

Wintermute, E. H., Lieberman, T. D., and Silver, P. A. (2013). An objective function
exploiting suboptimal solutions in metabolic networks. BMC Syst. Biol. 7:98.
doi: 10.1186/1752-0509-7-98

Xiong, W., Cano, M., Wang, B., Douchi, D., and Yu, J. (2017). The plasticity
of cyanobacterial carbon metabolism. Curr. Opin. Chem. Biol. 41, 12–19. doi:
10.1016/j.cbpa.2017.09.004

Yang, A. (2011). Modeling and evaluation of CO 2 supply and utilization
in algal ponds. Ind. Eng. Chem. Res. 50, 11181–11192. doi: 10.1021/ie200
723w

Yoshikawa, K., Toya, Y., and Shimizu, H. (2017). Metabolic engineering of
Synechocystis sp. PCC 6803 for enhanced ethanol production based on flux
balance analysis. Bioprocess Biosyst. Eng. 40, 791–796. doi: 10.1007/s00449-017-
1744-8
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