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Abstract

We propose a new approach for sampling domain reduction for efficient surrogate

model generation. Currently, the standard procedure is to use box constraints for the

independent variables when sampling the exact simulator. However, by including

additional inequality constraints to account for interdependencies between these

variables, we can drastically reduce the sampling domain and ensure consistency of

unit operations. Moreover, we present a methodology for constructing surrogate

models based on penalized regression and error-maximization sampling. All these

algorithms have been implemented as a free and open-source software package.

Through a case study on the water–gas shift reaction for hydrogen production, we

show that sampling domain reduction reduces the required number of sampling

points significantly and improves the accuracy of the surrogate model.
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1 | INTRODUCTION

Surrogate models, also known as reduced-order models, response-surface

models, metamodels, or proxy models, are a class of regression models

that have gained much attention in recent years. They are frequently

used in a variety of engineering fields, including chemical process engi-

neering. Surrogate models can drastically reduce computation time by

replacing potentially expensive or noisy low-level models with simpler

regressions. Surrogate models are most commonly used as substitutes

for computationally expensive models in optimization1 or to identify the

best process structure based on a superstructure optimization

approach.2 Bhosekar and Ierapetritou3 and McBride and Sundmacher4

reviewed recent advances in the field of surrogate modeling.

Recent research on surrogate modeling can be grouped into two

main categories: (i) Basis function selection and associated regression

methodology and (ii) Improved sampling routines, also referred to as

design of computer experiments. The choice of basis function often

has a significant impact on the achievable accuracy of the surrogate

model. It also determines for what purposes the surrogate model is

suitable since the basis choice affects the model size, complexity, and

differentiability. A trend in emerging software packages for surrogate-

model generation is to include broad flexibility in the selection of basis

functions, either embedded as a part of the regression method or

overall surrogate-modeling framework or as an a priori choice in the

surrogate fitting options taken from a roll-down list. To this end,

the Automated Learning of Algebraic Models for Optimization

(ALAMO) framework, as an example, selects the best subset from a

large set of algebraic basis functions using a mixed-integer approach.1

In a similar vein, the ARGONAUT framework allow the user to select

the basis functions from an implemented pool, including polynomials,
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Kriging models, and radial basis function as part of a derivative-free

optimization (DFO) of gray-box problems.5 The implementation of lin-

ear, polynomial, and other simple algebraic basis functions aid the

application of the surrogate models for large-scale optimization pur-

poses. Additionally, there is also a substantial effort to explore other

common basis functions in surrogate modeling for process-system

application including Kriging or Gaussian process models,2,6 artificial

neural networks,7,8 and splines.9,10

Another important factor for the performance of surrogate model

generation is the design-of-experiment (DoE) method used for the

sampling. Garud et al. provided a detailed overview of DoE

methods.11 They distinguished between two main strategies: static

sampling and adaptive sampling. Static sampling means that one first

collects all samples via a predefined experimental design and then per-

forms a batch fitting of the surrogate model to the obtained data.

Quirante et al., for example, use static sampling for the development

of surrogate models for superstructure optimization of vinyl chloride

production.2 They used 200–250 points to fit models with 4–5 inde-

pendent variables and Kriging models12 as basis functions. As another

example, Ochoa-Estopier et al. sampled 3000 points describing a Latin

hypercube to train an artificial neural network with 10 independent

variables.13

One issue with static sampling approaches is that it is not known

a priori how many sample points are required. Hence, both under- and

oversampling may occur. As an alternative, adaptive sampling routines

have been developed. These routines utilize a strategy of exploration

and exploitation: The first refers to space-filling techniques, while the

second is accomplished by iteratively selecting new sample points

based on the surrogate model itself. Crombecq et al. developed a

hybrid, sequential sampling strategy using a Monte Carlo-based

approximation of a Voronoi tessellation for exploration and local linear

approximations of the simulator for exploitation.14 The ALAMO

framework implements an adaptive sampling scheme where new sam-

ple points are placed to maximize the discrepancy between the surro-

gate model and the actual model.1 Hence, it only utilizes exploitation.

The smart sampling algorithm (SSA) developed by Garud et al. incor-

porates both exploitation and space-filling metrics.15 Space-filling is

quantified via a crowding distance, that is, the distance between a new

point and all existing points. Exploitation is measured by a departure

function, which quantifies the modeling error caused by excluding

points. Both adaptive sampling approaches require numerical optimi-

zation. The error-maximization sampling implemented in ALAMO uses

DFO as the optimization approach, which involves running the simula-

tor or evaluating the black-box model. In contrast, SSA uses an optimi-

zation routine only involving the surrogate model. To avoid numerical

optimization, Eason, and Cremaschi used jack-knifing to identify

regions where the output of the surrogate model has a large variance,

and combined this with a space-filling measure based on the Euclidean

distance between sample points.7 Garbo and German introduced a

model-independent sequential adaptive sampling technique called

nearest neighbors adaptive sampling (NNAS). A refinement metric

based on local linear models was used together with a Pareto-ranking-

based criterion to achieve a refinement-exploration balance of the

surrogate model.16 In general, adaptive sequential sampling routines

often improve overall surrogate-model performance compared to

single-shot static approaches and reduce the required number of

samples.14

In addition to the exploration and exploitation metrics used to

improve the sampling routines in surrogate-model generation, con-

straints on the sampling domain are frequently used to effectively

reduce the search space. Different approaches have been explored

for constraining the sampling domain and seeking to prevent cluster-

ing of sampling points. Li et al. proposed maximizing a distance metric

between all newly sampled points and one unobserved (not sampled)

point, while also including a threshold constraint to prevent clustering

of new points with existing experiments.17 They applied their

clustering-constraint approach, which lends itself to leave-one-out

(LOO) methods, to a Kriging model. Zhou et al. implemented a space-

filling approach that minimizes a prediction-error metric of the surro-

gate model with a constraint added to ensure a minimum distance

between the new sample points and the existing sampling points.18

Other works have utilized governing properties of the surrogate-

model, such as Gaussian process models, to impose an expected

improvement metric with added constraints on the sampling.19 Yet,

with respect to surrogate-model generation for process-system appli-

cations, simple box constraints are usually used to confine the sam-

pling domain.2,6,20 That is, for each independent variable xi , simple

lower and upper bounds are imposed,

xi,min ≤ xi ≤ xi,max, 8i ∈ ℐ: ð1Þ

However, this leads to a dilemma related to the choice of the bounds

xi,min and xi,max:

1. Using tight constraints limits the applicability of the surrogate

model. Potentially interesting regions are not included during

model construction which can lead to extrapolation.

2. Using loose constraints may cause sampling in regions that are

never encountered in practice and potentially highly nonlinear. As

a result, more sampling points are required to achieve a satisfac-

tory fit in the region of interest.

Particularly important are constraints related to molar or mass

flows in a chemical process, as these are in general defined by the

required stoichiometry and extent of a chemical reaction. To address

this problem of sampling with simple box constraints, Straus, and

Skogestad proposed introducing molar ratios for feed flows to

account for dependencies between different chemical components in

the inlet of a chemical process.21 The error of the surrogate model

was reduced when the same number of sample points was used for

one dependent variable, whereas the other two dependent variables

remained unaffected. Straus and Skogestad further showed that sam-

pling with standard box constraints on inlet stream and manipulated

variables for an ammonia reactor may result in sampling in undesired

regions, that is, sampling in regions where the reactor is extinct or

shows limit-cycle behavior.10 Introducing constraints on the
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manipulated variables (e.g., split ratios or compressor duties) and

internal variables based on concepts from process control can avoid

sampling in undesired regions.

This article addresses sampling-domain reduction for surrogate

model generation through constrained adaptive sampling, particularly

suited for interconnected process models. Constrained adaptive sam-

pling can utilize dependencies between independent variables of con-

nected submodels to construct constraints on the sampling domain.

Our main contributions are:

1. We present a generalized constraint formulation for sampling

domain reduction.

2. We propose a penalized adaptive sampling method that prevents

oversampling of small regions during error-maximization sampling

and thereby improves exploration in the sampling routine.

3. We implement and present the proposed sampling methodology in

Consumet—a Python-based open-source package for surrogate-

model generation.22

4. We present and demonstrate the merits of our proposed approach

on an auto-thermal reformer (ATR) and the water–gas shift

section of hydrogen production with two reactors.

The remainder of the article is organized as follows. First, in Sec-

tion 2, we develop the theory for simple, linear inequality constraints

for sampling approaches. Furthermore, we elaborate gray-box model-

ing related to surrogate model generation to justify the use of differ-

ent dependent variables. Section 3 provides an exposition of the

algorithm we propose for surrogate model generation, based on adap-

tive sampling, penalized regression, and information criteria. We have

implemented the proposed methods as a free and open-source soft-

ware solution. Section B in the Appendix summarizes its implementa-

tion details. Finally, Section 4 applies these methods to a case study

where we construct surrogate models for an ATR and the water–gas

shift section of hydrogen production with two reactors. A detailed

description of the regression and penalty selection can be found in

Section A in the Appendix.

2 | SAMPLING DOMAIN REDUCTION

2.1 | Surrogate model structure

Sampling domain reduction is vital for surrogate models representing

subsections of an overall process. The surrogate models can be subse-

quently used for superstructure optimization. To this end, it is essen-

tial to develop a consistent structure for the surrogate models of the

different subsections.

Consider surrogate model i, located between subsection k and

subsection q. The inlet connection variables can then be described as

zk,i ∈ ℝnz while the outlet connection variables are given as zi,q ∈ ℝnz .

These nz connection variables usually include composition, flow, tem-

perature, and pressure. Furthermore, the subsection has nu additional

input variables ui ∈ ℝnu corresponding to heat exchanger duties,

compressor duties, or split ratios. Suppose the surrogate models are

later connected. In that case, it is necessary to express the connection

variables zk,i from surrogate model k to surrogate model i in the same

fashion in each subsection. One advantage of this approach is that it

is unnecessary to limit the nonlinear surrogate models to the connec-

tion variables; that is, we are not limited to surrogate models that map

the input connection variables zk,i to the output connection variables

zi,q. Instead, it is possible to include extents of reaction and separation

coefficients to obtain mass consistency in the surrogate model.

Switching from connection variables as dependent variables to auxil-

iary variables like the extent of reaction was described in detail by

Henao et al. in developing surrogate models for superstructure opti-

mization.23 Consequently, we introduce a new gray-box model struc-

ture for each subsection that should be represented by a surrogate

model. Using extent of reactions and separation coefficients is espe-

cially beneficial if there are mass recycle streams resulting in positive

feedback as it ensures mass consistency.10,21,24

Figure 1 illustrates the gray-box structure and the flow of infor-

mation involved in the process. This gray-box model uses as input the

connection variables of the inlet streams (or calculated variables from

the inlet streams) and the manipulated variables. The output of this

model is then given by the connection variables of the outlet streams,

that is, the variables zi,q. The gray-box model structure includes the

following different sections and calculates the values sequentially:

1. Calculation of the input to the nonlinear surrogate models if ratios or

other nonstream variables are used as input to the surrogate models.

The calculation of the input to the nonlinear surrogate models may

not be necessary if the inlet connection variable zk,i and the addi-

tional input ui are used directly in the surrogate model;

2. Nonlinear surrogate models gi for the calculation of the separation

coefficients, rates of the extent of reaction, temperature differ-

ences, pressure differences, and so on, summarized in a vari-

able yi ∈ ℝny ;

3. Exact mass balance and balances for the outlet pressure and tem-

perature (fi) to calculate the connection variables of the outlet

streams. These balances may also include the inlet connection vari-

ables zk,i.

F IGURE 1 Illustration of the gray-box structure for the
development of consistent surrogate models [Color figure can be
viewed at wileyonlinelibrary.com]
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A key question is in which range we should vary the input vari-

ables to a subsection. Here, the input variables to a subsection are

generally not independent of each other as they may originate from,

for example, a chemical reaction. The following sections will first illus-

trate the concept of dependencies between the inlet variables and

then propose a novel approach for avoiding sampling in unimportant

regions.

2.2 | Motivating example

Straus and Skogestad already investigated flow dependencies for pro-

portional dependencies of different inlet molar flow rates.21 Using

proportional dependencies is especially useful for surrogate models

whose feed composition is not determined by a chemical reaction or a

separation step. To illustrate the concept of proportional dependen-

cies again, consider the steam–methane reforming reaction given by:

CH4þH2O!3H2þCO ð2Þ

The main reactants in the feed of a steam–methane reformer (SMR)

are methane and steam. Based on the chemical reaction (2), a steam–

methane molar ratio of 1 would be optimal. However, operating the

reactor at the stoichiometric limit could cause coking in the reactor

catalysts. Steam flows greater than the stoichiometric one are

required to prevent coking. Additionally, the excess steam supplied to

the SMR can be utilized in the subsequent water–gas shift reactors in

the reforming process. Thus, a steam–methane molar ratio of 2:5 is

frequently used. Table 1 shows box constraints for the reaction for

both the methane and steam molar flow rate using a steam–methane

molar ratio of 2:5 to calculate the box constraints for steam at the

nominal operating point. However, due to the application of box con-

straints we observe, extrema of:

max _nH2O � _nCH4 ¼7:5 min _nH2O � _nCH4 ¼0:83 ð3Þ

where � corresponds to element-wise division. These values are

encountered when one of the independent variables is at the upper

bound and the other at the lower bound. In practice, these ratios will

never be observed due to either below-stoichiometric amounts of

steam, which results in coking of the catalyst bed, or too high amounts

of steam, which results in unnecessary compression and steam

generation costs. Figure 2 illustrates the behavior. Here, 1000 random

points were created using both box constraints and proportional

dependencies. We can directly see that using box constraints, most of

the sampling domain is, in fact, in regions that will not be encountered

in practice. Furthermore, important regions at the upper and lower

methane bound are omitted as the steam–methane ratio is fixed to

the nominal value if both independent variables are at the same

bound.

The variation in the steam–methane ratio does not correspond to

�50% as for the box constraints. Hence, it is not surprising that the

overall domain using proportional dependencies is much smaller than

the one based on box constraints. In general, one should avoid sam-

pling at too large variations around the nominal ratio, as these regions

are not important in day-to-day operation due to the reasons outlined

above. Hence, a variation of �20% in the molar ratio of steam and

methane can be considered sufficient for the subsequent applications

of a surrogate model. If we incorporate such proportional dependen-

cies, we can reduce the sampling domain to about 40% of the domain

required with box constraints.

2.3 | Generalization of dependencies

Suppose the feed streams to a surrogate model are outputs from pre-

vious unit operations with chemical reactions and/or separation steps.

In that case, it is in general not possible to define simple proportional

dependencies through a change in independent variables. If we con-

sider the SMR example above, the subsequent unit would be the

water–gas shift section in which CO is converted to H2 according to:

COþH2O⇌H2þCO2 ð4Þ

The feed composition to this section depends on the extent of reac-

tion of the steam–methane reforming reaction in the previous section.

The following contradicting conclusions can be drawn based on

Equation (2):

TABLE 1 Bounds and units for the different investigated
configurations

_nH2O _nCH4

_nH2O

_nCH4

(mol/s) (mol/s) (�)

Lower bound 1000 400 2:0

Nominal value 2000 800 2:5

Upper bound 3000 1200 3:0

F IGURE 2 Sampling domain when using box constraints (black)
and proportional dependencies (red) for the steam and methane flow
rates in the feed to a steam–methane reformer [Color figure can be
viewed at wileyonlinelibrary.com]
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1. The more steam is in the feed to the water–gas shift section, the

more hydrogen is in the feed due to a larger inlet flow rate of

steam to the SMR and correspondingly a larger extent of reaction

(proportional dependency);

2. The more steam is in the feed, the less hydrogen is in the feed due

to a reduced extent of reaction in the SMR caused by a lower resi-

dence time in the reactor (inverse proportional dependency).

Therefore, it is impossible to predict the dependency without

knowledge of the outlet composition of the previous unit opera-

tions. It can, however, have a significant influence on the sampling

domain.

Consider the steam–methane reforming reaction (2) again as

an example to illustrate these dependencies. Let us take the

methane flow rate _nCH4 and the steam–methane ratio _nH2O= _nCH4 as

our independent variables with the bounds described in Table 1, and

use the reactor temperature in centigrades Treac ∈ 900,1000½ � as an

additional independent variable. We can analyze the outlet stream

composition to identify dependencies between its chemical

components.

The reactor section was modeled in Aspen HYSYS using the equi-

librium reactor model. In total, 1000 random points were sampled.

Reaction (4) was also included in the set of reactions in the SMR.

Figure 3 illustrates the dependencies between the important outlet

stream component flow rates from the steam–methane reactor. These

components are the steam, hydrogen, CO, and CO2 molar flow rates.

Furthermore, calculated sampling domains using proportional con-

straints with hydrogen as the basis chemical component are included.

The molar flow rate of hydrogen, _nH2 , and the ratio between hydrogen

and CO, RH2=CO, the ratio between hydrogen and CO2, RH2=CO2
, and

the ratio between hydrogen and steam, RH2=H2O are declared as new

independent variables. The ratios result in box constraints values for

CO, CO2, and steam. Note that, carbon monoxide and carbon dioxide

are important chemical components in the feed stream since both are

F IGURE 3 Illustration of the dependencies between the component flow rates of (A) CO and hydrogen, (B) CO2 and hydrogen, (C) steam and
hydrogen, (D) CO2 and CO, (E) steam and CO, and (F) CO2 and steam in the reactor outlet of a steam–methane reformer. The plotted line
correspond to the sampling domain defined using proportional constraints while the number correspond to calculated upper and lower bounds
for the respective ratios [Color figure can be viewed at wileyonlinelibrary.com]
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present in the water–gas shift Reaction (4). From Figure 3, we can

draw the following conclusions:

1. Proportional dependencies between all chemical components

dominate the system.

2. Using a change in independent variables from molar flow rates to

proportional constraints results in sampling in regions not encoun-

tered in practice as the individual flow rates may be higher by

introducing proportional dependencies (see Figure 2 in Section 2.2).

One example is Figure 3(D)), where the sampling domain includes

values both at the upper and lower boundary for both CO and

CO2 that are not originating from the sampled data.

Hence, utilizing only box constraints or proportional con-

straints may result in sampling in regions never observed in the

model due to (a) the chemical reaction (when using only box con-

straints) or (b) due to the total flow rate in the system (when using

only proportional constraints). Furthermore, bounds on the sum of

the flow rates can be advantageous. Therefore, it is necessary to

restrict the sampling domain by both box constraints and propor-

tional constraints. The following inequality constraints for the sam-

pling domain of the water–gas shift section can be hence derived,

which can be generalized to an arbitrary number of chemical com-

ponents nchem:

min _ndati

� �
≤ _ni ≤max _ndati

� �
ð5Þ

_njmin _ndat
i � _ndatj

� �
≤ ni ≤ _njmax _ndati � _ndat

j

� �
ð6Þ

min _ndati þ _ndatj

� �
≤ _ni þ _nj ≤max _ndati þ _ndatj

� �
ð7Þ

In (5), _ndati ∈ ℝndat corresponds to the inlet flow rate of chemical com-

ponent i sampled from the outlet of the last subsection, ndat to the

number of sampled data from the previous section for creating the

constraints, and ni ∈ ℝ to the inlet flow rate of chemical component i

as used as an independent variable to the surrogate model. These

inequalities hold 8i, j ∈ 1,2, :::,nchemf g such that i≠ j. The first set of

inequality constraints represented in Equation (5) corresponds to

box constraints, the second set (6) to proportional dependencies, and

the third set (7) to inverse proportional dependencies. The set of

constraints will always define a convex set and thus polytopic

constraints in ℝnchem . The total number of constraints is

2 nchemþ2
Pnchem�1

i¼1 i
� �

¼2n2chem. The constraints (5)–(7) can be

rearranged in the standard format Ax≤ b, where A is a 2n2chem�nchem

matrix defined by the constraint inequalities, x is the vector _n of

length nchem, and b is a vector of length 2n2chem corresponding to the

leftmost and rightmost sides of the inequalities above.

Note that in the worst-case scenario, we have:

min _ndati � _ndatj

� �
¼0 max _ndati � _ndatj

� �
¼∞

which corresponds to the trivial statements 0≤ _ni ≤∞ for dependency

constraints (6). Hence, the dependency constraints will not be active

in the sampling in this limit. Similarly, the worst case scenarios for the

inverse proportional dependencies are:

min _ndati þ _ndatj

� �
¼ min _ndati

� �
þmin _ndatj

� �
max _ndati þ _ndatj

� �
¼ max _ndati

� �
þmax _ndatj

� �

In the worst case scenario, Equation (7) reduces to simple box con-

straints. If desired, it is possible to include a slack on the constraints.

The slack would correspond to utilizing a slightly bigger value for the

maximum or minimum values in Equations (5–7) to account for limits

in the number of sampled data points. The slack can then represent

unsampled extreme values in the flow rates.

Similar conclusions can be drawn for several inlet streams to a

submodel. In this case, proportional and inverse proportional

dependencies are frequently encountered between streams. As an

example, the steam flow to a SMR is often considered a separate

stream.

3 | IMPLEMENTATION OF SAMPLING-
DOMAIN REDUCTION

3.1 | Adaptive sampling

The best approach for incorporating the aforementioned type of con-

straints for sampling-domain reduction in surrogate-model generation

is using an optimization-based algorithm as frequently used in adap-

tive sampling routines. In this type of algorithms, regions of the input

space are iteratively sampled based on the current fit of the surrogate

model (i.e., prediction error), the set of already sampled points

(i.e., degree of exploration of the input space), and the required fidelity

of the model.

In the following sections, we will use the following notation:

• x ∈ ℝd corresponds to the input variables to the true and

surrogate models, where d is the input dimension. In the nota-

tion of Figure 1, x is constructed from the components of zk,i

and ui.

• f :ℝd !ℝ corresponds to a truemodel or simulator, and f :ℝd !ℝr

to a collection of such models, where r is the number of sub-

models. For instance, if we have one detailed model for calcu-

lating a temperature T xð Þ and one for calculating a pressure

P xð Þ, then f¼ P,Tð Þ and r¼2.

• g :ℝd !ℝ or g :ℝd !ℝr corresponds to a surrogate model used

to approximate the above.

• θ refers to the fitting parameters of a generic surrogate model g

or g. The size and dimension of this object depend on the cho-

sen surrogate model class.

In this article, we explore error-maximization sampling that seeks

to the sample regions of the input space with the poorest fit of the
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surrogate model.1 In its simplest form, error-maximization sampling

selects new samples by solving the unconstrained optimization problem

bx¼ argmax f xð Þ�g xjθð Þ½ �2 ð8Þ

Note that we only consider scalar functions f xð Þ and g xð Þ here; the

higher-dimensional generalization will be treated in Section 3.2. Solv-

ing (8) requires for most cases using a DFO solver since evaluating

f xð Þ is obtained by running a simulator with no derivative information

available.

A challenge with the error-maximization sampling in its form (8) is

that it tends to sample the same regions when applied iteratively in

the surrogate-model generation. While this does locate local maxima

in the model error, which can be valuable for constructing more accu-

rate surrogate models, it will also consume substantial computational

resources without extending the exploration of the input space.

Exploration–exploitation wise, sequential sampling by solving (8) to

select new samples points iteratively is heavily biased toward exploi-

tation. To remedy this clustering of sampling points, we propose

adding a penalty to the objective function, which causes the algorithm

to avoid previous sampling points xk . Additionally, we add, as intro-

duced in the previous sections, linear constraints on the input vari-

ables. This gives the optimization problem

bx¼ argmax f xð Þ�g xjθð Þ½ �2�μ
X
k

h x�xkð Þ j Ax≤b

( )
ð9Þ

Here, the linear inequality constraint Ax≤b corresponds to the sam-

pling domain constraints described in Equations (5–7). μ≥0 is a non-

negative penalty parameter. The penalty function h, summed over

previously sampled points xk , should satisfy three criteria. First, we

should require that h uð Þ!0 as ku k!∞, to prevent penalizing

sampling-point selection away from all existing points. Second, we

should require that 8u : h uð Þ>0, so that it does indeed punish instead

of rewarding clustering of sampling points. Third, h uð Þ should prefera-

bly be a monotonically decreasing function of ku k. There are many

ways to select such a penalty function, including exact and nonexact,

smooth penalty functions.25 In our implementation, we use the latter

type in the form of a Gaussian (exponential) penalty function,

h uð Þ¼ exp �u2=ρ2
� � ð10Þ

where ρ>0 is a scalar parameter that limits how far away from previ-

ous sampling points such a penalty should occur, while μ parametrizes

the exploration–exploitation trade-off in the sampling.

If x is normalized, then the squared differences uk k≤1. In the

most extreme edge case, where one point is at the origin 0,0,…ð Þ and
the other at the distant corner 1,1,…ð Þ, then h uð Þ<0:02 when

ρ≲
ffiffiffi
d

p
=2, where d is the dimension of x. Since the penalty serves no

purpose for points at opposite ends of the sampling area, this value is

a reasonable upper limit on ρ. Below this value, any value of ρ can be

justified, depending on what balance one desires between exploration

and exploitation. For the penalty μ, a zero value reproduces non-

penalized error-maximization sampling (i.e., pure exploitation), while set-

ting it to infinity causes sampling of points that are as far as possible

away from each other (i.e., pure exploration). Since both are valid

approaches, any non-negative value for the penalty μ is a valid choice,

but the most useful is normally a balance between the exploration

with exploitation terms.

3.2 | Generalization to higher dimensions

The method presented in Section 3.1 for sampling data for generating

surrogate models of black-box functions is limited to scalar functions

f :ℝd !ℝ. In this subsection, we generalize our approach to functions

f :ℝd !ℝr , d and r are the numbers of input and output dimensions,

respectively. The algorithm presented here covers general class of

processes: for instance, the components of matrices, tensors, complex

numbers, and quaternions can all be trivially mapped onto real vectors

in ℝd or ℝr . The main processes that cannot be represented in this

way are functions involving logic, integers, categories, or other dis-

crete data, where different algorithms are required.

One surrogate model per output dimension must be created for

processes with higher-dimensional output, following the same

approach as outlined in Appendix A for Equation (A3). Thus, we can

summarize our approximation as f xð Þ≈ g xð Þ, where each submodel in

the vector g¼ g0,g1,…ð Þ is defined as:

8m : gm xð Þ≔
X

n ∈ ℕd

θm,nbn xð Þ ð11Þ

Here, m is an index corresponding to the output dimension, and n is

an index array corresponding to the basis function order in each input

dimension. Each submodel gm is then fitted using the procedures from

Sections A.2 and A.3 in the Appendix. Note that, the number of

nonzero model parameters θm,n produced by these fits can be very

different depending on the output m. This is because different observ-

ables such as pressure, temperature, and chemical composition may

differ significantly as functions of the input variables. Each submodel gm

is also fitted using a different penalty λm, obtained via a separate

optimization of, for example, the corrected Akaike information criterion

(AIC).26 Section A.3 in the Appendix discusses various information

criteria and the and the implementation of the optimization procedure.

There are two ways to adjust the adaptive sampling procedure

described in Section 3.1 to higher dimensions. One approach is sequential

error-maximization sampling. Here, we iterate through output variables,

and perform a separate error-maximization of each variable:

8m : bxm ¼ argmax fm xð Þ�gm xjθð Þ½ �2�μ
X
k

h x�xkð Þ j Ax≤ b

( )
ð12Þ

where bxmf g refers to new sample points obtained via error-maximiza-

tion, while xkf g refers to old sample points. After performing these
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error-maximization samplings, the submodels gm are refitted using the

new data. Data from all sampled points f bxmð Þf g are used to improve

all submodels gm. Once a submodel gm converges within the desired

error tolerance, we stop performing new error-maximization sam-

plings for that output variable.

As an alternative, simultaneous error-maximization sampling can be

used, maximizing a weighted average error:1

bx¼ argmax
X
m
wm fm xð Þ�gm xjθð Þ½ �2�μ

X
k

h x�xkð Þ j Ax≤ b

( )
ð13Þ

It is essential to introduce weights wm in this approach. For instance,

pressures typically vary by �106 Pa and temperatures by �102�C.

Thus, if these output variables are not scaled accordingly, the error-

maximization procedure would effectively only minimize errors in the

pressure submodel, as its average error would likely be 3–4 orders of

magnitude larger than the error in the temperature model. One simple

and efficient solution is to set wm ≔ fmax
m � fmin

m

� ��1
, where

fmax
m ≔ maxk fm xkð Þ and fmin

m ≔ mink fm xkð Þ are the maximum and mini-

mum previously sampled values for that output.

We have implemented both approaches in Consumet.22 In gen-

eral, we expect simultaneous sampling to be more efficient if each

submodel has (i) similar complexity and (ii) large variations in the same

regions of input space. Conversely, if the high-error regions of each

submodel are disjoint, it may be more efficient to perform sequential

sampling. Moreover, if we have one trivial and one strongly nonlinear

output, sequential sampling would quickly mark the simple one as

“converged,” while simultaneous sampling would waste computation

time re-evaluating both.

3.3 | Implementation of Consumet

We have implemented the algorithm for automated surrogate

model construction described in the previous subsections and in

Section A in the Appendix in Python, using only free and open-

source libraries, and have released the resulting tool Consumet22

under an MIT open-source license. The source code is available at

GitHub. A description of Consumet can be found in Section B in

the Appendix.

Consumet uses the LASSO method for surrogate model fitting.27

LASSO regression is a well-explored method for combined model

fitting and model selection through the ℓ1 penalty on coefficients for

the basis functions. It has the advantage of only requiring the solution

of a continuous optimization problem, is easy to implement, and does

not require the use of licensed software. For a comparison and alter-

native regression and model selection methods, see, for example,

Cozad et al.1 or Bhosekar et al.3 In the Consumet implementation, the

penalty λ is autoselected via information criterion optimization as

elaborated in Section A.3 in the Appendix.28 Numerically, the regres-

sion problem is implemented in Pyomo,29,30 and the resulting equa-

tions are solved using IPOPT.31 The error-maximization problem (12)

or (13) is solved using NOMAD,32 which is based on the mesh-adaptive

direct search algorithm.

4 | RESULTS

4.1 | Introduction

The investigated case studies are part of the methane reforming pro-

cess for hydrogen production from natural gas. Due to the large selec-

tion of separation technologies for both CO2 and H2,
33 surrogate

models for common process sections may allow a fast evaluation of a

large number of combinations of separation technologies. In this

respect, we created surrogate models for both a reforming

section and the subsequent water–gas shift section as illustrated in

the process flow diagram 4. The water–gas shift section, being down-

stream of the reforming section, allows a comparison of the proposed

sampling domain reduction procedure developed in Section 2 with

standard box constraints. Extents of reactions as described in Sec-

tion 2.1 were used to achieve mass consistency in the surrogate

model. The overall process was modeled in Aspen HYSYS.

We now discuss the procedure we used to construct and evaluate

our surrogate models. Referring to Figure B1 in the Appendix, we first

sampled 100 initial points via the Batch sampling routine. The Adaptive

sampling box was allowed to sample the simulation maximum 10 times

before proceeding to the Convergence check. At this point, we used

the result of the error-maximization procedure as an estimate for the

prediction error of our surrogate model. The convergence criterion,

the relative prediction error, was set to 1%. If we executed the Adap-

tive sampling routine a total of 15 times without achieving conver-

gence, the surrogate construction was terminated. Hence, the

maximum number of sampling points was given by 250 sampling

points. To determine the regression penalties, we used the corrected

AIC.26,34 All parameters of the surrogate model with a value smaller

than 10�4 were discarded. This entire procedure was first applied to

the reforming section to highlight the impact of adaptive sampling

with LASSO regression and demonstrate the benefit of the clustering

penalty. Afterward, it was repeated using both unconstrained sam-

pling (box constraints) and constrained sampling (inequality con-

straints) for the water–gas shift section to compare the efficacy of

these approaches. Simultaneous sampling was used for both the

reforming and the water–gas shift section.

We created a validation set xkf g by sampling N¼2,000 new

points within the box constraint sampling domain (reforming section)

and the constrained region (water–gas shift section) to evaluate the

performance of the generated surrogate models. We then calculated

the relative absolute error of each surrogate model:

RAEk ≔
f xkð Þ�g xk jθð Þj j
fmax� fmin

ð14Þ

Here, fmax and fmin were the maximum and minimum values for the

true function f xð Þ estimated from the full sample set. These results
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were used to determine the maximum relative absolute error and rela-

tive root-mean-square error:

MRAE≔ max
N

k¼1
RAEk RRMSE≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

RAE2
k

vuut ð15Þ

The performance of our surrogate generation method was then eval-

uated based on MRAE and RRMSE values, which highlight the accu-

racy of the models, and based on the number of iterations before

termination and the number of parameters selected by Lasso, which

highlight the complexity of the response surface.

4.2 | Reforming section

4.2.1 | Process description

The reforming section in a hydrogen production facility is responsible

for converting all hydrocarbons in the natural gas feed. The main

reforming reactor can be either an externally fired SMR or an ATR.

Surrogate modeling enables changing between these two reactor

types without developing new flowsheets.

The natural gas feed is preheated, mixed with intermediate-

pressure (IP) steam, and fed to a prereformer to convert higher

alkanes. Further IP steam is mixed with the prereformer outlet and

then heated. Oxygen is provided from an air separation unit (ASU)

and compressed via a compressor train with intermediate cooling. The

combined stream is then fed to an ATR. The ATR outlet is cooled to

the inlet temperature of the high-temperature water–gas shift reactor

(HT-WGS). The boundaries of the corresponding surrogate models are

outlined in Figure 4.

As surrogates are created for the overall section, black-box

models have to be created for the rates of extent of reaction _ξ. The

following elementary reactions take place in the reactors:

CH4þH2O⇌COþ3H2 ð16Þ

C2H6þ2H2O⇌2COþ5H2 ð17Þ

C3H8þ3H2O⇌3COþ7H2 ð18Þ

C4H10þ4H2O⇌4COþ9H2 ð19Þ

COþH2O⇌CO2þH2 ð20Þ

CH4þ2O2 ⇌CO2þ2H2O ð21Þ

C2H6þ3:5O2 ⇌2CO2þ3H2O ð22Þ

Note that, reactions (21) and (22) can only take place in the ATR as

they require oxygen. The corresponding linear mass balances for the

gray-box model are:

_nout ¼ _ninþν_ξ ð23Þ

in which ν corresponds to the matrix of stoichiometric coefficients of

the chemical reactions as shown in the reaction Equations (16) and

(22). Note that, the molar flows _nin are a summation of all inlet flows

at point 1, that is, Natural gas, IP stream, and Oxygen from ASU. In total,

seven surrogate models, had to be fitted to obtain an adequate repre-

sentation of the reaction network.

The independent variables to the system are the inlet conditions

of the natural gas, the IP steam, and the oxygen. We used propor-

tional dependencies as outlined in Section 2.2 for the IP steam; that

is, we introduce the steam to carbon ratio as a new independent vari-

able instead of the flow rate of the IP steam. Similarly, we introduced

a control structure for the oxygen flow rate from the ASU. The flow

rate of oxygen was used as a manipulated variable for controlling the

outlet temperature of the ATR unit operation; that is, the new inde-

pendent variable was the reactor outlet temperature, and the oxygen

F IGURE 4 Process flow diagram for both the reforming section of an oxygen blown ATR and the water–gas shift (WGS) section with a tail
gas recycle [Color figure can be viewed at wileyonlinelibrary.com]
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flow rate was a dependent variable. In total, six independent variables

were identified. These are the composition of the natural gas feed

(four variables: _nCH4 , _nC2H6 , _nC3H8 , and _nCO2 ), the ratio between steam

and carbon (RH2O=C), and the outlet temperature of the ATR (TATR,out).

4.2.2 | Surrogate model development

As our first case study, we construct surrogates for the rates of extent

of reaction _ξ for reactions (16) and (20) using simultaneous sampling.

The former is the key reaction for hydrogen production in the

reforming section, while the latter can be positive or negative

depending on the process conditions. To construct our surrogates, we

used Legendre polynomials of degree 3 as basis functions (see

Section A.1 in the Appendix). Thus, the total number of model param-

eters can be up to 84. The rest of our simulation parameters, for

example, convergence criteria, are described in Section 4.1. The uti-

lized bounds for the box constraints for the independent variables are

given in Table 2. The impact of the Gaussian clustering penalty

described in Equation (10) can be best analyzed through error-

maximization sampling without penalty and comparison of the results.

Table 3 shows the key results for both dependent variables with and

without clustering penalty. The program terminated after just two

iterations of error–maximization sampling resulting in a total number

of 120 sampling points when using the clustering penalty. This implies

that the response surface is in general simple.

A potential reason for the simpler response surface can be the

proportional dependency on the steam–carbon ratio. Furthermore,

the change of variables from the oxygen flow rate to the ATR outlet

temperature can simplify the response surface. The number of non-

zero parameters is in the range of 50% of the total number of avail-

able parameters parameters for both surrogate models. Only 43 of

the 84 parameters are used for the rate of extent of reaction of reac-

tion (16) and 33 of the 84 for reaction (20). Hence, we can see that

LASSO is efficient in reducing the number of parameters to avoid

overfitting when the corrected AIC is used.

Without the clustering penalty, the error-maximization sampling

stopped after five iterations corresponding to 150 sampled points, an

increase of 30 sampling points compared to the case with clustering

penalty. The resulting surrogate model has an error in the same range

although the MRAE is reduced for the surrogate model of reaction (16)

while the RRMSE is increased for both reactions. One potential rea-

soning for this behavior can be seen in the simultaneous sampling

approach. The error-maximization sampling will focus on the surro-

gate model for reaction (16), as the MRAE is worse. Correspondingly,

fewer points are sampled in the region in which the surrogate model

of reaction (20) is worse, which resulted in an increase in the MRAE.

Analyzing the location of the sampling points reveals that we

have indeed an accumulation of sampling points in certain regions of

the sampling domain resulting in an improved fit in these regions at

the cost of a reduced fit in other regions due to the focus on exploita-

tion instead of exploration.

4.3 | Water–gas shift section

4.3.1 | Process description

The water–gas shift section is responsible for the conversion of CO to

H2 according to:

COþH2O⇌CO2þH2 ð24Þ

The reaction is an exothermic equilibrium reaction. Hence, the

highest CO conversions are achieved at lower temperatures. In cur-

rent practice, two reactors are utilized, one at higher temperatures for

an increased reaction rate (HT-WGS) and one at lower temperatures

for an increased conversion (LT-WGS). However, depending on the

process configuration, it may be beneficial to use one medium tem-

perature water–gas shift reactor to reduce capital cost and increase

the temperature of the outlet of the water–gas shift section. One

medium temperature water–gas shift reactor is preferred, for exam-

ple, when using high-temperature hydrogen selective membranes for

hydrogen separation.33

The introduced exact mass balances are given as:

_nout ¼ _ninþν _ξ ð25Þ

For all nonreacting chemical components, Equation (25) can be

reduced to:

_nout ¼ _nin ð26Þ

The dependent process variables are therefore given by the single

rate of extent of reaction _ξ, the outlet temperature of both reactors,

and the duty of the heat exchanger between both water–gas shift

reactors. The independent process variables are the inlet variables

to the HT–WGS reactor, both composition through molar flow

rates and feed temperature, and the inlet temperature of the

LT-WGS reactor.

TABLE 2 Bounds and units for the
independent variables, reforming section

_nCH4
_nC2H6

_nC3H8
_nCO2 RH2O=C TATR,out

(mol/s) (mol/s) (mol/s) (mol/s) (mol/s) (�C)

Lower bound 700 50 5 15 1:0 950

Upper bound 1200 100 15 30 2:0 1100
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4.3.2 | Surrogate model development

In order to evaluate the impact of constrained sampling, both constrained

and unconstrained adaptive sampling were conducted. We chose Legen-

dre polynomials of degree 3 as our surrogate models and fitted these

models using the procedure described in Section A in the Appendix with

the parameters described in Section 4.1. The data for calculating con-

straints was obtained from the ATR model with 2000 sampling points.

The number of sampling points is large and chosen to ensure that the

constraints describe the complete polytope. Both the inequality con-

straints and box constraints were calculated directly from this data set;

this makes it easier to compare the surrogate models, as we avoid extrap-

olation when comparing them. The bounds for the box constraints can be

found in Table 4. We note that the polytope from the inequality con-

straints has a size of only 8% compared to box constraints. Hence, it

was expected that constrained adaptive sampling should let us either

(i) produce a better fit using a similar number of sampling points,

and/or (ii) produce a similar fit using fewer sampling points. After

fitting these surrogate models, validation was performed using 2000

points sampled within the constrained region. For simplicity, only

results corresponding to the rate of extent of reaction ξ are shown.

Constrained sampling required 1 iteration of adaptive sampling,

while unconstrained sampling did not converge within our chosen

iteration limit. NOMAD may choose to sample points that violate the

imposed inequality constraints. This is a consequence of using a pro-

gressive barrier function for constraint handling in the NOMAD solver,

as recommended by Audet and Dennis,35 thus allowing the solver to

choose infeasible trial points during execution to speed up the con-

vergence of the direct-search algorithm. As these points are outside

the regions of interest and may be located in strongly nonlinear

regions, we did not perform simulations at these points, nor were they

included in the regression. Hence, after iteration 1, NOMAD had

attempted to sample 110 points, but we only performed simulations

at 102 of them.

Table 5 summarizes the key results from both the constrained

and the unconstrained adaptive sampling. We see that, only �3% of

the sampled points were in the region of interest for the

unconstrained sampling. Moreover, despite using nearly twice as

many sample points to fit the surrogate, the RRMSE is three times

larger. A second important observation corresponds to the number of

parameters chosen by the LASSO regression. The constrained sam-

pling rendered 41 out of 84 parameters nonzero, while for

unconstrained sampling, the corresponding number was 80 parame-

ters. The model shrinkage obtained with the constrained sampling

indicates the reduced complexity of the corresponding surrogate

model. The box plots of the relative absolute error in Figure 5 illus-

trate the distribution of the residuals. They further substantiate the

advantage of constrained sampling: it significantly reduces both

the median error and the maximum error, resulting in a significantly

more accurate model. Note that, outliers (error larger than the whis-

kers) were removed.

The impact of using a different basis function than Legendre poly-

nomials on the performance of constrained sampling was also tested.

Using Taylor polynomials of order 3, we observed that constrained

sampling converged after a single iteration of the error-maximization

sampling, while the unconstrained sampling did not converge. The

error was in the same range as the error of the surrogate models with

Legendre polynomial as basis functions.

4.3.3 | Constrained sampling area

The required number of points for constrained sampling in surrogate

model development depends on the process. Figure 6(A) shows the

TABLE 3 Results of the adaptive sampling, reforming section

Clustering penalty Sampling points Dependent variable Model parameters MRAE (%) RRMSE (%)

Yes 120 _ξ of (16) 43 1:07 0:12

_ξ of (20) 33 0:41 0:09

No 150 _ξ of (16) 32 0:67 0:16

_ξ of (20) 48 0:47 0:10

TABLE 4 Bounds and units for the
independent variables, water–gas shift
section

_nH2O _nH2
_nCO _nCO2 TLT�WGS,in THT�WGS,in

(mol/s) (mol/s) (mol/s) (mol/s) (mol/s) (�C)

Lower bound 842 1552 540 187 300 190

Upper bound 2645 2775 1078 510 400 300

TABLE 5 Results of the constrained
and unconstrained adaptive sampling of
the rate of extent of reaction _ξ and
water–gas shift section

Sampling type Points total Points inside (%) MRAE (%) RRMSE (%)

Unconstrained 250 3 2:70 0:54

Constrained 102 100 0:91 0:17
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size of the constraints for hydrogen and CO with a varying number of

data points, ndat, to illustrate the changes.

As we can see, increasing the number of sampling points

increased the total area in which points are sampled. Furthermore, we

observed that certain constraints may be the same when increasing

the number of sampling points. This conclusion can be explained by

the fact that the constraints were calculated from individual points as

outlined in Equations (5) to (7): if these points were included in the

reduced data set, the constraints would be the same.

Figure 6(B) shows the relative size of the polytope (left axis) and

the MRAE (right axis) as a function of the number of data points. The

relative size is high even for a small number of data points (200), while

the maximum relative error is essentially flat from 200 data points

onward. Hence, it may not be necessary to sample a large number of

data points for calculating the constraints, even if the surrogate

models are then extrapolated when used. However, this cannot be

generalized due to differences in the response surface: if the response

surface is steep at the border of the constraints, it may lead to

problems when the constraints do not represent the overall system

sufficiently well.

5 | DISCUSSION

Combining LASSO regression with error-maximization sampling is not

new. Cozad et al. compared LASSO with the ALAMO framework and

concluded that ALAMO is superior to LASSO, regardless of whether

one uses error-maximization sampling or a single Latin-hypercube

sampling.1 However, our implementation fundamentally differs from

theirs, as we determine an optimal regression penalty λ using an infor-

mation criterion. Furthermore, we introduced a Gaussian penalty

function to prevent oversampling small regions of the parameter

space.

The combination of error-maximization sampling and sampling-

domain reduction is our main contribution. Both reactions and separa-

tions always result in dependent component flow rates. Hence, using

box constraints is generally not advisable for subsections, as they fre-

quently require sampling of unimportant and potentially highly

nonlinear regions. Particularly in the case of error-maximization sam-

pling, this limitation of standard box constraints may result in the

majority of the sampling points being outside the desired sampling

region. In Section 4.3, we showed that our methodology could simul-

taneously reduce the number of sampling points by roughly a factor

2, and increase the accuracy of the final model by nearly one order of

magnitude.

One explanation for the major difference in accuracy of the fitted

surrogate models can be the chosen model order for the surrogate

models. This would imply that 3rd-order polynomials cannot accu-

rately describe the box-constrained sampling domain due to an

increased nonlinearity of the response surface. In particular, when the

order of the surrogate model is low, obtaining a better fit outside the

region of interest necessarily implies a worse model inside the region

of interest. Hence, a different set of basis functions or a higher model

order would be required if the sampling domain is not constrained.

F IGURE 5 Box plots of the relative absolute error of the rate of
extent of reaction _ξ for unconstrained and constrained adaptive
sampling. Pink lines indicate medians, boxes indicate interquartile
range (IQR), and whiskers indicate the rest of the distribution within
1:5 IQR of the box endpoints. Outliers (error larger than the whiskers)

are excluded [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 (A) Illustration of the constraints with varying number of data points used for the calculation of the constraints for CO and
hydrogen and (B) the corresponding relative size of the sampling domain (left axis) and MRAE (of the validation set, right axis) as function of the
number of data points. As comparison, the unconstrained relative size of the polytope corresponds to around 1300% with a MRAE of 2:7%
[Color figure can be viewed at wileyonlinelibrary.com]
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This is similar to the toy function utilized in Straus and Skogestad,10 in

which the change of independent variables reduced the required

model order. A higher order of the surrogate model would further-

more require more sampling points due to the larger number of model

parameters. Correspondingly, despite a higher proportion of the sam-

pling points being inside the constrained sampling domain, the com-

promise for fitting a surrogate model within the entire box may be a

worse fit in the region of interest.

Identifying constraints on the independent variables requires

analysis of data from previous unit operations. Hence, it is necessary

to sample data. This can be computationally expensive and compli-

cated depending on the flowsheet topology. The previous

section illustrated the impact of the number of data points on the per-

formance of the surrogate model and showed that excessive sampling

of data points may be unnecessary. However, if the overall process is

converted into several surrogate models in superstructure optimiza-

tion, all surrogate models will be located after a first surrogate model.

As a result, it is possible to obtain these required data from sampling

of preceding surrogate models, which reduces the computational cost

for obtaining the data. Furthermore, even if box constraints are

applied, it is necessary to carefully select their values. Hence, to pre-

vent extrapolation, it may be always necessary to obtain data from

previous unit operations. Depending on the process, it may be suffi-

cient to sample only corner points of the previous unit operations,

that is, when the constraints are at the upper or lower bounds.

6 | CONCLUSION

We have in this article developed a methodology for constructing

surrogate models based on penalized regression, error-maximization

sampling, and sampling-domain reduction. The methodology has

been implemented as a free and open-source software solution in

Python.22 This package uses only the free and open-source compo-

nents Pyomo, IPOPT, and NOMAD, and thus does not require any

commercial software. The implementation is completely modular

with the benefit that new or extended functionality, for example,

new basis functions or model selection criteria, can easily be added.

A core feature of the implementation is the automated construction

of linear constraints for the sampling region resulting in improved

fits of the surrogate models.

As a case study, we applied our software package to hydrogen

production simulations. Specifically, we constructed surrogate models

for the reforming and water–gas shift sections. The results showed

that sampling domain reduction increased surrogate model accuracy

by up to one order of magnitude and reduced the number of simula-

tion sampling points by roughly a factor 2. Both these effects can be

attributed to a more targeted sampling of important regions of the

input space.
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