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ABSTRACT
This paper investigates the application of Physics-Informed Neural Networks (PINNs) to inverse
problems in unsaturated groundwater flow. PINNs are applied to the types of unsaturated
groundwater flow problems modelled with the Richards partial differential equation and the van
Genuchten constitutive model. The inverse problem is formulated here as a problem with known
or measured values of the solution to the Richards equation at several spatio-temporal instances,
and unknown values of solution at the rest of the problem domain and unknown parameters of
the van Genuchten model. PINNs solve inverse problems by reformulating the loss function of a
deep neural network such that it simultaneously aims to satisfy the measured values and the
unknown values at a set of collocation points distributed across the problem domain. The novelty
of the paper originates from the development of PINN formulations for the Richards equation
that requires training of a single neural network. The results demonstrate that PINNs are capable
of efficiently solving the inverse problem with relatively accurate approximation of the solution to
the Richards equation and estimates of the van Genuchten model parameters.
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1. Introduction

Predictions of various problems in unsaturated soil mech-
anics, such as rainfall-induced landslides and excavation
collapses, rely on thorough understanding and the
capacity to model coupled hydro-mechanical process in
soils (e.g. Zhang et al., 2018). Increasing the capacity for
understanding andmodelling hydromechanical processes
in unsaturated soil mechanics contributes to developing
strategies formitigatingpotentially negative consequences
of such events (e.g.Depina,Oguz, andThakur, 2020). This
study examines the capacity of Physics-Informed Neural
Networks (PINNs) in solving unsaturated groundwater
flow problems modelled by the Richards Partial Differen-
tial Equation (PDE) (Richards, 1931).

The Richards equation is a non-linear PDE and has
been a great matter of interest in a wide range of fields
including, among others, soil mechanics, agriculture,
hydrogeology and reservoir engineering. The nonlinear
nature of this equation is a reflection of the nonlinear
relationship between the soil volumetric water content,
θ, and the pressure head,ψ, which together with hydraulic
conductivity, k form three primary variables of Richards
equation. The primary variables are mutually dependent

with θ and k often being expressed as a function of ψ,
respectively, with the Water Retention Curve (WRC)
and Hydraulic Conductivity Function (HCF). Both of
these hydraulic functions are also known as constitutive
relationships and are utilised to describe the character-
istics of water and solutemovement in soils (e.g. Schindler
andMüller, 2017). Among several parametricmodels that
are frequently used to represent these constitutive
relationships (e.g. Abkenar, Rasoulzadeh, and Asghari,
2019), this study employs one of the most commonly
used constitutive models, known as the van Genuchten
model (Van Genuchten, 1980).

Solutions to the Richards equation with the van Gen-
uchten model are commonly found by employing finite
difference and finite element methods (e.g. Šimunek,
Van Genuchten, and Šejna, 2012). An alternative
approach is investigated in this study by finding solutions
to the Richards equation with PINNs (e.g. Raissi, Perdi-
karis, and Karniadakis, 2019). The capacity of PINNs to
solve partial and ordinary differential equations stems
from the capabilities of Deep Neural Networks (DNNs)
to server as a universal function approximator (Chen
et al., 2020). PINNs extend the capacity of existing
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DNNs to solve PDEs by restricting the range of acceptable
solutions throughmodifications of the loss function to the
ones that enforce the PDE that governs the actual physics
of the problem. In this way, thismethod extends the exist-
ing capacity of DNNs to approximate the solution of
PDEs. It is achieved with a relatively simple feed-forward
neural network architectures that utilise Automatic
Differentiation (AD) techniques to efficiently evaluate
the partial derivatives in the PDE to ensure that the
PINN prediction satisfies the PDE across the problem
domain. PINNs are investigated here due to their compu-
tational efficiency that can be advantageous in computa-
tionally demanding task in unsaturated soil mechanics
involving parametric analysis, uncertainty quantification,
real-time monitoring and inverse analysis.

This study builds on several earlier studies that investi-
gated the application of PINNs to theRichards equation in
Tartakovsky et al. (2018) and Bandai and Ghezzehei
(2020). Bandai and Ghezzehei (2020) introduced a new
framework for the inverse solution of the Richards
equation to estimateWRC and HCF without introducing
a specific constitutive model. This involved training three
neural networks with the one approximating the solution,
the Richards PDE in terms of θ, and the remaining two
describing, respectively, WRC and HCF. Tartakovsky
et al. (2018) employed PINNs to determine HCF of an
unsaturated homogenous soil from synthetic matric
potential data based on the two-dimensional time-depen-
dent Richards equation. This study complements and
extends the previous studies by investigating an inverse
solution to the one-dimensional Richards PDE with the
van Genuchten model. The adoption of the van Genuch-
ten constitutive model allows the solution to the inverse
problem to be found by training a single neural network.
Additionally, inverse solutions to both the volumetric
water content and the pressure head formulations of the
Richards PDE were investigated to accommodate the
respective measurements. The inverse problem is formu-
lated in this studyas a problemwith knownvaluesof θorψ
at several spatio-temporal instances, and unknown values
of the Richards PDE variables at the rest of the problem
domain and unknown parameters of the van Genuchten
model. The performance of the PINN formulations on
the inverse problem was examined on several examples
with synthetically generated data and measurements
from a water infiltration column test.

2. Physics-informed neural network (PINN)

2.1. Formulation

Mathematically, a deep network can be considered as a
particular choice of a compositional function (Lu et al.,

2019). This study employs a Feed forward Neural Net-
work (FNN), also known as Multi-Layer Perceptron
(MLP), which is constructed by applying linear and
nonlinear transformations to the inputs recursively.

LetN L(x):Rdin � Rdout be an L-layer neural network,
or a (L− 1)-hidden layer neural network, with Nl neur-
ons in the lth layer (N0 = din, NL = dout). Each layer is
associated with a weight matrix, W l [ RNl×Nl−1 , and a
bias vector, bl [ RNl . With a nonlinear activation func-
tion that is applied element-wise, σ, the FNN is recur-
sively defined as follows (Lu et al., 2019):

input layer: N 0(x) = x [ Rdin

hidden layers: N l(x) = s W lN l−1 + bl
( )

[ RNl ,

for 1 ≤ l ≤ L− 1

output layer: N L(x) = WLN L−1 + bL [ Rdout

The activation function, σ, is commonly specified as the
logistic sigmoid s(x) = 1/(1− exp (− x)), hyperbolic
tangent, s(x) = tanh (x), or the rectified linear unit,
s(x) = max (x, 0).

One of the central properties of neural networks that
will be used in the development of PINNs is the Auto-
matic Differentiation (AD). AD is used to evaluate the
derivatives of the network outputs with respect to the
network inputs through the process of backpropagation
(Rumelhart, Hinton, andWilliams, 1986). The backpro-
pagation process utilises the compositional structure of
neural networks to apply the chain derivative rule
repeatedly and compute the derivatives. The AD starts
with a forward pass to compute the values of all of the
variables, which is followed by a backward pass to com-
pute the derivatives. Computing nth-order derivatives
requires AD to be applied recursively n times. Addition-
ally, it is important to note that the AD is applied on the
neural network and not the data, thus allowing for the
possibility to work with noisy data (e.g. Lu et al., 2019).

Given the introduction to neural networks and AD,
the following section will introduce PINNs. Consider
the following PDE, parameterised by l, for the solution
u(x) with x = (x1, . . . , xd) defined on a domain
V , Rd:

f x:
∂u
∂x1

, . . .
∂u
∂xd

;
∂2u

∂x1∂x1
,

∂2u
∂x1∂x2

. . .
∂2u

∂xd∂xd
; . . .; l

( )

= 0, x [ V

(1)

with Dirichlet, Neumann, Robin or periodic Boundary
Conditions (BC) represented by

B(u, x) = 0 on ∂V
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Time-dependent problems are implemented such that
t is considered as a component of x with Ω containing
the temporal domain. The Initial Conditions (IC) are
treated as Dirichlet boundary conditions on the spatio-
temporal domain.

The implementation of PINNs is illustrated in
Figure 1 with mixed boundary conditions u(x) = gD(x)
on GD , ∂V and ∂u

∂n = gR(u, x) on GR , ∂V.
The implementation of a PINN starts by constructing

a neural network û(x; x) as an approximate solution of
u(x). The input to the neural network is x and the out-
put is vector of the same dimension as u. Weight
matrices and bias vectors of the neural network û are
denoted with x = {W l, bl}1≤l≤L.

Following the specification of the neural network, it
is necessary to ensure that the neural network satisfies
the physics defined by the PDE and the boundary con-
ditions. This is usually implemented by restricting û on
a set of collocation points T = {x1, x1, . . . , x|T |,} of size
|T |. Generally, T can be composed of collocation points
in the domain T f , V and on the boundary T b , ∂V.
The discrepancy between the neural network û and the
physical constraints is measured through the loss func-
tion, defined as weighted sum of the L2 norm of the
residuals for the collocation points in the domain and
on the boundary:

L x; T
( )

= wf Lf x; T f
( )

+ wbLb x; T b
( )

(2)

where wf and wb are the weights, and

Lf (x;T f )=
1

|T f |
∑
x[T f

f x:
∂û
∂x1

, . . .
∂û
∂xd

;
∂2û

∂x1∂x1
,

∂2û
∂x1∂x2

. . .
∂2û

∂xd∂xd
; . . .;l

( )∥∥∥∥
∥∥∥∥
2

2

(3)

Lb(x;T b)=
1

|T b|
∑
x[T b

B û,x( )‖ ‖22 (4)

The derivatives in the loss function are calculated with
AD, which is available in machine learning libraries
such as TensorFlow (Abadi et al., 2015) and PyTorch
(Paszke et al., 2019).

The final step in the implementation of PINNs is the
training stage in which the set of parameters in x is var-
ied to minimise the loss function L(x; T ). The loss
function is usually highly nonlinear and non-convex
with respect to x and the optimisation is commonly per-
formed with gradient-based optimisers.

2.2. Inverse problem

In addition to the forward problem, PINNs can be easily
applied to inverse problems with unknown parameters
l in Equation (1). In the case of an inverse problem,
it is considered that there are some additional infor-
mation on points T i , V in addition to the earlier
training points in the domain and on the boundary con-
ditions:

I u, x( ) = 0 for x [ T i (5)

The implementation of the inverse problem is often
relatively straightforward, with the only difference
with respect to the forward problem being the loss func-
tion with an additional term:

L x, l; T
( )

= wf Lf x, l; T f
( )

+ wbLb x, l; T b
( )

+ wiLi x, l; T i
( )

(6)

where wi is the weight and

Li(x, l; T i) =
1

|T i|
∑
x[T i

I û, x( )‖ ‖22 (7)

The training stage is then done by optimising x and l
simultaneously:

x∗, l̂ = argmin
x,l

L x, l; T
( )

(8)

Figure 1. PINN illustration adapted from Lu et al. (2019).
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where x∗ and l̂ are, respectively, optima of x and l. Find-
ing a solution to the inverse problem based on Equation
(8) is relatively straightforward and computationally
efficient, especially in the case of linear PDEs. However,
it was found in some nonlinear problems that the optim-
isation process is dominated by gradients with respect to
x, which results in the optimisation process not advan-
cing toward a more optimal l value or that the optimal
solution results in physically inconsistent values (e.g.
negative values of positive constants). Although it is likely
that these issues can be addressed by reformulating the
loss function and introducing constraints to the optimis-
ation formulation in Equation (8), this study aims to
resolve them by reformulating the inverse problem in
Equation (8) into a double-loop formulation:

l̂ = argmin
l

min
x

L x, l; T
( )[ ]

(9a)

subjected to: gk(l) ≤ 0; k = 1, . . . , Ng (9b)

ll ≤ l ≤ lu (9c)

where l̂ is an optimum, gk; k = 1, . . . , Ng are constraint
functions, and ll and lu are the lower and upper bounds,
respectively. The outer loop of the algorithm will be opti-
mising l values and enforcing constraints on the l values.
The outer loop will be implemented with the global
optimisation Cross Entropy (CE) algorithm (Botev
et al., 2013), while the inner loop will utilise the gradi-
ent-based algorithms commonly available in machine
learning libraries. The CE algorithm was selected due to
its robust performance as a global optimisation algorithm
and the relatively straightforward implementation (e.g.
Botev et al., 2013). It is expected that similar performance
can be achieved with alternative global optimisation
algorithms (e.g. Genetic algorithm).

Research on the generalisation error for the appli-
cation of PINNs to inverse problems is ongoing and
more information can be found for example in Raissi,
Perdikaris, and Karniadakis (2019) and Mishra and
Molinaro (2021).

3. PINN for the Richards equation

3.1. Richards equation

The Richards equation is a nonlinear PDE that captures
the flow of water in unsaturated zone (Richards, 1931).
One-dimensional form of the Richards equation is
given by

∂u

∂t
= ∂

∂x
k
∂c

∂x

[ ]
+ ∂k
∂x

(10)

where θ is the volumetric soil water content(L3 · L−3),
t is the time (T ), x is the vertical dimension (L), k is
the hydraulic conductivity (L · T−1) and ψ is the
pressure head (L). The WRC and HCF relationships
can be specified by the van Genuchten model (Van Gen-
uchten, 1980):

k = ksQ
1/2 1− 1−Q1/m( )m[ ]2

(11a)

Q = 1+ |ac|n
( )−m

c , 0
1 c ≥ 0

{
(11b)

Q = u− ur
us − ur

(11c)

where ks is the saturated hydraulic conductivity,Θ is the
relative saturation, us and ur are, respectively, the satu-
rated and residual volumetric water contents, α (L−1),
n, and m are the model parameters, where
m = 1− 1/n. Equation (11a) specifies the HCF and
Equation (11b) the WRC relationship.

3.2. Pressure head formulation

Equation (10) is reformulated to implement the PINN
methodology for the Richards equation in terms of the
pressure head, ψ as follows:

∂u

∂t
= ∂k

∂x
∂c

∂x
+ k

∂c2

∂x2
+ ∂k

∂x
(12)

The equation is then reformulated to express the partial
derivates of θ and k with respect to ψ.

∂u

∂c

∂c

∂t
= ∂k

∂c

∂c

∂x
∂c

∂x
+ k

∂c2

∂x2
+ ∂k

∂c

∂c

∂x
(13)

Finally, the following expression is obtained as

C
∂c

∂t
= ∂k

∂c

∂c

∂x

( )2

+k
∂c2

∂x2
+ ∂k
∂c

∂c

∂x
(14)

where C = ∂u/∂c is known as the water storage func-
tion. The water storage function is evaluated analytically
based on the adopted van Genuchten model as follows:

C = ∂u

∂c
= ∂u

∂Q

∂Q

∂c
= us − ur( ) ∂Q

∂c
(15)

where ∂Q/∂c is calculated based on the factorisation of
the Richards equation as shown in Rai and Tripathi
(2019):

∂Q

∂c
= −amsign(c)

1−m
Q(1+m)/m Q−1/m − 1

{ }m
(16)

The partial derivative ∂k/∂c is calculated analytically
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based on the van Genuchten model:

∂k
∂c

= ∂k
∂Q

∂Q

∂u

∂u

∂c
= C

us − ur

∂k
∂Q

= ∂Q

∂c

∂k
∂Q

(17)

where ∂Q/∂u = 1/(us − ur). The partial derivative
∂k/∂Q is determined from the van Genuchten model,
as shown in Rai and Tripathi (2019):

∂k
∂Q

=2ksQ
1/2 1− 1−Q1/m( )m[ ]

1−Q1/m( )m−1
Q1/m−1( )[ ]

+ks
2
Q−1/2 1− 1−Q1/m( )m[ ]2

(18)

In case of heterogeneous soils and known properties of
spatially variable properties, the partial derivatives could
be calculated by providing the known values of the
material properties directly in the analytical expressions
for the partial derivatives. In the case of an inverse pro-
blem, such as the ones studied here, additional studies
are needed to investigate the potential of PINNs in sol-
ving inverse problems with spatially variable material
properties.

To be consistent with the expression in Equation (1),
the pressure head PINN formulation for the Richards
equation is defined as

f x, t:
∂c

∂x
,
∂c

∂t
;
∂2c

∂x2
; l

( )

= C
∂c

∂t
− ∂k

∂c

∂c

∂x

( )2

−k
∂c2

∂x2
− ∂k

∂c

∂c

∂x
= 0 (19)

where l = [ks, us, ur, a, n]
T is the vector that parame-

terises the Richards equation.

3.3. Volumetric water formulation

Equation (10) is reformulated to implement the PINN
methodology for the Richards equation in terms of the
volumetric water content, θ, starting with the following
expression:

∂u

∂t
= ∂k

∂x
∂c

∂x
+ k

∂

∂x
∂c

∂x

( )
+ ∂k
∂x

(20)

The partial derivatives involving ψ are expressed in
terms of θ by using the chain derivative rule:

∂u

∂t
= ∂k

∂x
∂c

∂u

∂u

∂x
+ k

∂

∂x
∂c

∂u

∂u

∂x

( )
+ ∂k
∂x

(21)

The expression is further evaluated by rewriting the
second term on the right side:

∂u

∂t
= ∂k

∂x
∂c

∂u

∂u

∂x
+ k

∂2c

∂x∂u
∂u

∂x
+ k

∂c

∂u

∂2u

∂x2
+ ∂k
∂x

(22)

The partial derivative ∂k/∂x was rewritten as follows:

∂u

∂t
= ∂k

∂u

∂c

∂u

∂u

∂x
∂u

∂x
+ k

∂2c

∂x∂u
∂u

∂x
+ k

∂c

∂u

∂2u

∂x2
+ ∂k

∂u

∂u

∂x
(23)

Finally, the expression was rewritten by introducing
1/C = ∂c/∂u:

C
∂u

∂t
= ∂k

∂u

∂u

∂x

( )2

+kC
∂2c

∂x∂u
∂u

∂x
+ k

∂2u

∂x2
+ C

∂k
∂u

∂u

∂x
(24)

The second-order partial derivative in the second term
on the right side of the expression is calculated as

∂2c

∂x∂u
= ∂

∂x
∂c

∂u

( )
(25)

where ∂c/∂u is specified based on Equation (15):

∂c

∂u
= 1

C
= 1

us − ur

∂Q

∂c

( )−1

= − 1
us − ur

1−m
amsign(c)

Q−(1+m)/m Q−1/m − 1
{ }−m

(26)

From the expression it can be observed that ∂c/∂u is
expressed in terms of Θ with the sign(c) = 1 for unsatu-
rated conditions, thus eliminating ψ from the expression.
Taking the partial derivative of Equation (26) with
respect to x results with the following expression:

∂

∂x
∂c

∂u

( )
= − 1

us − ur

1−m
amsign(c)

− 1+m
m

Q(2m−1)/m Q−1/m − 1
{ }m∂Q

∂x

[

+Q−(2m+2)/m Q−1/m − 1
{ }m−1∂Q

∂x

]

(27)

The partial derivative ∂Q/∂x is expressed as ∂u/∂x by
applying the chain rule as follows:

∂Q

∂x
= ∂Q

∂u

∂u

∂x
= 1

us − ur

∂u

∂x
(28)

This expression is then integrated in Equation (27):

∂

∂x
∂c

∂u

( )
= − 1

(us − ur)
2

1−m
amsign(c)

∂u

∂x

− 1+m
m

Q(2m−1)/m Q−1/m − 1
{ }m[

+Q−(2m+2)/m Q−1/m − 1
{ }m−1

]
(29)

The partial derivative ∂k/∂u is evaluated analytically
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based on the van Genucthen model:

∂k
∂u

= ∂k
∂Q

∂Q

∂u
= ∂k

∂Q

1
us − ur

(30)

where ∂k/∂Q is defined in Equation (18). To be consist-
ent with the expression in Equation (1), the VWC PINN
formulation for the Richards equation is defined as

f x, t:
∂u

∂x
,
∂u

∂t
;
∂2u

∂x2
; l

( )
= C

∂u

∂t

− ∂k
∂u

∂u

∂x

( )2

−kC
∂2c

∂x∂u
∂u

∂x

− k
∂2u

∂x2
− C

∂k
∂u

∂u

∂x
= 0

(31)

where l = [ks, us, ur, a, n]
T is the vector that parame-

terises the Richards equation.

4. Inverse problem

4.1. Introduction

This section investigates the application of PINNs for
Richards equation for the inverse problem with
both the pressure head and VWC formulations. The
dataset for the inverse problem was generated by
using a finite-difference code from Ireson (2020)
by solving the Richards equation in the domain
V = [x0, x1]× [0, T] where x0 = 0 m, x1 = 2 m, and
T = 259, 200 s. The initial conditions are defined as
c(x, 0) = −x with the boundary conditions being
specified with a fixed pressure head on the top
c(x1, t) = 0.1 m and impervious boundary at the base
of the model, specified by ∂c(x0, t)/∂x = 0, for the dur-
ation of the analysis. The following parameter values
were selected: ks = 5.74 · 10−7 m/s, us = 0.396,
ur = 0.131, a = 0.423 1/m, n = 2.06. The solution was
found by discretising the spatial and temporal domains
in 199 equal intervals, respectively. As a result of the
simulation both ψ and θ values are known at the
40,000 points across the spatio-temporal domain.

Figures 2 and 3 present the solution of the Richard’s
equation with the specified parameter values, boundary
and initial conditions. Figure 2 presents the solution in
terms of ψ, while Figure 3 presents the solution in terms
of θ values.

The inverse problem is formulated in this study as a
problem in which a solution of the Richards equation is
known at a given number of locations across the pro-
blem domain, T i, with the unknown solution of the
Richards equation at the remaining locations, T f , of

the problem domain and unknown values of input par-
ameters l = [ks, a, n]

T . The values of us and ur are
assumed to be known.

l̂ = argmin
l

min
x

L x, l; T
( )[ ]

(32a)

subjected to:

1 · 10−9 [m/s] ≤ ks ≤ 1 · 10−7 [m/s]
(32b)

0.1 [1/m] ≤ a ≤ 1 [1/m] (32c)

1 ≤ n ≤ 10 (32d)

4.1.1. Inner loop
The solution to the inverse problem in Equation (32) is
found with a double loop optimisation algorithm. The
inner loop of the algorithm aims to minimise the loss
function in Equation (6) by adjusting the parameters
of the neural network, x, for a given value of l. The sol-
ution of the inner loop is an estimate of the solution of
the Richards equation that satisfies the known values at
T i locations and the unknown values of the Richards
equation at the rest of the domain, discretised into a
set of T f = 40,000 collocation points. The inner loop
was implemented with the L-BFGS-B optimisation
algorithm (Zhu et al., 1997) that is available in
TensorFlow.

4.1.2. Outer loop
The outer loop aims to estimate an optimum value l̂
that minimises the loss function over a set of solutions
of the Richards equation. The outer loop can be
implemented with a wide range of optimisation

Figure 3. Solution of the Richards equation in terms of θ.

Figure 2. Solution of the Richards equation in terms of ψ.
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algorithms. A relatively simple and robust global optim-
isation CE algorithm was implemented in this study for
the outer loop. The CE is a population-based evolution-
ary algorithm for solving estimation and optimisation
problems (De Boer et al., 2005). The CE solves an
optimisation problem by updating a series of random
search distributions such that the optimal or a near-
optimal solution is more likely to be located. The ran-
dom search distributions are updated in an adaptive
process to converge to a distribution with high prob-
ability mass in the region of near-optimal solutions
(Botev et al., 2013).

The CE algorithm with normal updating is
implemented in this study. In the CE algorithm with
normal updating, an independent normal random
search distribution is assigned to each of the variables
in l. This results in a multivariate normal distribution
with three independent components that are para-
metrised with a vector of means,ml, and a vector of var-
iances, sl

2. The CE algorithm iteratively updates ml

and sl
2 by calculating them as the mean and variance

of a subset of samples with the lowest values of L
after each iteration. In the first iteration, the values of
l were sampled uniformly from the ranges in Equation
(32). In the following iterations, ml and sl

2 were calcu-
lated, respectively, as the mean and variance of the 50%
quantile of samples with the lowest value of L. The CE

algorithm was implemented with 5 iterations and 10
samples in each iteration. The mean value, ml, calcu-
lated after the last iteration is adopted as an estimate
of the optimum, l̂.

4.2. Pressure head formulation

The pressure head PINN formulation was applied to an
inverse problem in which T i values of ψ are known at
randomly selected locations across the model domain.
The selected locations with known values of ψ are
shown in Figure 4 with black crosses. In addition to
satisfying the solution of the Richards equation at the
locations with known values, the PINN aims to satisfy
the solution in the rest of the domain by evaluating
the loss Lf at a set of T f = 40, 000 collocation points
that are distributed uniformly across the domain. As
discussed earlier, the solution to the inverse problem
is found with a double loop algorithm with the estimates
of the unknown values of ψ at the collocation points and
estimates of the unknown values of input parameters
l̂ = [k̂s, â, n̂]

T .
Figure 4 illustrates the performance of the pressure

head PINN formulation on solving the inverse problem
with T i = 1000 randomly selected points with known
values. The PINN approximation of the solution of
the Richards equation at the collocation points is plotted

Figure 4. Inverse problem solution for the pressure head PINN formulation.
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behind the randomly selected points. A comparison
between Figures 2 and 4 reveals that the PINN inverse
solution and the numerical model solution agree very
well. In order to further investigate the quality of the
PINN approximation of the solution, the numerical sol-
ution and the PINN prediction are compared at several
time instances in the lower part of Figure 4. The com-
parisons made at the time instances 0.25T, 0.5T, and
0.75T reveal good agreement between the numerical
solution and the PINN prediction.

In addition to providing a prediction ψ at the collo-
cation points, the solution to the inverse problem
involves estimates of the unknown parameters
l̂ = [k̂s, â, n̂]

T . Estimates of the unknown parameters
are provided in Table 1 for a range of
T i = {500, 1000, 2000}. The values of T i were varied
to investigate the effects of the number of locations
with known values of the solution of the inverse pro-
blem. In addition to the estimate parameter values,
Table 1 presents the values of the losses Li and Lf to
provide an insight in the quality of the PINN prediction
of the Richards equation across the domain, and the
values of sl = [sks , sa, sn]

T to examine the conver-
gence of the CE algorithm.

From the values ofLi andLf in Table 1, it can be seen
that the PINN provides good prediction of the solution
to the pressure head formulation of the Richards
equation with Li ≈ 10−4 and Lf ≈ 10−13. The number
of locations with known values of the solution does
not significantly affect the losses. The values of the esti-
mated input parameters l̂ = [k̂s, â, n̂]

T reveal a rela-
tively good agreement with the actual input values.
This is reflected in the actual and predicted values of
ks and α being relatively close. The estimated values of
n show somewhat less good agreement with the pre-
dicted values approximately from 4 to 6 and the actual
value of 2.06. Some of the potential reasons this dis-
agreement may be from the value of n being less influ-
ential in the optimisation process or the CE algorithm
requiring additional iterations to converge to a more
optimal solution. Additional iterations would be ben-
eficial for increasing the prediction accuracy of the CE
algorithm, with the ratio of standard deviation of the
estimates over the mean being between 10% and 20%
in Table 1. The CE algorithm was implemented in this
study with relatively low 5 iterations as a compromise
between accuracy and computational time.

The capacity of the PINN to solve the inverse pro-
blem with noisy data was investigated by adding nor-
mally distributed error to the dataset. The error term
is defined as a normally distributed random variable
with zero mean and standard deviation of se · sd,
where sd is the standard deviation of the dataset. Figure
5 shows the performance of the pressure head PINN
formulation on the inverse problem with noisy data.
The data consist of the T i = 1000 randomly selected
points with known ψ values, while the noise is specified
by se = 0.05.

From Figures 5 and 2, it can be observed that the
provided solution of the Richards equation agrees
very well with the original noise-free solution of the
numerical model. The quality of the PINN approxi-
mation of the solution with a noisy dataset is further
investigated in Figure 5 by comparing the noise-free
numerical solution and the PINN prediction at several
time instances. The comparisons made at the time
instances 0.25T, 0.5T and 0.75T reveal very good
agreement between the noise-free numerical solution
and the PINN prediction. These results demonstrate
the capacity of PINNs to solve noise inverse problems
and identify the original noise-free solution of the
Richards equation despite the dataset being subjected
moderate amounts of noise.

The effects of the noise level in the dataset on the
capacity of the PINN pressure head formulation on sol-
ving the inverse problem is investigated for a range of
se = {0.025, 0.05, 0.075} in Table 2 with T i = 1000.
The results indicate that the quality of the prediction
over the problem domain decreases with increasing
noise levels from Li ≈ 10−4 and Lf ≈ 10−12 for
se = 0.025 to Li ≈ 10−3 and Lf ≈ 10−10 for
se = 0.075. The estimates of the input parameters do
not show significant variations due to increasing noise
levels. Further increasing noise revels result in the sol-
ution not converging or showing great deviations
from the noise-free solution due to overfitting. Among
the estimated values, ks and α show a relatively good
agreement with the input values, while the estimates
of n show higher deviations from the input values. As
discussed earlier, some of the potential reasons these
deviations may be from the value of n being less influen-
tial in the optimisation process or the CE algorithm
requiring additional iterations to converge to a more
optimal solution.

Table 1. Loss values with the estimates of input parameters for a range of T i values.
T i Li Lf k̂s [m/s] n̂ â [1/m] sks [m/s] sn sa [1/m]

500 3.05 · 10−4 4.02 · 10−13 6.498 · 10−8 5.896 0.569 1.137 · 10−8 1.017 0.126
1000 3.86 · 10−4 2.67 · 10−12 7.044 · 10−8 4.213 0.547 1.055 · 10−9 0.697 0.102
2000 2.842 · 10−4 8.455 · 10−13 7.206 · 10−8 5.512 0.5638 7.815 · 10−9 0.796 0.096
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4.3. Volumetric water content formulation

The VWC PINN formulation was applied to an inverse
problem in which T i values of θ are known at randomly
selected locations across the model domain. The
selected locations with known values of θ are shown
in Figure 6 with black crosses. In addition to satisfying
the solution of the Richards equation at the locations
with known values, the PINN aims to satisfy the sol-
ution in the rest of the domain by evaluating the loss
Lf at a set of T f = 40,000 collocation points that are
distributed uniformly across the domain. Similar as
for the pressure head formulation, the solution to the
inverse problem is found with a double loop algorithm
with the estimates of the unknown values of θ at the col-
location points and estimates of the unknown values of
input parameters l̂ = [k̂s, â, n̂]

T .
Figure 6 shows the performance of the VWC PINN

formulation on solving the inverse problem with
T i = 1000 randomly selected points with known values.
A comparison between Figures 3 and 6 reveals that the

PINN inverse solution and the numerical model sol-
ution agree very well. Further investigation of the pre-
diction quality is conducted in the lower part of
Figure 6 by comparing the PINN approximation of
the solution and the numerical solution at several time
instances. The comparisons made at the time instances
0.25T, 0.5T and 0.75T reveal good agreement between
the numerical solution and the PINN prediction with
some deviations in the proximity of the upper bound x1.

Estimates of the unknown parameters l̂ = [k̂s, â, n̂]
T

are provided in Table 3 for a range of
T i = {500,1000, 2000}. Table 3 also presents the values
of the lossesLi andLf to provide an insight in the quality
of the PINN prediction of the Richards equation across
the domain, and the values of sl = [sks , sa, sn]

T to
examine the convergence of the CE algorithm.

From the values ofLi andLf in Table 3, it can be seen
that the PINN provides good prediction of the solution
to the VWC formulation of the Richards equation with
Li ≈ 10−6 and Lf ≈ 10−9. The values of the estimated
input parameters l̂ = [k̂s, â, n̂]

T reveal a relatively

Figure 5. Inverse problem solution for the pressure head PINN formulation with noisy data and se = 0.05.

Table 2. Loss values with the estimates of input parameters for a range of se values.
se Li Lf k̂s [m/s] n̂ â [1/m] sks [m/s] sn sa [1/m]

0.025 3.548 · 10−4 1.408 · 10−12 7.107 · 10−8 5.238 0.547 1.083 · 10−8 0.363 0.058
0.05 3.638 · 10−4 1.975 · 10−12 5.202 · 10−8 4.802 0.296 1.095 · 10−8 0.545 0.267
0.075 7.155 · 10−3 3.664 · 10−10 5.243 · 10−8 3.923 0.601 2.727 · 10−8 0.525 0.107
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good agreement with the actual input values. Similar as
for the pressure head PINN formulation results, the esti-
mated values of n show somewhat less good agreement
with the predicted values approximately from 4 to 7.

The capacity of the VWC PINN to solve the inverse
problem with noisy data was investigated by adding
normally distributed error to the dataset as for the
pressure head formulation. Figure 7 shows the perform-
ance of the pressure head PINN formulation on the
inverse problem with noisy data. The data consist of
the T i = 1000 randomly selected points with known
ψ values, while the noise is specified by se = 0.04.

Comparison of Figures 7 and 3 shows that the pro-
vided solution of VWC formulation agrees very well
with the original noise-free solution of the numerical
model. The quality of the VWC PINN approximation
of the solution with a noisy dataset is further investi-
gated in Figure 7 by comparing the noise-free numerical
solution and the PINN prediction at several time
instances. The comparisons made at the time instances
0.25T, 0.5T and 0.75T reveal very good agreement

between the noise-free numerical solution and the
VWC PINN prediction. These results demonstrate the
capacity of the VWC PINN formulation to solve noise
inverse problems and identify the original noise-free
solution of the Richards equation despite the dataset
being subjected moderate amounts of noise.

The effects of the noise level in the dataset on the
capacity of the PINN VWC formulation on solving
the inverse problem are investigated for a range of
se = {0.02, 0.04, 0.06} in Table 4 with T i = 1000. The
results indicate that the quality of the prediction is not
significantly affected by the increasing noise levels
with Li ≈ 10−6 and Lf ≈ 10−9 for the examined noise
levels. Similar to the pressure head formulation, further
increasing noise revels result in the solution not conver-
ging or showing great deviations from the noise-free
solution due to over-fitting. The estimates of the input
parameters do not show significant variations due to
increasing noise levels. Similar as for the earlier ana-
lyses, the estimates n show higher deviations from the
input values.

Figure 6. Inverse problem solution for the VWC-PINN formulation.

Table 3. Loss values with the estimates of input parameters for a range of T i values.
T i Li Lf k̂s [m/s] n̂ â [1/m] sks [m/s] sn sa [1/m]

500 1.769 · 10−6 1.372 · 10−9 7.820 · 10−8 5.806 0.623 9.734 · 10−9 2.279 0.068
1000 1.560 · 10−6 1.405 · 10−9 5.776 · 10−8 7.005 0.586 1.125 · 10−9 1.127 0.063
2000 3.644 · 10−6 7.444 · 10−9 8.511 · 10−8 4.617 0.578 4.527 · 10−9 3.700 0.067
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5. Water-infiltration test

5.1. Test setup

The performance of the VWC PINN formulation for the
Richards equation is further investigated by solving the
inverse problem on a dataset from a water infiltration
test. A large-scale water infiltration test was conducted
to study the infiltration process in unsaturated soil by
using instrumentation and visual interpretation (Robin-
son, 2019), as shown in Figure 8. The column was
designed with reference to the ASTM D7664-10: Stan-
dard Test Methods for Measurements of Hydraulic
Conductivity of Unsaturated Soils (ASTM, 2010) and
infiltration tests performed in McCartney, Villar, and
Zornberg (2007), Li, Zhang, and Fredlund (2009), and
Duong et al. (2013).

The infiltration test consists of a 1-m-high soil column
placed within a hollow acrylic cylinder. The cylinder is
1.3 m high with the outer diameter of 0.25m and the

inner diameter of 0.24m. The remaining 0.3 m above
the soil level was used to maintain a constant pressure
head of 0.1 m for the duration of the infiltration test.
The column was placed on the base assembly to prevent
water leakage and a valve to control the boundary con-
ditions at the base. The valve can be opened to allow
for water drainage or closed to simulate an impervious
base. A filter system was installed on the contact between
the soil and the base to minimise fines migration and
support the soil column. Similarly, a stainless steel perfo-
rated plate and filter cloth were placed on top of the soil
column to reduce soil disturbance during the initial
stages of water filling. The constant water head of 0.1 m
on top of the soil column was maintained with a custom
water supply system, as shown in Figure 8.

The soil mixture for the infiltration test was created
from a combination of three soils to obtain a soil mix-
ture that was representative of some Norwegian mor-
aine soils. The resulting mixture had approximately

Figure 7. Inverse problem solution for the VWC-PINN formulation with a noisy data, specified with se = 0.04.

Table 4. Loss values with the estimates of input parameters for a range of se values.
se Li Lf k̂s [m/s] n̂ â [1/m] sks [m/s] sn sa [1/m]

0.01 1.151 · 10−6 1.019 · 10−9 4.207 · 10−8 4.269 0.449 2.591 · 10−9 0.479 0.148
0.02 2.185 · 10−6 2.208 · 10−9 6.057 · 10−8 5.895 0.342 1.417 · 10−8 0.236 0.122
0.04 1.456 · 10−6 9.987 · 10−10 5.534 · 10−8 4.669 0.477 2.036 · 10−8 0.943 0.161
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9% of clay fines, 46% of silty fines, with the rest being
sand fractions. The soil was placed into the column in
0.05 m lifts and compacted to the density of
1415 kg/m3 with a volumetric water content of
u = 0.0991. While placing the soil into the column, a
set of volumetric water content sensors were installed
vertically at five positions. The positions of sensors are
from the top at x = [0.15, 0.3, 0.45, 0.6, 0.75] m. In
addition to the measured values of VWC at the location
of the sensors, the values of VWC are assumed to be
known at the top and correspond to us. The experiment
was conducted for T = 250, 000 s. Figure 8 shows the
conditions shortly after the start of the water infiltration
column test with the top 0.05 m being saturated, as
observed by the darker soil colour.

5.2. Inverse analysis

The collected VWC measurements will be used in the
PINN-based inverse analysis to estimate the parameters

of the van Genuchten model and predict VWC at
the non-measured spatio-temporal instances as mod-
elled by the Richards PDE. The values of ur = 0.0991
and us = 0.35 are determined from preliminary labora-
tory tests conducted in Robinson (2019) with the
values of ks, α and n to be determined from the
analysis.

Given the measurements from the VWC sensors,
the VWC PINN formulation was adopted for the
implementation of the inverse problem. As introduced
earlier, the inverse problem is formulated as a
problem in which a solution of the Richards PDE is
known at the locations of the VWC sensors for the dur-
ation of the test. The temporal domain was discretised
into 501 points, which results in T i = 3006 points
with known VWC values. The spatial domain was dis-
cretised into 76 points, with the total number of
collocation points being T f = 38,076. The inverse pro-
blem for the water infiltration tests is specified as fol-
lows with the bounds on ks, α and n selected from

Figure 8. Water infiltration column setup with the PINN prediction of the solution and comparisons with the measurements.
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Robinson (2019):

l̂ = argmin
l

min
x

L x, l; T
( )[ ]

(33a)

subjectedto:

1 · 10−7[m/s] ≤ ks ≤ 1 · 10−5[m/s]
(33b)

0.1[1/m] ≤ a ≤ 1.5[1/m] (33c)

1 ≤ n ≤ 15 (33d)

The solution to the inverse problem in Equation (33) is
found by implementing a PINN based on the VWC
formulation and the double-loop algorithm introduced
earlier. The PINN has eight layers with the first layer
having two neurons and the output layer a single
neuron. The remaining 6 layers have 50 neurons
each. Relu activation function was selected as it was
found to provide the most stable results.

5.3. Results

Results of the inverse problem for the water infiltration
column test are presented in Figure 8. The left part of
Figure 8 presents the setup of the water infiltration col-
umn test, with the right part presenting the solution of
the inverse problem. In addition to providing predictions
of the Richards PDE across the problem domain, the sol-
ution of the inverse problem involves estimates of the van
Genuchten model parameters l = [ks, a, n]

T . The follow-
ing estimates were made with k̂s = 2.256 · 10−7 [m/s],
â = 0.948 [1/m] and n = 7.824. These values of the
model parameters were associated with the loss values
of Li = 8.937 · 10−6 and Lf = 3.960 · 10−5. The PINN
prediction in Figure 8 is calculated based on these esti-
mates of the van Genuchten model parameters.

The right side of Figure 8 presents the locations of the
points with known values of VWC and the approxi-
mation of the solution of the Richards PDE at locations
with no measurements on the upper plot. The locations
of the points with known values of VWC are shown
with black markers and correspond to the top surface
and the locations of the VWC sensors. The resulting

Figure 9. Water infiltration column setup with the PINN prediction of the solution and comparisons with the measurements and
unobserved data.
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solution indicated that there is a relatively rapid
transition from unsaturated to saturated conditions
in the upper 0.2 m of the model. The infiltration of
water to the deeper layers of soil slows down somewhat
with the soil column becoming saturated before
200,000 s.

In addition to presenting the solution of the Richards
PDE across the problem domain, a set of six graphs is
presented in the lower right part of Figure 8 to compare
the PINN predictions of θ and the known or measured
values. The top three graphs show the known or
measured values of θ in comparison to the values pre-
dicted by PINN at depths of 0, 0.15 and 0.3 m. These
graphs demonstrate that there is a very rapid and
sharp transition from unsaturated to saturated con-
ditions in the upper part of the column. The capacity
of the PINN to capture the rapid and sharp transitions
observed in the measurements is conformed with a rela-
tively good agreement between the PINN predictions
and the measurements. Closer inspection of the tran-
sitions reveals that the PINN predictions are somewhat
smoother than the measurements.

The lower three graphs in the right part of Figure 8
compare the PINN prediction with the measurements
of θ at the depths of 0.45, 0.6 and 0.75 m. These graphs
show that the transitions from unsaturated to saturated
conditions are less rapid with the transition being
diffused in comparison to the shallower depths. The
PINN predictions agree very well with the measure-
ments thus showing a good capacity to approximate
the highly nonlinear infiltration process, as modelled
by the Richards PDE and the van Genuchten model.
Similar to the approximations of sharp transitions at
shallower depths, some smoothing occurs in the PINN
approximation of the sharp transitions that appear as
the water first approaches the locations of the VWC
sensors.

To further investigate the generalisation capability
and the physical plausibility of the trained PINN, data
collected from one of the sensors were excluded from
the training dataset and used to validate PINN’s predic-
tive capacity. Figure 9 shows the performance of the
PINN with the data from the sensor at position
x = 0.45 m being excluded from the training dataset.
The resulting predictions of the PINN demonstrate
very good predictive capacity of the trained PINN
both on the training dataset and the unobserved data.
As observed from Figures 8 and 9, the PINN approxi-
mates the shock behaviour very well. This can be attrib-
uted to the use of the ReLU activation function, which
was selected among the various activation functions
due to its capacity to predict sharp changes in the sol-
utions of the Richards equation.

6. Discussion

This study investigated the applications of PINNs to the
Richards PDE and the van Genuchten model. PINNs
have been successfully applied to solve forward and back-
ward problems for various PDEs, benefiting from the
DNNs capacity to approximate complex functions and
the computational efficiency of AD to evaluate partial
derivatives of the PINN predictions with respect to
model parameters, which is used to enforce the PDE on
a set of collocation points. This paper specifically focused
on the Richards PDE with the van Genuchten model due
to the van Genuchten model being often used in analys-
ing groundwater flow in unsaturated soils. The adoption
of the van Genuchten model in this study allowed for an
implementation of a PINN with only one DNN and
analytical derivations of WRC and HCF.

Although PINNs can be applied to both the forward
and inverse problems for various types of PDEs, this
paper investigated the application of PINNs only for
the inverse problem with the Richards PDE. One of the
main reason for this limitation is the nonlinearity of
the Richards PDE with the van Genuchten model,
which can lead to difficulties in reliably converging to
an accurate solution. Several analyses, conducted as a
part of this study, on the PINN solution to the forward
problem with the Richards PDE and the van Genuchten
model showed promising results. However, due to the
inability to consistently converge to relatively accurate
solutions they were not presented in this study. Conver-
sely, the focus is on PINN solution to the inverse problem
due the capacity of PINNs to provide solutions with rela-
tively high accuracy and high computational efficiency.

The inverse problem is postulated in this study as a
problem where the solutions of the Richards PDE are
known at a given set of spatio-temporal instances with
the unknown values at the remaining instances and
unknown parameters of the van Genuchten model. A
highly efficient solution to an inverse problem can be
obtained with PINNs by utilising the AD in the process
of finding the optimal solution and parameter values
that minimise the loss function. However, such
implementations resulted in sub-optimal performance
in this study with the algorithmminimising the loss func-
tion not being able to efficiently advance among the
values of the van Genuchten model parameters. This
resulted in the inverse solution resulting in sub-optimal
solutions or physically inconsistent values. This is attrib-
uted to the nonlinearity and complexity of the Richards
PDEwith the vanGenuchtenmodel. A double loop algor-
ithm was implemented in this study to overcome this
challenge, with the inner loop optimising the parameters
of the DNN and the outer loop optimising the van
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Genuchten parameters. Constraints and bounds on the
van Genuchten parameters are enforced on the outer
loop, which was implemented with the CE global optim-
isation algorithm. The double loop algorithm is
implemented as a compromise between computational
efficiency and the solution accuracy and stability.

This study features the pressure head and the VWC
formulations of PINNs for the Richards PDE with the
van Genuchten model to adapt to situations in which,
respectively, the pressure head and VWC measurement
are available. For both of the formulations, the Richards
PDE was expressed in terms of the respective variable
(i.e. pressure head or VWC) with the partial derivatives
of the variable reformulated in terms of analytical
expressions and the derivatives of the variables with
respect to time or space. The analytical expressions are
derived based on the van Genuchten model, while the
derivative of pressure head or VWC with respect to
time and space are evaluated with the AD based on
the PINN prediction. This allows the PINN for the
Richards PDE and the van Genuchten model to be
efficiently implemented with a single DNN.

The performance of PINNs for the inverse problem
with the Richards PDE and the van Genuchten model
was investigated on synthetically generatedmeasurements
and the dataset from a water infiltration column test. The
synthetically generated data were used to evaluate the per-
formance of both the PINN formulations for a range of
available measurements and noise levels. The results
demonstrated good performance for both formulations
with relatively low effect of the number of measurements
on the accuracy for the considered range. Relatively simi-
lar estimates of saturated permeability in the van Genuch-
ten model were obtained for all analyses, with higher
variation of α values and some deviations for n. This
might indicate that n is less influential in the optimisation
process or that additional iterations of the CE algorithm
could have been implemented. The effects of noise in
the measurements on the solution to the inverse problems
showed that PINNs can deal with low to medium noise
levels and identify the original non-noisy solution. Higher
noise levels result in the lack of convergence or great devi-
ations from the original solution due to over-fitting. The
VWC PINN formulation was applied to VWC measure-
ments for a water infiltration column test to predict the
solution of the Richards equation at non-measured spa-
tio-temporal instances and estimate parameters of the
van Genuchten model. The results demonstrate that
PINNs are capable of providing a very good prediction
of the solution to the Richards equation based on realistic
data and a very good fit to highly nonlinear and sharp
transitions from unsaturated to saturated conditions that
are observed in the measurements.

PINNs represent a hybrid modelling approach that
bridges the gap between physical-based (e.g. FEM,
FDM) and data-driven approaches. Hybrid approaches
aim to integrate the advantages of both approaches
with the capacity of data-driven approaches to efficien-
tly integrate and process large amounts of data and for
the solution to satisfy the physical laws as described by
the governing PDEs. These unique modelling capabili-
ties of PINNs allow it to find applications in situations
where large amounts of data are available and physical
interpretability of the data or predictions based on
those data are important. One such application involves
real-time monitoring systems.

Real-time monitoring systems are one of commonly
employed strategies for managing geohazards risks,
which aims to reduce the risks by issuing timely alerts
to evacuate people and property under risk. Real-time
monitoring systems often feature large numbers of sen-
sors that produce data time series that require efficient
interpretation and processing. Hybrid approaches can
contribute to the implementation of such systems with
the capacity to efficiently process large amounts of
data collected through monitoring system and simul-
taneously be used to provide predictions of natural
phenomena that are based on physical laws described
by the governing PDEs. Physical interpretability of col-
lected data and model predictions is of great importance
in supporting a decision-making process that is necess-
ary for the implementation of reliable warning systems.

7. Conclusion

This study investigated the application of physics-
informed neural networks to the inverse problem for
the Richards partial differential equation with the van
Genuchten model. Pressure head and volumetric water
content formulations of physics-informed neural net-
works were developed to adapt to situations in which
the respective measurements are available. The
implementation of the two formulations requires only
one deep neural network to be trained due to analytical
derivations of partial derivations in the Richards equation
based on the van Genuchten model. The two formu-
lations were successfully implemented on several
examples to demonstrate the capacity of physics-
informed neural networks to provide accurate predictions
of the inverse solution to the Richards equation and to
determine the parameters of the van Genuchten model.
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