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ABSTRACT
Development of newbuildingHVACcontrol algorithmshas growndue toneeds for energy efficiency
and operational flexibility. However, case studies demonstrating new algorithms are largely indi-
vidualized, making algorithm performance difficult to compare directly. In addition, the effort and
expertise required to implement case studies in real or simulated buildings limits rapid prototyping
potential. Therefore, this paper presents the Building Optimization Testing Framework (BOPTEST)
and associated software for simulation-based benchmarking of building HVAC control algorithms. A
containerized run-time environment (RTE) enables rapid, repeatable deployment of common build-
ing emulators representing different system types. Emulators use Modelica to represent realistic
physical dynamics, embed baseline control, and enable overwriting supervisory and local-loop con-
trol signals. Finally, a common set of key performance indicators are calculated within the RTE and
reported to theuser. This paperdetails thedesignand implementationof software anddemonstrates
its usage to benchmark a Model Predictive Control strategy.

ARTICLE HISTORY
Received 26 July 2021
Accepted 21 September 2021

KEYWORDS
Buildings; controls; HVAC;
modelica; FMI;
benchmarking

1. Introduction

1.1. Background

There is a growing focus on the control of building
heating, ventilating, and air-conditioning (HVAC) sys-
tems. Needs for reducing CO2 emissions, integrating
renewable, variable, and distributed energy sources into
electric and thermal grids, adapting to natural disas-
ters and health emergencies, and operating complex
system architectures have prompted efforts to improve
upon existing control algorithms. For example, such
efforts include ASHRAE’s publishing of Guideline 36
(ASHRAE 2018), development of grid-friendly control
strategies (Kim et al. 2016), resolute interest inModel Pre-
dictive Control (MPC) (Drgoňa et al. 2020), and rapidly
growing interest in data-driven control (Vázquez-Canteli
and Nagy 2019). While these new control algorithms are
promising, challenges remain in deploying them widely
in practice.

One key challenge is benchmarking the performance
of these algorithms against state-of-the-art algorithms
and each other. Often, each new or improved algorithm
is demonstrated individually through simulation or field
testing on a particular application to show the benefits
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they promise over an alternative deemed as a baseline.
With such individualized studies and baseline definitions,
it remains unclear how each control algorithm compares
to another on a particular application in a quantitative
way and whether similar benefits are observed in other
applications. Such insightswould enable building owners
andoperators to invest in themost effective solutions and
the development community to identify areas of needed
continued work.

A second key challenge is the effort and expertise
required for setting up and executing such individualized
tests. While testing in real buildings has the advantage of
capturing the complex building control process, it is also
risky, expensive, and time-consuming to complete. Build-
ing owners and operators need to ensure the services
of the building are still provided and real buildings are
subject to uncontrollable, unmeasurable, stochastic, and
slow-changing operating environments. Thismakes it dif-
ficult to evaluate many control strategies under the same
test conditions. Simulation-based testing offers solutions
to these problems by providing a controlled, config-
urable testing environment. However, creating a realis-
tic simulation of building operation requires expertise
in building physics and systems modelling, which may
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not be shared by control, optimization, and data science
experts. In addition, the diversity of simulationmodelling
approaches and evaluation metrics makes these studies
difficult to compare.

The development of a common platform for simulati-
on-based testing helps address the previously described
challenges by enabling rapid prototyping of new solu-
tions, their testing on new applications, and direct
comparison to alternative approaches. This motivates
the work presented in this paper: to provide a com-
mon framework and publicly available software tools
necessary for simulation-based benchmarking of build-
ing HVAC control algorithms using high-fidelity build-
ing emulators. The resulting framework and software
tools are known as the Building Optimization Testing
(BOPTEST) Framework and are currently available in a
GitHub repository at https://github.com/ibpsa/project1-
boptest with version v0.1.0.

1.2. Paper objectives and contributions

This paper expands upon a previous conference publi-
cation that covered an earlier version of the work (Blum
et al. 2019). That publication presented the main ele-
ments of the BOPTEST framework and their preliminary
implementations, and demonstrated its use with a first-
order test system and a feedback controller. This paper
expands on the description of each element, introduces
the development since (Blum et al. 2019), including new
features and updates to the application programming
interface (API), development of more complex emula-
tor models, refinement of key performance indicators,
improvements to computational performance and data
management, and demonstrates the framework’s usage
for the evaluation of an MPC strategy. Earlier elements
and previous versions of BOPTEST were also used in
Arroyo, Spiessens, and Helsen (2020) for the model iden-
tification study of a multi-zone building, Walnum, Sar-
tori, and Bagle (2020) for the evaluation of an MPC strat-
egy for a building radiator served by a district heating
system, Huang, Chen et al. (2018) for assessing ASHRAE
guideline controls with a typical large office building, and
Bünning et al. (2021) for the evaluation of three differ-
ent data-driven modelling methods for use in MPC for
a single-zone building radiator served by a boiler. Also,
an OpenAIGym environment for BOPTEST is being devel-
oped as described in Arroyo et al. (2021) and a new emu-
lator to be integrated with BOPTEST was described in
Yang et al. (2020). Finally, a software platform for meta-
modelling and advanced controller development, such
as MPC and Reinforcement Learning (RL), that interfaces
with BOPTEST and high-fidelity Spawn building emula-
tors is developed inMarzullo et al. (2021). With continued

development since Blum et al. (2019) and a growing
ecosystem of usage, the specific objectives of this paper
are as follows:

(1) Describe the design and implementation of the
BOPTEST software in detail.

(2) Explain its intended use.
(3) Demonstrate the use of BOPTEST for performance

evaluation of an example MPC strategy.

BOPTEST contributes to the field by integrating high-
fidelity building simulation usingModelica (Mattsson and
Elmqvist 1997) and the FunctionalMockup Interface Stan-
dard (FMI) (Blochwitz et al. 2011) with containerized soft-
ware deployment using Docker to enable deployment
of virtual building emulators in a reproducible comput-
ing environment locally cross-platform or in the cloud.
In addition, the BOPTEST computing environment pro-
vides all of the functionality needed for advanced con-
trol evaluation, including overwriting control signals in
emulators at the supervisory or local-loop levels, read-
ing measurement signals, obtaining boundary condition
forecasts, setting up testing scenarios, and computing
Key Performance Indicators (KPI), through a generic HTTP
API accessible by most programming languages. Finally,
BOPTEST provides a set of ready-to-use building emula-
tors, so-called test cases.

The structure of this paper is as follows. Section 2
provides a review of relevant literature on control
performance evaluation, simulation technology, and
previously-developed frameworks, and discusses impli-
cations on the development of BOPTEST. Then, Section 3
introduces framework requirements, presents the overall
concept of BOPTEST, and describes the design, imple-
mentation, and usage of its components. Section 4
demonstrates the use of the framework to evaluate the
performance of an MPC strategy. Section 5 discusses the
performance of the framework, associated limitations,
and future work. Finally, Section 6 concludes the paper.

2. Literature review

2.1. Control performance evaluation

The initial challenge of evaluating new control algo-
rithms is the large number of factors that influence
performance. A comprehensive review on MPC for
buildings (Drgoňa et al. 2020) suggests these factors
stem from case study characteristics, such as build-
ing size, occupancy and usage, climate, HVAC sys-
tem design, controllability, measurement availability,
and control objective, controller characteristics, such
as general approach, specific algorithms, and software
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implementation, and evaluation metrics. As summarized
by Afram and Janabi-Sharifi (2014), common evaluation
metrics include energy, cost, peak load shifting capability,
transient response, steady-state response, control of vari-
ables within bounds, reduction in fluctuations from a set-
point, system efficiency, robustness to disturbances and
changes, indoor air quality (IAQ), thermal comfort, and
computational time. Other potential metrics suggested
by Drgoňa et al. (2020) target the controller implemen-
tation specifically, such as computer hardware and soft-
ware requirements, data requirements, implementation
effort, and installer expertise. Another review (Zhan and
Chong 2021) discusses specifically the influence of data
availability on MPC model approaches and performance.
All three studies (Afram and Janabi-Sharifi 2014; Drgoňa
et al. 2020; Zhan and Chong 2021) conclude that fur-
ther comparison of approaches is needed, and the lack
of a framework that includes common test cases and
evaluation methods remains a barrier to efficiently iden-
tifying the promising approaches and needs for contin-
ued development in MPC. The same problem has been
identified in the RL community. Two review publica-
tions, Vázquez-Canteli and Nagy (2019) presenting 105
studies and Wang and Hong (2020) presenting 77 stud-
ies, join (Drgoňa et al. 2020; Zhan and Chong 2021) to
remark that the inability to benchmark algorithms on
common test cases remains a barrier to efficiently iden-
tifying the most promising approaches for given applica-
tions. Finally,Wölfle, Vishwanath, andSchmeck (2020)dis-
cusses theneed forbenchmarkenvironments forbuilding
energy optimization and further proposes seven topics
such environments should address: scenario, relevance,
scope, realism, performance measure, reproducibility, and
interface. Each of these topics is addressed in this paper.

A second challenge is the choice of a comparative
baseline for the chosen case study, which can highly
influence the reported benefits of new control. Typi-
cally, baseline control is implemented with Rule-Based
Control (RBC), though the performance of such control
can vary widely. For example, consider the commonly-
studied multi-zone Variable Air Volume (VAV) system.
When evaluating improvements to heating and cooling
enabling conditions, supply air and boiler temperature
resets, enthalpy-based economizer control, night flush
ventilation, and zone temperature set points individually
and in groups, Mansson and McIntyre (1997) found dif-
ferences in energy use compared to a baseline ranging
from −10% to 35%. Similarly, when evaluating different
strategies for zone temperature set points, optimal start,
economizer, minimum outside air, static pressure reset,
supply air temperature reset, and terminal box minimum
airflow, Pang, Piette, and Zhou (2017) found energy sav-
ings of ‘good practice’ strategies to be upwards of 67%

and 64% (in two climates) if compared against ‘poor prac-
tice’ baselines, and only 12% and 14% (in the same two
climates) if compared against ‘average practice’ base-
lines. Finally, Fernandezet al. (2017) showsenergy savings
ranges from 4% to 59% due to ideal implementation of
37 fault correction and RBC strategies, acrossmany build-
ing types and climates, depending on if the baseline is
‘efficient’, ‘typical’, or ‘inefficient’. Similar arguments can
bemade for hydronic thermally active building structures
(TABS), often cited as systems with high efficiency and
load shifting potential that benefit from advanced con-
trols. The review by Romaní, de Gracia, and Cabeza (2016)
classifies typical control strategies into flow-controlled
and supply water temperature controlledwith or without
dependence onoutside air temperature or feedback from
indoor temperature. More advanced controllers utilize
predictive capabilities and canbe compared to any oneof
these typical strategies. For example, Prívara et al. (2011)
comparedMPC to open-loop supply temperature reset as
a function of outside temperature, while Sourbron, Ver-
helst, and Helsen (2013) comparedMPC to a similar base-
line control, but with additional feedback control on the
TABS surface temperature as a function of room comfort
limits.

2.2. Simulation technology

The underlying simulation technology of the building
emulator is critical to enabling evaluation with realistic
test cases. Primary factors that were considered include
the fidelity of the model, time-resolution of the simula-
tion, and representation of both current and future sys-
tem designs. Other important factors include software
availability, maintenance and support, co-simulation
interfaces for external controllers, and commercial licens-
ing requirements.

EnergyPlus (Crawley et al. 2001) and TRNSYS (Klein
2017) are two popular building energy simulation pro-
grams, with EnergyPlus being freely available and sup-
ported by the US Department of Energy, and TRNSYS
being commercially available. Bothprogramshave strong
capabilities for modelling envelope physics as well as a
large variety ofHVACcomponents and systems.However,
the load-based HVAC performance calculation procedure
in EnergyPlus is based on control inputs and outputs
that differ from how actual building systems are con-
trolled. EnergyPlus also does not model the relationship
between pressure and flow in HVAC pipe and duct net-
works. These modelling approaches, along with a fixed
timestep integration method with a lower limit of one
minute, precludes it from explicitly representing the con-
trollers and associated control logic present in a real
building, such as a local-loopPI controller. TRNSYS system
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models are composed of individual component models
with defined input and output variables that are linked
together. While this allows for flexibility in the system
architecture to be modelled, Wang (1999) reported seri-
ous convergence difficulty when simultaneously simu-
lating a VAV duct network model using pressure-flow
relationships with thermal models, and concluded that
such problems would need to be addressed for contin-
ued usage. For the simulation to converge, the system
pressure-flow balance needed to be implemented in a
single, separate component from the thermal and con-
trol models. This approach would be cumbersome to
duplicate for other building and system designs. Later
attempts described in Blum (2013) to simulate a duct net-
work with three flow splits using pressure-flow relation-
ships failed to converge to a solution when the pressure
difference driving flow through the system approached
zero. HVACSIM+ (Park, Clark, and Kelly 1985) is simi-
lar to TRNSYS in the definition of system models using
components with defined input/output interfaces and a
library of dynamic component models for the evaluation
of HVAC controls was developed for both in (Haves and
Norford 1997). However, HVACSIM+ lacks strong devel-
oper and user communities.

In contrast, other software that use equation-based
model descriptions and declarative programming is
growing in popularity. Three examples are the basis of
the SPARKprogram (Sowell et al. 1986), theNeutralModel
Format (NMF) (Sahlin and Sowell 1989) used in the com-
mercial software IDA/ICE (Björsell et al. 1999), and the
Modelica language (Mattsson and Elmqvist 1997), whose
open-source specification is utilized across the automo-
tive, aerospace, process, and buildings industries. A pri-
mary advantage of equation-based model descriptions
for the building systems domain is the ability to sym-
bolically manipulate model equations such that compu-
tationally efficient code can be generated for the simu-
lation of building energy systems, including heat trans-
fer physics, pressure-flow networks, and explicit control
formulations (Wetter, Bonvini, and Nouidui 2016). Mod-
elica tools combine such code with variable time-step
solvers that are capable of handling nonlinear, hybrid,
and stiff mixed continuous and discrete-time systems of
differential-algebraic equations (DAE) that often occur
when coupling building physics, HVAC, and controls.
Such approaches, therefore, can be used for explicit rep-
resentation of the controllers and control logic present
in real buildings and used for realistic control evalu-
ation. Open-source development of Modelica libraries
for building energy simulation has gained significant
traction since the development of four open-source
component libraries (Nytsch-Geusen et al. 2013; Wetter
et al. 2014; Mueller et al. 2016; Jorissen et al. 2018a), their

unification into a kernel library under IEA Annex 60 (Wet-
ter et al. 2015), and continued development under IBPSA
Project 1 (Wetter et al. 2019).

In addition tomodel implementation, it is important to
consider themodel interfaces for external controller inte-
gration. EnergyPlus, TRNSYS, and the Modelica Buildings
Library (Wetter et al. 2014) all provide native interfaces
with Python, while TRNSYS and IDA/ICE provide native
interfaces with MATLAB. An EnergyPlus-MATLAB tool has
been developed in Nghiem (2010). Meanwhile, more
generic coupling between building simulation tools, as
well as other potential external programs, was provided
by the Building Controls Virtual Test Bed (BCVTB) (Wet-
ter 2011), which has subsequently been used frequently
for the evaluation of control algorithms. The Functional
Mockup Interface Standard (FMI) (Blochwitz et al. 2011) is
agenericmodel interface standard supportedbyover 150
tools across industries that allows for supporting tools
to package models, solvers (optionally), and other nec-
essary data into Functional Mockup Units (FMU) that can
be imported into different supporting tools and/or co-
simulated with other FMUs. Together, EnergyPlus, Mod-
elica, and FMI are fundamental to the development of
a next-generation building controls simulation environ-
ment, called Spawn (Wetter et al. 2020).

2.3. Previous and existing frameworks

The use of building emulators for control algorithm
benchmarking was introduced during the International
Energy Agency (IEA) Energy in Buildings and Commu-
nities Program (EBC) Annex 17 (Mansson and McIn-
tyre 1997). There, participants built building emulators
to be coupled with real Building Energy Management
Systems (BEMS). Although successful case studies were
reported, there are two major limitations associated with
the emulator implementations. First, they relied on real
BEMS hardware for control algorithm implementation,
and this limits their support of control algorithm devel-
opment. Second, they did not use a software architecture
for encapsulating and sharing emulators. This leads to
potentially inconsistent results due to variations inmodel
implementation and settings used for testing. As IEA EBC
Annex 30 (Warren 2002) points out, an additional obsta-
cle is the requirement for control developers and design
engineers to become familiar with simulation tools and
dynamic system modelling approaches. The develop-
ment of building emulators for controls testing continued
with control-hardware-in-the-loopenvironments, such as
an environment utilizing SPARK as a simulation engine
(Xu, Haves, and Deringer 2004) and the Virtual Cyber-
netic Building Testbed (VCTB) utilizing HVACSIM+ as a
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simulation engine (Bushby et al. 2010), and hardware-in-
the-loop environments, such as that using Modelica as a
simulation engine for zone dynamics and real air hand-
ing unit (AHU) equipment (Huang et al. 2018). As Huang
et al. (2018) points out, and similar to the observations
above, testing environments with hardware-in-the-loop
are useful for evaluating practical issues surrounding the
implementation of controls. However, they are limited in
their scalability to different test cases or wide variety of
control algorithms. For example, analogue-digital (A/D)
converters have a limited number of I/O channels and
need re-wiring or configuration for new test cases, and
real HVAC equipment installations, such as fans, chillers,
and flow networks, can only represent a limited number
of test cases.

Entirely software-based testing and benchmarking
environments have also emerged. Environments using
EnergyPlus as a simulation engine have been developed
with RESTful, in Pallonetto et al. (2019), and Haystack, in
(NREL 2021), APIs for controller interfacing. The engines
for these examples have been deployed as web-services,
and the use of Docker, as shown in (NREL 2021), allows for
rapid, flexible deployment locally. The CityLearn environ-
ment (Vázquez-Canteli et al. 2019) was implemented in
Python for the benchmarking of Reinforcement Learning
controllers integrating building, storage, and PV gener-
ation systems. Carefully designed testing scenarios and
internal key performancemetric (KPI) calculation enabled
a grand challenge to be issued (Vázquez-Canteli 2020).
However, building energy use is determined by pre-
calculated heating and cooling loads, rather than explicit
dynamic simulation of the HVAC system. An office build-
ing emulator including explicit dynamic simulation of the
HVAC system and controls, as well as stochastic occu-
pancy, was implemented and made available online for
testing external control strategies in Togashi and Miy-
ata (2019). Communication between the server emulator
and client test controller was established using BACnet
and a VPN. It was used to conduct a grand challenge
known as The First World Championship in Cybernetic
Building Optimization (WCCBO), which attracted 33 par-
ticipant teams over a two-month period to compete to
reduce annual energy use and improve thermal comfort
(Togashi, Miyata, and Yamamoto 2020). The work suc-
ceeded in providing an open platform for control strat-
egy evaluation and benchmarking, though the imple-
mentation of component models using custom soft-
ware limits the approach’s scalability to new test cases
and the lack of forecasting service precludes the test-
ing of predictive controllers, such as MPC and RL. Finally,
Energym (Scharnhorst et al. 2021) is a Python-based,
open-source library of building models, implemented in

EnergyPlus andModelica, for benchmarking control algo-
rithms. Though similar in concept to BOPTEST, execution
differs in a few different ways, including the following.
TheModelica-basedmodels in Energym utilize first-order
models for envelopes, zone temperature limits are con-
stant for all time, KPI calculation does not utilize time
integration, thereby metrics like total energy use or cost
are not calculated, the emulationmodels do not have the
ability for overwriting of local-loop and supervisory con-
trol signals, and the interface is based in Python, limiting
the potential for testing of controllers implemented in
other languages.

2.4. Implications

BOPTEST development is motivated by the discussions in
Section 2.1. Not only does providing a framework for, and
set of, common test cases allow for comparison of new
and improved controllers to one another, but each con-
trol algorithm tested contributes to a singular, cumula-
tive collectionof potential baseline comparisons. Further-
more, from the discussion in Section 2.2, BOPTEST uses
Modelica for emulator model implementation to provide
realistic controls simulation and enable leveraging of a
growing ecosystem of open-source model and related
computational tool development. New Modelica blocks
are developed to facilitate overwriting embedded con-
trol logic at the supervisory and local-loop levels by test
controllers and making available measurements. In addi-
tion, BOPTEST utilizes the Functional Mockup Interface
Standard (FMI) to integrate the simulation of emulators
with external controllers since FMI provides a standard
interface that is supported for both compilation and sim-
ulation by a growing number of tools across industries.
Finally, BOPTEST improves upon previous and existing
frameworks, discussed in Section 2.3, by integrating this
emulatormodellingwith functionality needed for control
algorithm benchmarking into a rapidly and repeatably
deployable computing environment accessible through
a generally-accessible HTTP API using Docker.

3. Methods

With the motivation and key technologies established in
Section 2.4, this section details the implementation and
intended use of BOPTEST. First, Section 3.1 presents spe-
cific requirements for the framework leading to the gen-
eral concept of implementation. Then, Sections 3.2–3.4
detail the implementation of three primary components:
Run-Time Environment (RTE), Test Cases, and Key Perfor-
mance Indicators (KPI).
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3.1. Framework requirements and concept

Theprimary use case of BOPTEST is to evaluate the perfor-
mance of control algorithms for benchmarking purposes.
The framework can also be used for identifying and cor-
recting control implementation errors. To derive specific
framework development requirements for the bench-
marking use case, a given building is represented in the
mathematical form of a dynamic system as

f (ẋ(t), x(t), y(t), u(t),ω(t), θ) = 0, for t ∈ [ts, tf ], (1)

x(ts) = xs, (2)

where x(·) denotes the states, such as zone air and sur-
face temperatures, y(·) are the measurements, such as
zone air temperatures or equipment power, u(·) are the
control inputs, such as actuator signals and supervisory
set points, ω(·) are disturbances, such as weather con-
ditions, occupant schedules, and electricity prices, θ are
time-invariant parameters, such as construction material
properties, and ts is the start time and tf is the final time
of a simulation.

The framework should then provide:

• An emulator model f (·, ·, ·, ·, ·, ·) and numerical inte-
gration solver for computing the trajectories ẋ(·), x(·),
y(·), ω(·), the parameters θ , the initial state xs, and a
baseline control policy ub(x(·)) or a baseline control
sequence ub(·). Emulatormodels for different building
and system types should be available in a repository.

• Ability for an external controller under test to choose
uc ⊂ ub and set the values of uc at discrete time
moments. Let τK be the set of these time moments
such that τK = {tk}Kk=1 ⊂ [ts, tf ] for some K ∈ N, where

N is the set positive integers. Then, the interval (tk+1 −
tk) is the control step, over which the values uc(tk) are
constant.

• Access by the test controller to y(t) at all the t ∈ τK .
• Access by the test controller to forecasts of distur-

bances, {ω̃(t + i
N h)}Ni=1 for some N ∈ N and t ∈ τK ,

where h>0 is the horizon of the forecast.
• Access by the test controller to y∗(t) = Y(x(t), y(t),

u(t),ω(t)), a set of values for KPIs calculated for some
t ∈ [ts, t]. Note that y∗(tf ) denotes the final KPI values
of the test simulation.

This abstracted use case informs the overall concept
of BOPTEST, presented in Figure 1, and suggests the
development of three primary components: 1) Run-Time
Environment (RTE), 2) Repository of Reference Emulators,
known as Test Cases, and 3) Key Performance Indicator
(KPI) Calculation. The concept is that the user would use
the standardized RTE to simulate a chosen building emu-
lator with a user-specified test controller and receive a
report with the values of the performance metrics eval-
uated based on the operation of the emulator. With this
in mind, each component then has the more concrete
development requirements as follows.

(1) Run-Time Environment (RTE)
(a) (a)The simulation environment for high-fidelity

building simulation models, also referred to as
emulators, must be standardized so that results
for benchmarking different test controllers are
consistent. This includes the solver(s) and toler-
ance(s), computing environment, and other nec-
essary software.

Figure 1. The BOPTEST concept.
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(b) (b)Data exchange between a test controller and
emulator should be facilitated by an interface
that is independent of the emulator model and
test controller programming languages, open-
ing up opportunities to test diverse controller
implementations with the framework.

(c) (c)Flexibility in emulator-controller synchroniza-
tion times should be provided to meet different
application requirements. In Option 1, the con-
troller defines the control steps, which do not
have to be regular, and the simulation should
advance to the next control step when the con-
troller returns with a control action. This is easier
for controller development and allows for repro-
ducible tests. In Option 2, the simulation should
advance to the next time step according to real-
time, representing a realistic building-controller
interaction. Option 1 has been prioritized for
implementation, while Option 2 is considered as
a future extension.

(2) Repository of Reference Test Cases
(a) (a)Reference test cases provide emulators for

co-simulation with a test controller. Emulators
should simulate the dynamic evolution and rela-
tionships between physical quantities, and pro-
vide data at the time-resolution necessary for
controls design and control performance assess-
ment, including nonlinear characteristics associ-
ated with mechanical and electrical equipment
such as duct and pipe flow networks, valve and
damper dynamics, and variable equipment effi-
ciencies.

(b) (b)Emulators should include complete baseline
control implementations such that a test con-
troller may overwrite these baseline control sig-
nals as needed at the supervisory and local-loop
levels. This embedded control also serves as an
initial benchmark for control performance.

(c) (c)Emulators should only expose for overwriting
control signals that could be actuated in real
building control systems, and only expose mea-
surement data for variables that can be mea-
sured in engineering practice.

(d) (d)In addition to an emulator model, all exoge-
nous data that defines a test case should be pro-
vided by the framework, such as weather, occu-
pancy schedules, and energy prices. To accom-
modate testing of predictive controllers, this
data should be made available to controllers as
forecasts over a horizon of configurable length.
Providing deterministic forecasts has been prior-
itized for implementation, while stochastic fore-
casts are considered as a future extension.

(e) (e)The framework should also define testing sce-
narios for each test case with specific parame-
ters of interest, such as the start and end times
or choice among different electricity tariffs with
different price variability.

(3) Key Performance Indicator (KPI) Calculation
(a) (a)A set of key performance indicators (KPI)

should be specified for each test case, includ-
ing equations or guidelines to unambiguously
quantify them.

(b) (b)The framework should calculate and report
the KPIs based on simulation data collected dur-
ing a controller test. This will ensure a fair and
clear comparison between controllers.

(4) Open-Source Software
(a) (a)All software, including reference emulator

models andother framework components, should
be provided open-source and documented to
allow for inspection of the underlying assump-
tions and implementation, as well as promote
community-based development and mainte-
nance.

With the development requirements defined, the fol-
lowing sections describe the implementation of each
component.

3.2. Run-time environment

The Run-Time Environment (RTE), shown in Step 1 of
Figure 1, is used for simulating the response of the build-
ing emulator to external control signals, calculating KPI
values, and conducting other test and data management
tasks. It is constructed in the form of a Docker container
(2021) with an exposed RESTful HTTP API. The archi-
tecture of the RTE and user interaction is presented in
Figure 2. This section is further split into two sub-sections:
Section 3.2.1 describes the front-enduser interactionwith
the API interface and will be more of interest to a reader
interested in using BOPTEST. Section 3.2.2 describes the
back-end contents and operation of the software within
the RTE Docker container andwill bemore of interest to a
reader interested in understanding how BOPTEST works.

3.2.1. Front-end
Once a user installs the Docker software on their host
computing resource, they can then build and deploy
the RTE with their choice of test case from the refer-
ence set available in the BOPTEST repository, using a sin-
gle command for each action. Each test case contains
an emulator model, documentation, and other neces-
sary data for a specific building and system type, as is
described in more detail in Section 3.3. Once deployed,
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Figure 2. Architecture diagram for Run-Time Environment (RTE) showing the key classes and applications. For boxes representing
classes, the name is in the top section, key attributes are in the middle section, and key methods are in the bottom section.

the API is made accessible through the network port at
localhost:5000. This API is summarized in Table 1. In
addition, Figure 3 presents the command line commands
and aminimal code example using Python that interfaces
a simple feedback test controller with a deployed RTE.

The code is a snippet of that available in the repository
in examples/python/testcase1_scenario.py.

The Python code in Figure 3 executes a feedback
controller. The code starts with importing the necessary
package for making HTTP requests as well as a class
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Table 1. Run-time environment (RTE) application programming
interface (API) summary.

Request endpoint Description

GET/name Receive test case name
GET/inputs Receive available input point names and

metadata
GET/measurements Receive available measurement point

names and metadata
GET/step Receive active control step
PUT/step Set control step
PUT/initialize Initialize simulation by simulating the

emulator with the built-in baseline
controller for t ∈ [ts − w, ts], where ts is
the specified start time and w ≥ 0 is the
initialization period

GET/scenario Receive active test scenario parameters
PUT/scenario Set test scenario parameters available for

the test case such as time period, which
invokes /initialize with specific
ts , w, and end time tf , and electricity
price profile

GET/forecast_parameters Receive active boundary condition forecast
parameters

PUT/forecast_parameters Set boundary condition forecast
parameters such as horizon and time
interval

GET/forecast Receive boundary condition forecast from
current control step

POST/advance Advance simulation one control step with
control input data

GET/kpi Receive core KPI values from start time
through current control step

PUT/results Receive simulated data trajectories for a
specified measurement or input point
over a specified time period

representing the test controller. Next, high-level param-
eters for the script are defined. The url is the location
of the RTE interface port, scenario defines a specific
testing time period and electricity price profile avail-
able within the test case, described in Section 3.3, and
step defines the control step to be used during the
test. Then, the/measurements and/inputsAPI end-
points are used to receive information about the avail-
able measurement and control input points, including
names, units, descriptions, and minimum and maximum
values. After this, the test is set up by first using the
/step API endpoint to set the control step and then
the /scenario API endpoint to set a specific testing
time period and electricity price profile. Then, the test is
executed using a while loop that first computes a con-
trol signal based on measurement data and then uses
the /advance API endpoint to advance the simulation
forward one control step with the computed control sig-
nal and to receive current-time measurements. Once the
testing period is completed as defined by the specified
scenario, and indicatedbyanemptymeasurement return,
the core KPIs, calculated for every test case and described
in Section 3.4, are retrieved using the /kpi API endpoint
and the simulation trajectory for the entire testing period
is retrieved for the point named ‘TRooAir_y’ (room

air temperature) using the/resultsAPI endpoint. Note
that once the end of scenario time is reached, the simula-
tion canno longer be advanceduntil the start time is reset
using the /initialize or /scenario API endpoints.

A few additional notes are as follows. This exam-
ple demonstrated an interface for a feedback controller.
Advanced control algorithms, such as MPC and RL, will
also need to use the/forecastAPI endpoint for distur-
bance prediction and additional usage of the /results
API endpoint state history. An example usage of BOPTEST
for testing an MPC strategy is demonstrated in Section 4.
An RL controller may also need additional usage of the
/kpis API endpoint to update the reward function at
each control step. Simulations with the baseline control
implemented with the emulator model can be run in the
same way as presented, without passing any control sig-
nal data during the usage of /advance API endpoint.
Simulating the test case outside of the defined scenario
period, for instance to obtain data for MPC or RL model
identification, can be done using the /initialize API
endpoint. Finally, while Python is used in this example,
any language capable of making HTTP RESTful requests
can be used.

3.2.2. Back-end
As shown in Figure 2, the RTE Docker container utilizes
the Ubuntu operating system and required dependency
software applications.Wehighlighthere thePython inter-
preter and PyFMI (Andersson, Åkesson, and Führer 2016),
a Python package for the simulation of FMUs. Described
in more detail in Section 3.3, test case emulator models
and associated boundary condition data are packaged as
FMUs. The FMUsmay be generated by different Modelica
environments.

Besides the application dependencies and test case
FMU, the other objects within the RTE are singular
instances of Python classes responsible for providing
functionality and data management. The primary class is
TestCase, which is responsible for loading and simu-
lating the FMU, storing result data in memory, and get-
ting and setting data as needed by the client or simula-
tion process. TestCase utilizes three helper classes to
perform its duties. The first is Data Manager, which
is responsible for loading and fetching boundary con-
dition data packaged within a test case FMU. The sec-
ond is Forecaster, which is responsible for providing
forecasts of boundary condition data defined by a hori-
zon and interval. The third is KPI Calculator, which
is responsible for calculating the core KPIs defined in
Section 3.4. Finally, the class API exposes the API of
TestCase, and in general the RTE, to a client through
a network port and in the form of HTTP requests. A
more detailed description of the API can be found in
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Figure 3. Command line commands for building and running the RTE with a specified test case (top) and example controller interface
with RTE using Python (bottom).

Table 1. Upon deployment of the RTE container with
a selected test case FMU, TestCase loads and initial-
izes the FMU to a default start time ts using PyFMI,
instantiates Data Manager, Forecaster, and KPI
Calculator classes, loads the names and metadata
of available control input and measurement points, sets
the control step, forecast parameters, and KPI calculation
scenario to the default configuration, sets the FMU sim-
ulation solver and tolerance, and initializes in-memory
data structures for the storage of simulation results. Once
deployed, the RTE is idle until a request is made through
the API, in which case it is handled and then returned to
an idle state.

The operation of the RTE for the basic use case pre-
sented in the minimal code example in Figure 3 is
explained with a swimlane diagram in Figure 4. Addi-
tionally, this swimlane diagram shows usage of the
/forecast and /results API endpoints that are
needed for predictive controllers. Some additional notes
on the back-end operation of the RTE in this use case are
as follows. Upon receiving a request to initialize a simu-
lation, TestCase uses the PyFMI simulatemethod to
initialize the FMUby simulating it for t ∈ [ts − w, ts] using
the embedded baseline controller. Here, ts andw ≥ 0 are
defined explicitly by the user if they use /initialize
or by the framework if they use /scenario. Upon
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Figure 4. Swimlane diagram for basic use case of Run Time Environment (RTE) to run a test simulation. Italics indicate a specific method
within the indicated class.

completion of this initialization, the trajectories of con-
trol input and measurement points defined by the test
case are saved, the current time values for measurement
points are returned to the user, and the RTE is again idle.
Upon usage of the /advance API endpoint to advance
the simulation one control step, TestCase uses the
PyFMI simulate method to advance the FMU simula-
tion forward with control input values if provided. Then,
the trajectories of control input andmeasurement points
defined by the test case are saved at 30 second time res-
olution and without event points using the appropriate
simulation options within PyFMI. The number of commu-
nication points within the PyFMI simulation options at
each simulation step corresponds to the current control
step size. Note that the choice of storing results at a fixed
time step without event points ensures consistency for
KPI calculation anddata reporting to auser such that both
are independent of the solver time step, which can vary
depending on control action, control step size, and sim-
ulation events. The 30 second time step was chosen as
a trade-off between the accurate representation of data
trajectories and the lowmemory requirements and simu-
lation time.Ausermay still choose a control step tobe less
than 30 seconds. In this case, the results are stored at the

resulting time resolution of the solver. Once the advance
is complete, the current time values for measurement
points are returned to the user and the RTE is again idle.
If the end of the scenario time period has been reached,
empty measurements are returned and an internal flag
indicates the end of a scenario. Further simulations are
prevented unless the emulator is initialized to a new start
timeusing the/initializeAPI endpoint or a new sce-
nario time period is requested using the /scenarioAPI
endpoint. Upon a request using the /results API end-
point, TestCase returns the stored time trajectory for
the point and timeperiod specified in the request. Upon a
request using the /kpis API endpoint, TestCase calls
upon KPI Calculator to utilize the stored measure-
ment point trajectories and any necessary boundary con-
ditiondata from theTest Case FMU to calculate and return
the values of the core KPIs described in Section 3.4. Here,
trapezoidal numeric integration is applied to the saved
data.

3.3. Test cases

Test cases contain all of the information related to a spe-
cific virtual building to be used for testing. A test case
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repository is available for use in theRTE as shown in Step2
of Figure 1. A single test case is composed of an FMU and
standardized documentation in the form of a .html file
and necessary image files. The FMU contains the building
emulationmodel, a file used tomapmodel outputs to KPI
calculation called kpis.json, a file used to define test
scenario time periods called days.json, a file used to
specify default configuration values when the test case
is initialized within the RTE called config.json, and
boundary condition data in the form of .csv files.

The emulator models themselves are implemented in
Modelica. Two new ‘signal exchange’ Modelica blocks
have been developed in the IBPSAModelica Library (Wet-
ter et al. 2019) to enable overwriting of particular control
signals by a test controller, IBPSA.Utilities.IO.
SignalExchange.Overwrite, and readingof partic-
ular measurement signals by the test controller, IBPSA.
Utilities.IO.SignalExchange.Read. The over-
write block is implemented as a switch that toggles
between two input signals, one being from the Mod-
elica model itself and one being from the external test
controller. Overwrite blocks can be used for supervisory
or actuator control signals. Activating the switch to use
the test controller value is controlled by the test con-
troller, through usage of the /advance API endpoint,
allowing the test controller to choose which signals it
overwrites and which it leaves to the embedded control.
This enables, for instance, a test controller to optimize
supervisory set points and leave local-loop control to
the controllers embedded in the Modelica model, much
like in the case of many field demonstrations. All acti-
vation is false by default. Configuration of the overwrite
block in the emulator model takes a description, mini-
mum and maximum values, and unit. Configuration of
the read block takes a description, unit, whether or not
the signal is needed for KPI calculation, and depending
on the need for KPI calculation, a zone identifier. If the
measurement is needed for KPI calculation, an enumer-
ation parameter is available to choose from a number of
KPI IDs, which help the internal process of KPI calculation
described later. A Pythonmodule, parser.py has been
developed for test case developers to compile the model
into an FMU and make use of the overwrite and read
blocks. It does so by first writing a new top-level Modelica
model (the ‘wrapped’ model) in which the original model
is instantiated, unique activation and signal inputs are
added and connected to corresponding overwrite blocks,
and unique outputs are added and connected to corre-
sponding read blocks. Then, the Pythonmodule compiles
this ‘wrapped’model into an FMU. Figure 5 shows the use
and configuration of signal exchange blocks in a simple
example model of a 1R1C envelope model with heater
and feedback thermostat control.

The kpis.json file is used by the RTE to map
which model outputs are to be included in the cal-
culation of KPIs. The map has the structure kpi id:
[output id]. Here, the kpi id is an identifier for a
particular KPI calculation and [output id] is a list of
model outputs that are needed to calculate that KPI.
For example, consider a KPI of total energy use. Then,
one kpi id is ElectricPower, and the correspond-
ing [output id] will contain a list of all model out-
put names that should be used in the calculation of
total electric power (e.g. supply fan power, pump power,
heat pump power, etc.). Other available KPI IDs, for
example used for total energy use calculation, include
GasPower and DistrictHeatingPower. For cal-
culation of KPIs in multi-zone buildings that require
zone identifiers to properly match zone-specific lim-
its with zone-specific measurements, the kpi id can
contain such a zone identifier. For example, consider
a KPI of total thermal discomfort. Then, one kpi id
is AirZoneTemperature[north], and the corre-
sponding [output id] will contain the model output
name for the zone air temperature of zone north.
In addition to compiling the emulation model FMU,
parser.py also uses information in the read blocks to
generate the kpis.json file.

The days.json file is used by the RTE to map
the names of test scenario time periods to the actual
simulation time periods. The map has the structure
time period name: day number. Here, the time
period name is a string identifier for the name of
the test scenario time period and day number is an
integer specifying a reference day number for deter-
mining the simulation period. For example, for the
‘peak_heat_day’ scenario time period, the reference
day number corresponds to the day with peak heating
load, and the RTE uses this value to define the start-
ing and ending time of the corresponding test simula-
tion. Currently, all scenario time periods are defined by
a two-week testing period centred on the reference day
along with a one-week warm-up period using the con-
trollers embedded within the emulator model for state
initialization at the start of the two-week testing period.
The available scenario time periods for each test case
are defined within their respective documentation. Cur-
rently, peak heating or cooling, typical heating or cooling,
andmixed heating and cooling time period scenarios are
consistently defined across available test cases. Defining
these scenarios separately as two-week periods allows for
highlighting differences in controller performance that
may occur under these different operating conditions.
The day number associated with peak is the day with
maximum 15-minute system heating or cooling load. For
typical, it is the day with themaximum 15-minute system
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Figure 5. Example Modelica model of a 1R1C envelope model with heater and feedback thermostat control using two instances of
IBPSA.Utilities.IO.SignalExchange.Overwrite that would enable a test controller to overwrite the heating zone
temperature set point (oveSet_u and oveSet_activate) or heater power (oveAct_u and oveAct_activate) and two
instances of IBPSA.Utilities.IO.SignalExchange.Read that would enable a test controller to read the zone air temper-
ature (TRooAir_y) and gas power consumed by the heater (PHea_y). Example parameterization for overwrite and read blocks are
shown in lower images.

heating or cooling load that is closest from below to the
median of all 15-minute maximum heating or cooling
loads of all days in the year. Formixed, it is a day,dmix,with
both significant heating and cooling loads as defined by

dmix = argmaxd∈D
((
H(d) + C(d)

) − ∣∣H(d) − C(d)
∣∣),
(3)

where H(d) and C(d) are the total heating and cooling
loads for day d in all days of the year D.

Boundary condition data are represented as timeseries
in .csv files and ultimately utilized for providing fore-
casts and calculating KPIs. They include weather, energy
pricing, CO2 emission factors, occupancy and internal
gain schedules, zone air or operative temperature com-
fort limits, and zone air quality comfort limits. While the
actual data is specific to the test case (e.g. geographic
location and building type), the column names of the
data are standardized so as to enable use by the RTE
in a generic way. Currently, different scenarios are avail-
able for electricity pricing, including constant, dynamic,
andhighly dynamic price profiles. The available electricity

price scenarios for each test case are defined within the
test case documentation.

Once theModelicamodel,kpis.json,days.json,
config.json, and boundary condition data are cre-
ated, parser.py can be used to compile the Modelica
model into thewrappedFMUandmove thekpis.json,
days.json, config.json, and specified boundary
condition .csv files into the ‘resources’ directory of
the FMU. This completes the packaging of a test case
FMU. Each test case FMU is accompanied by documen-
tation in the form of a .html file describing the building
and HVAC system design, baseline control implementa-
tion, additional relevant system design, input and output
points list and meta-data, important modelling assump-
tions, and information about sources of energy pricing
andCO2 emission factors. A templatehasbeendeveloped
and is utilized by all test case developers for consistency
across test cases. Finally, the test cases are collected in a
test case repository,where they are available for users and
also subject to continuous integration testing. The emula-
tormodels areprovided in the repository alongwith spec-
ifications of the dependent Modelica library versions as
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corresponding GitHub commits so that test case versions
can be properly defined and maintained.

3.4. Key performance indicators

Key Performance Indicators (KPI) aremetrics used to eval-
uate the performance of a test controller. As presented
in Section 2.1, there are many KPIs to consider. How-
ever, it is important for BOPTEST to calculate a core set
of KPIs in order to facilitate a fair comparison. Some are
easy to quantify objectively, such as energy use and cost,
while some are more difficult, such as controller data
requirements or implementation effort. In addition, the
more KPIs that are utilized, the harder it is to compare
control strategies and some KPIs may be more appli-
cable to certain tests cases than others. Therefore, the
core KPIs included in BOPTEST aim to cover the primary
aspects of control performance evaluation, be objectively
quantifiable, and not overwhelm the comparison pro-
cess. The RTE calculates these core KPIs for every test
case using measurement data saved during a test sim-
ulation and boundary condition data compiled into the
test case FMU. These KPIs are reported to a user as shown
in Step 4 of Figure 1. Optionally, users can also imple-
ment customized KPIs and evaluate themusingdata from
the /results API endpoint. As those KPIs may be only
applicable to their specific controller evaluation, they are
not calculated by the framework.

The core KPIs calculated by the framework are defined
in the sections below. Note that floor areas used for nor-
malization are calculated according to the definitions of
the Commercial Buildings Energy Consumption Survey
(CBECS terminology 2021) and Residential Energy Con-
sumption Survey (2015 RECS square footage methodol-
ogy 2021).

3.4.1. Thermal discomfort
The Thermal Discomfort, reported with units of [K h] per
zone, defines the cumulative deviation of zone tempera-
tures from upper and lower comfort limits that are pre-
defined within the test case FMU for each zone, aver-
aged over all zones. Air temperature is used for air-based
systems and operative temperature is used for radiant
systems. The Thermal Discomfort is calculated as

Ktdis =

∑N
z=1

∫ tf
ts

(
max(Tz(t) − Tz,coo(t), 0)

+max(Tz,hea(t) − Tz(t), 0)
)
dt

N
, (4)

where T(t) is the zone temperature of zone z, Tz,coo(t) and
Tz,hea(t) are the cooling and heating set points of zone z,
N is the number of zones, and ts and tf are the start time
and the end time of the evaluation period.

3.4.2. Indoor air quality (IAQ) discomfort
The IAQ Discomfort, reported with units of [ppmh] per
zone, defines the extent that theCO2 concentration levels
in zones exceed bounds of the acceptable concentration
level, which are predefined within the test case FMU for
each zone, averaged over all zones. The IAQ Discomfort is
calculated as

Kidis =
∑N

z=1

∫ tf
ts
max(Cz(t) − Cz,max(t), 0)dt

N
, (5)

where Cz(t) is the CO2 concentration of zone z at time t
and Cz,max(t) is the higher bound for the acceptable CO2

concentration of zone z.

3.4.3. Energy use
The Energy Use, reported with units of [kWh/m2 ], defines
the HVAC energy usage and is calculated as

Kener =
∑

j∈J
∑

i∈Ij
∫ tf
ts

Pij(t)dt

A
, (6)

where Pij(t) is the power measurement by the device i
with energy source j at time t, J is the set of all energy
sources, such as electricity and gas, Ij is the set of all
devices with energy source j, and A is the total floor area
of the building.

3.4.4. Cost
The Cost, reported with units of [$/m2] or [e/m2], defines
the cost associatedwith theHVAC energy usage. The Cost
is calculated as

Kcost =
∑

j∈J
∑

i∈Ij
∫ tf
ts

pτ
j (t)Pij(t)dt

A
, (7)

where Pij(t) is the power measurement by the device i
with energy source j at time t, J is the set of all energy
sources, Ij is the set of all equipment with energy source
j, pτ

j (t) is the price for energy source j at time t with a
tariff τ , and A is the total floor area of the building. The
pτ
j (t) are predefined within the test case FMU. Note that

demand costs, typically calculated for commercial cus-
tomers in the US on amonthly basis in addition to energy
costs, are not included in this core KPI.

3.4.5. Emissions
The Emissions, reportedwith units of [kg CO2/m2], defines
the CO2 emissions from the HVAC energy usage and is
calculated as

Kemis =
∑

j∈J
∑

i∈Ij
∫ tf
ts

ej(t)Pij(t)dt

A
, (8)

where Pij(t) is the power measurement of the equipment
i with energy source j at time t, J is the set of all energy
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sources, Ij is the set of all devices with energy source j,
ej(t) is the emissions factor for energy source j at time t,
and A is the total floor area of the building. The ej(t) are
predefined within the test case FMU.

3.4.6. Computational time ratio
The Computational Time Ratio defines the average ratio
between the controller computation time and the test
simulation control step. The controller computation time
is measured as the time between two emulator simula-
tions. The Computational Time Ratio is calculated as

Ktimr =
∑N

k=1
δTk
δtk

N
, (9)

where δTk is the elapsed controller computational time
at step k, N is the number of control steps, and δtk is the
interval of control step k.

4. Demonstration

4.1. Test case description

This section demonstrates the capabilities of BOPTEST as
in version v0.1.0 of the repository. The test case used is
a single-zone residential building with a hydronic radiant
floor heating system and heat pump, known as BESTEST
Hydronic Heat Pump in the BOPTEST repository. This is a
high-fidelity, yet relatively simple, test case that allows for
demonstrating the functionality of BOPTEST described in
Section 3 and capability for test controller benchmarking.
The test case represents a residential dwelling located in
Brussels, Belgium. The weather data, the boundary data,
and the heating system are characteristic of a building of
this location. Particularly, the building is exposed to an
oceanic climate with a mild Winter and a cool Summer,
and the building envelope materials are based on the
BESTEST case 900 building (Judkoff and Neymark 1995).
The building is modelled as a single zone with a rectan-
gular floor plan of 12m by 16m (192m2) and a height of
2.7m, with a south-oriented facade that has several win-
dows with a total surface area of 24m2. The insulation
levels for each of the elements of the building envelope
are summarized in Table 2. The thermal mass of indoor
walls is modelled assuming that there are approximately
12 rooms in the building.

A family of five members inhabits the building and
follows a typical residential weekly schedule, where the
building is occupied before 7:00 h and after 20:00 h every
weekday and full time during weekends. The comfort
range defines the boundaries of the indoor operative
zone temperature and is 21–24◦C during occupied hours
and 15–30◦C otherwise.

Table 2. Material layers (outside to inside) of the emulator build-
ing envelope.

Wall type Description d [mm] λ [W/mK] c [J/(kgK)]

Outer wall Wood siding 9 0.14 900
Insulation 61.5 0.04 1400
Concrete block 100 0.51 1000

Floor Concrete 150 1.4 840
Insulation 200 0.02 1470
Screed 50 0.6 840
Tile 10 1.4 840

Ceiling Roof deck 19 0.14 900
Fiber glass 111.8 0.04 840
Plaster board 10 0.16 840

Fenestration Glass 3.175 1.06 750
Air 13 0.0241 1008
Glass 3.175 1.06 750

Note: d is the layer thickness, λ is the thermal conductivity, and c is the specific
thermal capacity of the material.

The heating system consists of an air-to-water modu-
lating heat pump of 15 kW, which is coupled to a floor
heating system. The embedded baseline controller for
heat pumpmodulation uses a PI logic to track the opera-
tive zone temperature. This controller, while reactive, has
been carefully tuned to provide adequate indoor comfort
without excessive energy use. The floor heating circula-
tion pump and evaporator fan operate only when the
heat pump is on. No cooling is considered in this test case,
which is justifiable in a Belgian climate.

The envelope model of this emulator is implemented
using the IDEAS Modelica library (Jorissen et al. 2018b)
and integrates, among others: dynamic zone air tem-
perature, air infiltration assuming a constant n50 value,
dynamic heat transfer through walls, floor, ceiling and
fenestration, and nonlinear conduction, convection and
radiation models. The main model components used
fromthe library are:IDEAS.Buildings.Validation
.Cases.Case900Template for the building zone,
IDEAS.Fluid.HeatExchangers.RadiantSlab.
EmbeddedPipe for the floor heating system, and
IDEAS.Fluid.HeatPumps.ScrollWaterToWater
for the heat pump. The latter has been configured to
use air media through the evaporator circuit instead of
water. Additionally, the heat pump model parameters
have been fitted to manufacturer performance data fol-
lowing the calibration procedure explained by Cimmino
and Wetter (2017). Air humidity condensation and start-
up losses are not considered.

This demonstration examines two testing periods of
two weeks each, that represent peak and typical heating
periods. These periods are January 17th–31st and April
19th–May 3rd, respectively. For each of them, three price
scenarios are considered, namely: constant, dynamic,
and highly-dynamic. The constant price scenario uses a
constant price of 0.2535e/kWh. For the dynamic price
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scenario the test case uses a dual-rate that alternates
between an on-peak price of 0.2666e/kWh between
7:00 h and 22:00 h, and an off-peak price of 0.2383e/kWh
otherwise. The highly dynamic price scenario uses the
Belgian day-ahead energy prices as determined by the
BELPEX wholesale electricity market in the year 2019. All
pricing scenarios include the same constant component
for transmission fees and taxes as determined by Eurostat
and obtained from European Commission, Directorate-
General for Energy (2020). Particularly, this component is
0.2e/kWh for the assumed test case location, and only
the rest of the price is the energy cost from the utility
company or the wholesale market.

An MPC is formulated and implemented to operate
the thermal systems for each of the scenarios defined
above. In all cases, the objective of the controller is to
maximize comfort with minimum operational cost. Addi-
tionally, the effect of using different control steps and
prediction horizon periods for the sameMPC formulation
is investigated.

4.2. MPC description

The first step towards the implementation of an MPC is
to gather data for system identification or model calibra-
tion. Both, building metadata and building operational
data are useful for this task. In BOPTEST, the metadata
can be obtained from the documentation folder of each
test case. Operational data canbeobtainedby interacting
with the test case with the /initialize and sequen-
tial /advance API calls using either the test case base-
line controller or any other arbitrary controller to over-
write control actions during a so-called training period.
In both cases, the training data can be collected using
the /results API call at the end of the training period.
Notice that the training period should not overlap any of
the testing periods envisioned by the test case.

For this particular example, we gather four weeks of
operational data with the baseline controller to train
and validate a grey-box building model for use within
the MPC. The Grey–Box Toolbox (Coninck et al. 2016) is
used to prototype the model and train its parameters.
The selected model structure is shown in Figure 6. This
model has four inputs: heat pump modulation signal for
compressor frequency uhp, ambient temperature Ta, solar
direct normal irradiation Q̇rad , and internal occupancy
gains Q̇occ. The model further consist of five states: zone
operative temperature Tz , internal temperature of the
indoor thermal mass like internal walls Ti, envelope wall
temperature Tw , floor temperature Tf , and water temper-
ature from the heat pump condenser Tc. The parameters
to be estimated for the building envelope are the thermal
capacitances for zone air, wall, internal, condenser, and

Figure 6. Grey–Box model of the building envelope that is used
for control optimization.

floor thermal, respectively Cz , Cw , Ci, Cc, and Cf , the ther-
mal resistors for the wall, infiltration, internal, condenser,
and floor, respectivelyRw,1,Rw,2,Rinf ,Ri,Rc, andRf , and the
solar transmittance, gA.

The heat pump is modelled as

Q̇c = (ac + bc(Tc − Tc,n) + cc(Ta − Ta,n))kc uhp (10a)

Q̇e = (ae + be(Tc − Tc,n) + ce(Ta − Ta,n))ke uhp (10b)

Php = Q̇c − Q̇e (10c)

COP = Q̇c

Php
, (10d)

where Q̇c is the condenser thermal power, Q̇e is the evap-
orator thermal power, and Php is the electrical power
used by the compressor. Nominal constant values of con-
denser water temperature Tc,n and of ambient tempera-
ture Ta,n are arbitrarily chosen to compute thermal pow-
ers from temperature differences instead of from abso-
lute temperatures. The heat pump modulation signal for
compressor frequency is assumed to depend linearly on
the thermal power. The model is therefore bilinear since
Q̇c is linear in both Tc and uhp. The condenser and evapo-
rator proportionality factors kc and ke, and the other heat
pump parameters ac, bc, cc, ae, be, and ce, are estimated
using dynamic training data. The training data are gen-
erated by simulation using the baseline controller during
the first twoweeks of February. The data collected for the
next two weeks in February are used for cross-validation.
Figure 7 shows the open loop simulation performance
of the model that has been trained to fit zone operative
temperature Tz , condenser thermal power Q̇c, and com-
pressor electrical power Php. Measurement data of these
variables have been gathered for system identification.
The Root Mean Square Error (RMSE) for training and val-
idation respectively for zone operative temperature are
0.17 and 0.27◦C, for compressor electric power are 0.21
and 0.27 kW, and for condenser thermal power are 0.30
and 0.31 kW.
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Figure 7. Open loop model simulation for two weeks of training data and two weeks of validation. The training period is at the left of
the vertical grey dashed line and the validation period at the right. The inputs are presented in the bottom two plots and the simulated
outputs are presented in the top two plots and compared with the measured data.

Finally, the fan and pump electricity use is modelled as
equal to their nominal values Pfan,n and Ppum,n, if uhp > 0,
and 0 otherwise, indicated in Equations (11) as

Pfan =
{
Pfan,n, uhp > 0

0, otherwise
(11a)

Ppum =
{
Ppum,n, uhp > 0

0, otherwise.
(11b)

For every control step of each testing scenario, the
model is used in an optimization problem to compute the
heat pumpmodulation signal thatminimizes operational
cost and discomfort in the building over a prediction
horizon. The MPC formulation is

min
uhp

∫ th

t=ti
(pe,τ (Php + Pfan + Ppum) + wδTz )dt (12a)

Ṫz , Php, Pfan, Ppum = F(uhp, Q̇rad, Q̇occ, Ta, Tz , Tc, Tf , Ti, Tw)

(12b)

Tz − δTz ≤ Tz ≤ T̄z + δTz (12c)

δTz ≥ 0 (12d)

0 ≤ uhp ≤ 1. (12e)

In Equations (12), the notation that indicates the time
dependency has been omitted for brevity because all the
variables are time dependent with the exception of the
weighting factor w. This optimization problem is solved
for the time period between the initial time ti and the end
of the prediction horizon th. In the objective, the terms
accounting for electrical power, i.e. Php, Pfan and Ppum,
are summed and multiplied by the electricity price pe,τ

where the tariff τ corresponds to a constant, dynamic,
or highly dynamic tariff depending on the selected pric-
ing scenario. The weight w is scaled to account for the
different orders of magnitude between the power terms
and the discomfort δTz , which is defined as the deviation
of the zone operative temperature out of the comfort
range. This comfort range is determined by the lower
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comfort bound denoted Tz and the upper comfort bound
denoted Tz . The function F(·, ·, ·, ·, ·, ·, ·, ·, ·) represents the
system model comprising the building envelope model
represented in Figure 6 and the set of Equations (10). The
fan and pump power Pfan and Ppum are approximated by
a sharp logistic function as a smooth representation of a
step over the origin with uhp as an independent variable.
This avoids the use of integer optimization variables and
allows for the use of nonlinear programming solvers.

The first element from the trajectory result from each
optimization is used in every /advance call to overwrite
themodulation signal of the heat pump operation for the
next control step. No other variables need to be over-
written since the baseline controller already dictates the
operation of the circulation pump and the heat pump
evaporator fan when the heat pump is on.

The MPC implementation of this example relies on
the JModelica toolbox (Åkesson et al. 2010). This tool-
box allows for formulating optimization problems using
the Optimica language (Åkesson 2008), an extension of
Modelica that includes optimization constructs like con-
straints and objective functions. Particularly, the nonlin-
ear JModelica MPCmodule developed by Axelsson, Mag-
nusson, and Henningsson (2015) is used here and has
been extended to enable mutable external data, a fea-
ture that is missing from the JModelica MPC module but
that is required to handle the external time-varying dis-
turbances associated with the weather and occupancy
conditions. We refer to Axelsson, Magnusson, and Hen-
ningsson (2015) for the details of the MPC implementa-
tion.

The MPC module is combined with the unscented
Kalman filter of the JModelica toolbox for state estima-
tion. The specific state estimation algorithm is the non-
augmentedversiondescribed in Sun, Li, andWang (2009),
and the sigma points are chosen according to Wan and
Merwe (2000). This state observer is particularly suit-
able to provide state estimates of Modelica models since
it benefits from the simulation capabilities of PyFMI to
obtain the distribution of states from empirical simula-
tions rather than analytical computation. For this, the
/resultsAPI call is used at each step to retrieve historic
data of observed points.

Boundary condition data is retrieved using the BOP-
TEST forecaster module. The forecast parameters, i.e. pre-
diction horizon and interval, are set at the beginning of
each test consistently with the control step and predic-
tion horizon of theMPC. For this, the /forecast_para
meters API call is used. Then, at every control step, the
/forecast call returns the forecast data that is fed to
the optimization. In this example, the perfect determinis-
tic forecast provided by BOPTEST is assumed.

4.3. Results

Figure 8 shows the control performance results for the
baseline controller and for variations of the MPC in each
of the six BOPTEST case scenarios analyzed. The base-
line controller is the embedded controller with PI logic
as described in Section 4.1. Particularly, variations on
the prediction horizon of 12, 24, or 48 hours, and on
the MPC control step of 15, 30 or 60 minutes are stud-
ied. In Figure 8, the baseline performance is represented
by a green dot, the different prediction horizons are
distinguished using different colours, and variations of
the control step are indicated with variations of marker
shapes. From the six core KPIs that BOPTEST provides,
we show thermal discomfort and operational cost, since
these are the ones being minimized in the objective
(Equation (12a)). However, all core KPIs for the peak heat-
ing period with dynamic price scenario and Ts = 30 min-
utes are shown in Figure 9, and a summary of all core KPIs
obtained in this demonstration example is provided as
supplemental data accompanying the online version of
this article.

The results show that the baseline controller obtains
the same total discomfort independently of the pricing
scenario since its control logic ignores the pricing signal.
The MPC generally outperforms the baseline controller
with discomfort savings up to 90.8% and with cost sav-
ings up to 27.2% when using a prediction horizon of 48
hours and a control step of 15 minutes on the peak heat
period with dynamic pricing. However, the baseline con-
troller already delivers good performance, and designing
the predictive controller to beat the baseline has proven
to be a challenging task, especially in terms of opera-
tional cost. It is worth noting that the inclusion of the fan
and pumping powers in the objective function is key to
obtain operational cost savings. Neglecting these terms
leads theMPC towork at lowpartial heatpump load,with-
out considering the low but steady energy use of these
auxiliary equipment. Another critical practice to achieve
cost savings is to train the controller model not only to
fit the zone operative temperature, but also the elec-
trical and thermal powers of the heat pump. This way,
the controller model learns an accurate representation of
the heat pump COP behaviour, which is exploited during
operation later on.

More dynamic pricing scenarios only result in small
operational cost savings for the typical heating period
scenarios. The main reason is that the relative pricing
variations are hidden by the high constant pricing com-
ponent for transportation fees and taxes included in all
scenarios,which is relatively large inmostof theEuropean
countries, including the one where the test case of this
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Figure 8. Control performance results for different test case runs in eachof theBOPTEST scenarios. The rows showthe results for the same
pricing scenario, and the columns for the same period scenario. The results are obtained for variations on control step Ts and prediction
horizon Th of the same MPC.

example is located. This reduces the monetary incentive
to shifting load. Notice that the peak heating scenarios
are even less sensitive to pricing variations since they do
not offer much freedom to operate without hampering
comfort. The flexibility potential is further limited in this
test case by higher electricity prices occurring when the
ambient temperature is higher, and therefore when the
heat pump could benefit from a larger COP. Shorter con-
trol steps usually lead to higher performance, especially
for the peak heating period scenarios. However, longer
prediction horizons do not seem to provide added value
for this particular building type, as we observe similar

results when using the same control step with different
prediction horizons.

The improved performance of the predictive con-
trollers can be clearly understood from Figure 10 which
compares the simulation results for the peak heating
period with dynamic pricing when using (1) the base-
line controller and (2) the MPC with a control step of
30 minutes and a prediction horizon of one day. The
first two graphs show the evolution of the zone opera-
tive temperature and the heat pump modulation signal
respectively. The evolution of the total thermal discom-
fort and that of the operational cost are also shown and
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Figure 9. Summary of all KPIs for the peak heating period and dynamic price scenario with a fixed control step of Ts = 30min and
variations on the prediction horizon Th of the same MPC.

Figure 10. Simulation results for the peak heating period with dynamic pricing scenario. Results are shown for the baseline controller,
and theMPCwith prediction horizon of Th = 24 h and control step of Ts = 30min, assuming perfect prediction of ambient temperature,
solar irradiation, and occupancy loads.
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have beenobtainedby using the/kpisAPI function and
storing the returned KPI results for every control step. The
weather conditions of this test, i.e. direct normal solar irra-
diation and ambient temperature, are presented in the
last graph. Particularly, theMPC outperforms the baseline
in terms of lower discomfort by anticipating the temper-
ature set point change in the morning. In terms of cost,
the MPC obtains savings by working at full load which
leads to higher COP and reduces the amount of time
that the circulation pump and heat pump evaporator fan
need to operate. However, this is an idealization since
minimal run-times have not been imposed and start-up
losses were not modelled. The former would avoid heat
pump cycling while the latter would penalize heat pump
cycling.

5. Discussion

The demonstration illustrates how the implementation
of BOPTEST is used to evaluate the performance of
an MPC strategy which was developed independently
of BOPTEST. We expect that other MPC formulations
and implementations or other control algorithms can
also be tested. Furthermore, the demonstration was
performed on a high-fidelity model of a single-zone
floor heating system with a modulating heat pump,
indicating the implementation of BOPTEST is sufficient
to utilize such physics-based detailed emulator mod-
els. Though successful with respect to the primary use-
case of such controller benchmarking as demonstrated
here, there are opportunities to further develop the
framework.

One limitation of the current framework is the deter-
ministic treatment of emulator and operational perfor-
mance. Real-world sensing and measurement systems
are characterized by noise or suffer from biases, and
disturbance forecasts contain uncertainty. Such uncer-
tainty influence controller responseandoften require cor-
rection techniques. Though not implemented currently,
BOPTEST is well-suited to incorporate uncertainty to fore-
cast data coming from the forecastingmodule, once such
uncertainty is characterized. Such effort is currently ongo-
ing within IBPSA Project 1. Sensor bias can be added
to the underlying Modelica models in a straightforward
manner for discrete-time controllers. However, prelimi-
nary efforts to add sensor noise in continuous time con-
trol loops resulted in significant increases in the simula-
tion time due to the high resolution of sampling required
during simulation. Methods to implement such noise
without sacrificing computational performance need to
be further investigated.

A second limitation is the existence of one year of
weather data for each test case, namely the latest TMY

data that is available for the given test case location. This
limits the ability for training models or controllers that
require multiple years equivalent of operational data. A
potential solution is the inclusion of different versions
of TMY data for a particular location, for instance TMY2,
TMY3, and TMYX (Climate.onebuilding.org 2021), as well
as data collected from real meteorological stations, such
that different data sets can be designated for the testing
period, while others can be designated for training peri-
ods. Similarly, year-long simulations can become compu-
tationally cumbersome, for training or as a future test-
ing scenario. Selecting a finite number of ‘representative
days’ may alleviate the computational complexity (Bhat-
tacharya et al. 2020).

Another consideration to note is the reliance on users
to be vigilant with their use of BOPTEST for benchmark-
ing and evaluation of controller performance. There are a
few aspects to this. First, simulation data from time peri-
ods designated as testing periods should not be used
for the training or calibration of predictive controllers.
The intent of such testing periods is for them to be
”unseen” by the controller. Second, there are many vari-
ations of sensor, control, and forecast points available
at any given building site. Though BOPTEST limits the
points a controller has access to, there will be some
that are readily available at real installations, while oth-
ers may have higher cost or may be available only at
buildings with advanced operational implementations.
Though BOPTEST does not currently explicitly quantify
and compare the data requirements for one controller
against another, users, and future performance evalua-
tors, should be aware of the data and cost requirements
they implicitly place on their controllers bymaking use of
a given data point.

Work is ongoing formaintenance, and feature enhanc-
ement of the BOPTEST framework. Initial test case imple-
mentation has focused on small, simple systems, includ-
ing the single-zone radiant floor system described here,
other single-zone systems with fan coil unit or radiator,
and a multi-zone residential system with radiators. These
test cases are available in the repository. However, new,
more complex test cases are in development, including
those introduced in Blum et al. (2019). In addition, and
with respect to the requirements set out in Section 3.1,
it is a challenge for emulator developers to identify and
remove all potential model idealizations as well as to
maintain the models as Modelica library versions evolve.
Therefore, work will continue on emulator revision as-
needed,with versioning tomaintain benchmarking capa-
bility. Additional KPIs that are identified as important to
be included as core KPIs, such as peak electricity demand
and ametric to quantify actuator and equipment cycling,
may be added in the future. Furthermore, a service-based
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software architecture based on Alfalfa (NREL 2021) is in
development that would allow the BOPTEST framework
to be hosted as a web-service, with controllers acting as
clients, rather than implementation on a local computing
resource.

Finally, while BOPTEST provides a means to objectify
performance across controllers across a number of KPIs,
evaluation of which controller is ‘better’ may still be sub-
ject to some subjectivity, especially when a controller
performs better in one KPI and worse in another. For
example, whether a given reduction in operating cost is
worth an increase in thermal discomfort in practice is ulti-
mately up to the building owner, facility operator, and
occupants. Similarly, reducing CO2 emissions may come
at the expense of increased operating cost if the utility
tariff is not aligned with time-varying electric grid CO2

emissions rates. Themany practical situations confronted
by building control and potential evaluationmetrics have
stopped BOPTEST short of providing a single evaluation
metric. A centralized dashboard for collecting and view-
ing test results from BOPTEST is also under development
to provide further information on performance and facili-
tate a user’s ability to compare performance across differ-
ent controllers and test cases.

6. Conclusion

While advanced control for building HVAC systems
addresses a critical need for energy efficient grid respon-
sive buildings (Roth and Reyna 2019), benchmarking the
performance of control algorithms is challenging. In the
literature, advanced controllers are still evaluated indi-
vidually on case studies that differ in building or sys-
tem type, evaluation metrics, and comparative baselines.
Furthermore, development of test case studies requires
significant effort and expertise, whether they utilize real
buildings or building emulators. The BOPTEST framework
and associated software tools have been developed to
address these challenges. The framework incorporates a
publicly available set of test cases, which include building
emulators, a standardized Run-Time Environment (RTE),
and common calculation of key performance indicators
(KPIs) to enable reproducibility, testing, and evaluation.
An example evaluation of an MPC strategy with BOPTEST
was presented to demonstrate BOPTEST’s ability to pro-
vide evaluation for advanced controllers.

One key development aimwas to provide a framework
that can be used with any potential test controller. To
address this, the RTE is developed to contain all utilities
for emulator simulation, data-exchange with a test con-
troller, including providing forecasts and historical data
point trajectories, and KPI calculation. Its implementa-
tion using Docker and exposure through a RESTful HTTP

API allow for rapid deployment on any major computing
platform and accessibility to most languages.

Another key development aim was the implemen-
tation of representative building emulators with high
fidelity physical representation and enabling them to be
controlled by arbitrary controllers, at either supervisory or
local loop level. For this, the emulators are implemented
with Modelica, which is supported by a multi-industry
community of library and tool developers and provides
the capability to model the necessary physical details. In
addition, the emulators are exported as FMUs, with spe-
cially designed Modelica blocks that enable overwriting
of embedded supervisory or local loop control signals,
enabling their portability to the RTE.

BOPTEST defines a small, yet representative, set of core
KPIs that are calculated within the RTE using data cre-
ated during a test. BOPTEST also defines specific test-
ing scenarios for each emulator, such as test time peri-
ods and electricity price profiles. These enable unam-
biguous quantification of controller performance. How-
ever, BOPTEST does not define a global ranking system,
since the importance of certain KPIs relative to others
can change based on the evaluation context. This set-
ting relies on users to make the final interpretation of the
performance data BOPTEST provides.

The BOPTEST framework has potential for future work,
as was discussed in Section 5. For example, means to
address forecast uncertaintywill be incorporated. In addi-
tion, noise andbiaswill be added tomeasurement signals
oncemethods for efficient simulation are developed. The
usage of a single year of TMYweather data limits the abil-
ity for training models in controllers that require more
than a year of data, though the inclusion of alternative
versions of TMYdatamayalleviate this. Similarly, the com-
putational burden of full year simulations may be alle-
viated through selection of representative days. Finally,
development of a service-based architecture for cloud-
hosting of BOPTEST, as well as development of an online
dashboard for results sharing and viewing, will expand its
usability.
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