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Abstract: Aquaculture net cage inspection and maintenance is a central issue in fish farming. In-
spection using autonomous underwater vehicles is a promising solution. This paper proposes laser-
camera triangulation for pose estimation to enable autonomous net following for an autonomous
vehicle. The laser triangulation 3D data is experimentally compared to a doppler velocity log (DVL)
in an active fish farm. We show that our system is comparable in performance to a DVL for distance
and angular pose measurements. Laser triangulation is promising as a short distance ranging sensor
for autonomous vehicles at a low cost compared to acoustic sensors.

Keywords: autonomous navigation; range sensing; inspection and maintenance; 3D vision

1. Introduction

Nearly half of the earth’s land is used for food production, and marine resources
can help feed the growing population. The number of fish farms is increasing rapidly [1].
Typically, the fish is raised in open sea net cages, which consist of a floating collar, a net
pen and a mooring system. These cages are in natural marine environments, and fish
that escape from these environments may cause harm to the environment and its related
food chain. To minimize the escape caused by the failure of the net cage, the net must be
inspected routinely [2]. Net inspections today are commonly performed either by divers or
by human-piloted remotely operated vehicles (ROVs). The ROV operations are challenging
for the pilot as they require both precise maneuvering and a keen eye for detail in order to
detect failures in the net cage from the video stream.

One of the main problems in applying autonomous underwater vehicle to fish cage
inspection is the automatic detection and tracking of net pens. This is to maintain a safe
distance from the net pen and to ensure complete coverage of the cage during the inspection.
Cost constraints are in addition tight since the autonomous vehicle needs to be similar
in cost, or ideally cost less than the human divers used today. Even though there are no
industrial deployment of autonomous net inspection systems that we are aware of, it is
an active topic in research [3]. There are also similar research programs within subsea oil
and gas, [4], and seabed mapping [5]. Aquaculture net pens are especially challenging to
inspect because their shape changes with the water current and due to biofouling changing
their visual appearance [6].

Successful operation of autonomous underwater vehicles requires the ability to nav-
igate, and to understand dynamic environments. There are many mature positioning
systems which can position underwater vehicles. The long baseline method (LBL) and the
ultrashort baseline method (USBL) use acoustic ranging relative to fixed beacons. These
methods require pre-deployed and localized infrastructure, hence increasing the cost and
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the complexity of the operations [7,8]. Furthermore, underwater ranging systems are chal-
lenged by infrastructures prohibiting line-of-sight as, e.g., aquaculture sites [9]. Position
measurements can be integrated with velocity measurements provided by an acoustic
doppler velocity log (DVL) and an onboard digital compass. [10].

Several optical systems are used to get 3D data from underwater. Video cameras
in combination with markers are commonly used for autonomy and navigation [11], for
underwater stereo [12,13] or photogrammetry [14], which will need unique, non-repetitive
features in the scene to estimate the disparity and thereby the depth measurement. Due
to the repetitive structure of the nets to be inspected, stereovision is not well suited in
our use-case.

Structured Light method uses typically a DMD (digital mirror device) to project a
single pattern or a series of spatially coded patterns to get highly accurate 3D measurements
of the scene in real-time. In [15], Multi-Frequency Phase Stepping patterns are used to
acquire high resolution 3D data from a static scene in turbid water.

Scanning LIDARs (Light Detection and Ranging) are used for inspection tasks un-
derwater [5]. Due to the scanning nature and the capturing time of this method, it needs
a compensation for the relative motion of the vehicle. Flash-LIDARs do not include a
scanning and provide real-time 3D data with depth precision below 1 cm at high signal
levels, at 10 Hz [16].

Laser triangulation systems typically project a laser line [17–21] or point [22] onto the
scene to triangulate distances between the laser and a camera. Commercial systems are also
available, e.g., from 2GRobotics (www.2grobotics.com). These systems will need a scanning
device for getting 3D data from the whole scene, which makes them slow, mechanically
complex and expensive. We needed a cheap system, and to reduce complexity we wanted
to use the ROV’s built-in camera. The suggested solution uses two laser lines to enable
detection of a plane from one single image of the projected lasers. Parallel lines were
chosen to get an optimal baseline geometry between the camera and both the laser line
sources—this also results in a compact system suited for mounting on the available ROV,
and also enables estimation of both pitch and yaw.

The algorithms which interpret the data from these sensors, to achieve autonomy, were
first addressed in a probabilistic framework by [23], which is known as the Simultaneous
Localization and Mapping (SLAM) problem. In view-based or dense SLAM, visual odome-
try is performed by comparing two complete views [24], e.g., by registering overlapping
perceptual data, for example, optical imagery [25] or sonar bathymetry [26]. Unstructured
underwater environments pose a more challenging task for feature extraction and data
association than terrestrial environments. Hence, the application of feature-based SLAM
frameworks has so far had limited success in real-world underwater environments [27].

To enable cost effective underwater SLAM for net inspection, this paper proposes using
laser-camera triangulation consisting of two laser lines and one camera for pose estimation
from one image. By assuming the net wall can be approximated to a plane, using two laser
lines enables fitting a plane to the net cage’s wall based on one image only. This enables
estimation of pose relative to the net pen in real time. The partial pose of a camera with
respect to an observed net pen can be used for closed-loop net-following control.

The on-board camera used for net pen inspection was used for the laser triangulation.
The only extra hardware needed are two lasers and their power supply, which drives down
cost compared to acoustic sensors. No synchronization circuit or communication between
laser and camera is needed as we run the lasers continuously.

2. Materials and Methods
2.1. The ROV and the Sensors Employed

The ROV employed in the trials is an Argus Mini, manufactured by Argus Remote
Systems AS, shown in Figure 1. It is an observation class ROV specifically built for
inspection and intervention operations in shallow waters, and meant to serve scientific
purposes as well as the offshore, inshore, and fish farming industries. The Mini weights
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90 kg with dimensions L × B × H = 0.9 m × 0.65 m × 0.6 m and is designed around six
ARS800 thrusters. Four of the thrusters are placed in the horizontal plane, while the other
two are placed in the vertical plane, hence guaranteeing actuation in 4 degrees of freedom
(DOFs), i.e., surge, sway, heave, and yaw. The ROV is passively stabilized by gravity in roll
and pitch.
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Figure 1. The Argus Mini remotely operated vehicle (ROV), courtesy of Argus Remote Systems AS.

The Argus Mini is equipped with 5 sensors: a SONY FCB-EV7100 Full HD camera, a
fluxgate compass, a depth sensor, a gyro, and a Nortek DVL 1000 velocity sensor. In addition,
position measurement is provided by a Sonardyne USBL system that consists of a Micro-
Ranger Transceiver mounted onboard the support vessel and a Nano Transponder mounted
on the vehicle. The ROV contains no sensors for direct measurement of acceleration.

The Nortek DVL is forward-looking, i.e., the instrument is mounted on the front
of the ROV, pointing in the x-direction of the body/vehicle frame. This unconventional
DVL configuration is employed with the purpose of enabling DVL lock on submerged
vertical structures present in the aquaculture context, such as net cages of large fish farming
cages (50 m in diameter). Such features of the DVL instrument, combined with its ranging
features, are utilized in [28] to estimate the ROV distance and heading relative to a net cage
and validate a guidance law for autonomous net following.

2.2. The ROV Control System

The company SINTEF employs its in-house control systems on the Argus Mini ROV.
The ROV has three operational modes: manual (assisted with auto-heading (AH) and
auto-depth (AD)), dynamic positioning and net-following. Relevant to the experiment
presented here is the net-following controller, which uses feedback from the forward
looking DVL. Net-following makes the ROV autonomously traverse aquaculture net cages
at a given depth. The method exploits the four range measurements provided by the
DVL beams to approximate the geometry of the net cage in front of the ROV as a plane
through a least-squares regression. It then calculates the ROV position and orientation
relative to this local plane. The relative position and orientation are subsequently fed as
inputs to a nonlinear line-of-sight guidance law [29]. Further details on the employed net
following (NF) guidance as well as the net cage geometry approximation by use of DVL
range measurements can be found in [28].

A 4 DOF extended Kalman filter is also running to assist the dynamic positioning.
The Kalman filter fuses the position measurements provided by the USBL, the velocity
measurements form the DVL and the mathematical model of the ROV to estimate the
vehicle state [30].
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2.3. Sea Trials for Data Collection

The trials were executed at the SINTEF ACE Tristeinen aquaculture facility shown
in Figure 2. SINTEF ACE is a full-scale laboratory designed to develop and test new
aquaculture technologies under realistic conditions. The tests were performed inside a cage
for salmon farming, in full operational state. ROV operations in fish farms are commonly
performed inside the fish cages, not outside. This is due to the presence of ropes, chains
and mooring lines on the outside of the cages which the ROV’s tether can get tangled into.
When operating inside the cage, the fish will sometimes obstruct the cameras and sensor
measurements, but the severity of this compared to the ROV being tangled is low. The cage
has a cylindrical shape with a conical bottom, where the upper diameter is approximately
50 m and the total depth is about 30 m. The cage used in the trial is equipped with double
nets in the regions around the main ropes to secure these regions against fish escapes. This
double net setup is used in all fish cages operated by the company operating at SINTEF
ACE, but it is unknown if this is standard for other companies. As will be shown, the
presence of the double nets influences the quality of the distance measurements when
using the DVL. The nets at the Tristeinen facility are square, with a mesh width of 33 mm.
They had been cleaned eight days prior to the trials. The nets originally had a green coating,
but some of this seems to have worn off. Fish population was approximately 190.000
individuals, which is normal.
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Figure 2. SINTEF ACE, a full-scale laboratory facility designed to develop and test new aquaculture
technologies.

The tests consisted of pointing the laser lines against the cage net and simultaneously
recording HD videos at 60 frames per second (fps), while having the ROV executing
several net cage traverses at constant depth by utilizing the NF guidance, interrupted by
short intervals where the ROV was placed in dynamic positioning (DP) mode. Such a
configuration allows the direct comparison of the laser-camera system capabilities with the
DVL capabilities during the execution of net following tasks, which is highly relevant in
the context of subsea aquaculture operations [9].

2.4. D Data Camera–Laser Line Triangulation

To get 3D data from the fish cage net, we chose to use the method of triangulating
between two laser lines and one camera. Due to the repetitiveness of the pattern in the
cage’s net, we chose a method not relying on correlating features in the scene and rather
projecting the pattern (here, two laser lines). This also enables 3D data in the dark, e.g.,
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at night or at larger depths. A blue laser was chosen to limit the effect of light scattering
particles and attenuation of light in the water.

Two laser lines (OdicForce Lasers’s 80 mW Blue, 450 nm, Adjustable Locking Focus
Direct Diode Module Line Pattern) where chosen to enable estimation of both the distance
and the position relative to the net wall—assuming the wall is planar. The camera used
was the camera available on the ROV (SONY FCB-EV7100 Full HD). The actual setup is
shown in Figure 3.
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mounted onto the ROV. The camera used is the on-board ROV camera, seen in the center of the ROV.

We calibrated the system by capturing images of submerged checkerboards where
the laser lines also were projected onto the checkerboard (Figure 4). The calibration was
performed underwater. Then, the refraction glass–water is seen as a lens effect handled by
the calibration routines; this effect is also reduced by using a dome shaped glass to ensure
perpendicular surface from camera lens to glass. Attenuation and scattering due to the
water and its turbidity is handled by using enough light matching the distances we operate.
This aligns with the conclusion in [31]. The calibration was performed by moving the ROV
to get a good dataset with different viewing angles. Using Zhang’s method of camera
calibration [32], we recovered camera distortion parameters using openCV’s camera model
implementation of the camera matrix A, and the distortion coefficients K,

A =

 cx 0 cx
0 fy c
0 0 1

, (1)

where fx, fx are the focal lengths and cx, cy are the principal point; and the distortion
parameters,

K = [k1, k2, k3, p1, p2], (2)

where k1, k2, k3 are the radial distortion parameters and p1, p2 are the tangential distortion
parameters.
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Figure 4. Example of calibration images for the camera-laser 3D measurement. The laser lines can be seen in the left part of
the checker board.

We also recover the 3D position of the laser lines on the checkerboards. This information
was used to recover the plane parameters for the two projected laser planes, meaning that
we could perform laser triangulation by intersecting camera rays (lines) with the laser plane
for xyz recovery. Assuming camera as the origin, all camera rays can be expressed as points

p = d · L (3)

where L = [xL, yL, zL] is the direction of the ray and d is the position along the ray. The
laser plane can be defined as

(p − p0) · n = 0, (4)

where p0 is a point on the plane, n is the normal to the plane and p are the points of the
plane. To determine d we solve for

d =
(p0 − l0) · n

l · n
, (5)

meaning that we can find the xyz point of the intersection as d · L.
To get the distance, yaw and pitch between the ROV and net cage wall, the laser

lines were detected in images of the net when the two laser lines were projected. The
laser line points’ positions in the images were located with sub pixel accuracy and looked
up in the calibration lookup table to get the points’ absolute x, y and z distance from the
camera’s center. The resulting positions from both laser lines were by fitted to a plane
using MLESAC (Maximum Likelihood Estimation SAmple. Consensus) [33]. MLESAC is a
generalization of the RANSAC (RANdom SAmple Consensus) algorithm picking a subset
of points, fitting a plane and searching for the plane with highest maximum likelihood to
all points. MLESAC also brings robustness improvements relative to the original RANSAC
algorithm. From the plane parameter, we get the distance to the plane, the yaw and pitch
angles of the camera relative to the net wall. Example images and corresponding fitted
planes are in Figure 5. We handle the detected laser lines as point sets (search for points
per image row) and do not try to make them into lines. This makes us robust for outlier
detections and the fact that the nets have holes which reduces the number of line points
detected. Points from both laser lines are used simultaneously in the MLESAC algorithm.
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3. Results

This section compares the sensor readouts from a DVL and the laser-camera system
for an experiment where an ROV is navigating inside a fish cage. Fish were swimming
in the cage during the experiment, which contributes significantly to the noise. The DVL
measurements are processed at the sensor and are filtered which can affect the apparent
signal smoothness. The laser triangulation signal is the raw data, with no outlier rejection,
smoothing, nor filtering applied. A graphic showing the geometry of the measurement
setup is shown in Figure 6.
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An indirect sensor-to-sensor calibration was performed to compare the DVL measure-
ments with the camera measurements. The camera position relative to the DVL position
was determined during the installation on the ROV by measuring the position of the
mounting points. No closed-loop extrinsic calibration was performed to precisely position
the DVL with respect to the camera. The distance calibration consists of: (1) a manual time
synchronization to shift the camera signal to be in step with the DVL time with a static bias;
and (2) a single static bias of 0.37 m, added to the laser measurement to bring the camera
plane in line with the DVL plane. The yaw calibration only synchronizes the time, since the
two sensors were mounted to have the same orientation—and should not need any signal
correction. The net-to-ROV pitch angle is also measured but is not reported since the ROV
is pitch stable—and the signal is small.

3.1. DVL vs. Laser Triangulation Depth Data

Figure 7 compares raw output data from the DVL and the laser triangulation distance
measurements. The two sensors are largely in agreement. An attempt was made to use
the USBL localization system as a third sensor to establish ground truth, and determine
which sensor principle was more accurate in absolute terms. However, the dynamic nature
of the net cages made the USBL data not usable for this purpose. The laser triangulation
measurements are noisier than the DVL distance. The high level of agreement between
the two sensors is surprising, given the open-loop calibration only along the depth axis to
position the sensors relative to each other.
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There are two areas in the distance data we will look at in detail. The first is the
disagreement around t = 650 s. The DVL and laser have a disagreement of around 25 cm.
A picture from taken at that time is shown in Figure 8. It is seen that a double net is the
cause of the problem. The laser line algorithm returns the distance to the closest net, as
seen in Figure 9. We conclude that the laser triangulation distance is more reliable than the
DVL for distance to the double net.
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The next area of interest is at the maximum distance of 2.5 m, achieved at t = 1050.
Here the laser triangulation is significantly noisier than the DVL. Looking at the picture
at that time, seen in Figure 10, it is evident that low laser visibility due to turbid water is
the problem, and the triangulation is close to the maximum range. For higher ranges than
this—we would need a brighter laser. Introducing a band-pass filter, will filter out the stray
light from other light sources and improve the laser line contrast; but on the other hand, it
will filter out information needed for net pen inspection.

3.2. DVL vs. Laser Triangulation Yaw Data

The net-relative Yaw angles for both sensors are seen in Figure 11. The data shows
that the ROV was looking at the net head-on with a deviation of 20 degrees in yaw, i.e., the
net following controller is performing well. The loss of DVL signal towards the end of the
dataset is due to the ROV ascent, which indicates that the laser triangulation may be more
robust than the DVL in shallow waters, since the laser is less affected by reflection from the
water surface than acoustic signals. The agreement between the two sensors is impressive
given that no extrinsic calibration was performed apart from time synchronization. The
increase in noise at the end of the dataset is due to the large amount of fish at that time.

J. Mar. Sci. Eng. 2021, 9, x FOR PEER REVIEW 10 of 16 
 

 

3.2. DVL vs. Laser Triangulation Yaw Data 
The net-relative Yaw angles for both sensors are seen in Figure 11. The data shows 

that the ROV was looking at the net head-on with a deviation of 20 degrees in yaw, i.e., 
the net following controller is performing well. The loss of DVL signal towards the end of 
the dataset is due to the ROV ascent, which indicates that the laser triangulation may be 
more robust than the DVL in shallow waters, since the laser is less affected by reflection 
from the water surface than acoustic signals. The agreement between the two sensors is 
impressive given that no extrinsic calibration was performed apart from time synchroni-
zation. The increase in noise at the end of the dataset is due to the large amount of fish at 
that time. 

 
Figure 11. The DVL net-relative yaw compared with the laser triangulation measurement. 

3.3. Kalman Filter Comparison 
Figures 12 and 13 shows the trajectory traversed by the ROV during the experiment 

estimated by an extended Kalman filter. The curve seen is the circular fish cage. The main 
sensor driving the Kalman filter is a ship attached USBL system. Changes to the USBL 
either due to ship movement, net movement, or other error sources show up as jumps in 
the position estimates—showing that a USBL only system is not sufficient for robust net 
inspection. The dots are net positions relative to the ROV from the DVL and the laser 
triangulation. It is seen that the two distance sensors are mostly in agreement. It seems 
feasible to base a net-following controller on the output of the laser triangulation sensor. 
Figures 14–16 show the measured planes overlaid the Kalman pose estimate for only leg 
3 to increase readability. The two sensors report similar data in this interval, showing that 
one could be exchanged for the other. The overlapping planes enable a well behaved pose-
graph for a SLAM implementation. 

Figure 11. The DVL net-relative yaw compared with the laser triangulation measurement.

3.3. Kalman Filter Comparison

Figures 12 and 13 shows the trajectory traversed by the ROV during the experiment
estimated by an extended Kalman filter. The curve seen is the circular fish cage. The main
sensor driving the Kalman filter is a ship attached USBL system. Changes to the USBL
either due to ship movement, net movement, or other error sources show up as jumps
in the position estimates—showing that a USBL only system is not sufficient for robust
net inspection. The dots are net positions relative to the ROV from the DVL and the laser
triangulation. It is seen that the two distance sensors are mostly in agreement. It seems
feasible to base a net-following controller on the output of the laser triangulation sensor.
Figures 14–16 show the measured planes overlaid the Kalman pose estimate for only leg
3 to increase readability. The two sensors report similar data in this interval, showing
that one could be exchanged for the other. The overlapping planes enable a well behaved
pose-graph for a SLAM implementation.
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3.4. Quantization

This section compares a quantization effect seen on the DVL to the laser triangulation
sensor. Figure 17 shows two sections of the distance measurements. A quantization error
of around 1 cm sometimes affect the DVL data. The laser triangulation quantization error
is less than mm scale. Any similar quantization issues were not seen on the DVL yaw data.
It is not known if this issue is related to the acoustics, or is a sensor-specific issue.
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3.5. Noise Comparison

This section attempts to compare the noise levels between the laser measurements and
the DVL distance measurements. This comparison will not be strictly correct since there is
no ground truth but may still be of interest. A linear Kalman filter was used to fuse the
two distance measurements to obtain a quasi-ground-truth. The filter was manually tuned,
and in addition, outliers were manually removed. The outliers were removed because
they would dominate the result otherwise. We compared a time series where both sensors
returned signals at the same time. The results are shown in Figure 18, with the overall
result the DVL distance has a standard deviation measurement error of 2.9 cm, and the
laser sensor has a comparable but slightly larger error of 3.2 cm.

This proof of concept shows that an autonomous vehicle with a camera can be cheaply
upgraded with net cage sensing capacities. Most inspection vehicles have RGB cameras
already installed, which is the expensive part of the sensor, and given that camera sensors
improve in performance per dollar per year—this sensor type will continue to be attractive
in the future. Cost wise, a DVL costs in the range of thousands to tens of thousands USD. In
comparison—the two lasers and housings cost $200, a factor of 25× to 100× in cost savings.
These cost reductions are significant, especially for large fleets of inspection vehicles.

An added result is the verification that the DVL sensor measures the correct ROV-
to-net distance. In, e.g., [9], a DVL is tested as a net cage navigation sensor, but since no
independent measurement was available (it was not known that the DVL was unbiased for
net pen measurements), comparative estimates indicate standard deviation of 3.2 cm for
the laser system, and 2.9 cm for the DVL.
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One particular concern was that the double nets, an outer net and an inner net,
resulted in systematic bias on the DVL. The high degree of consistency between the laser
and acoustic measurements show that either sensor is viable for net relative navigation. A
fundamental advantage to the DVL is that it can measure velocity, but the laser triangulation
sensor cannot.

The next steps include testing the laser sensor in closed-loop in an autonomous net
following and mapping application.

4. Conclusions

We have shown experimentally that a laser triangulation can be used to navigate
relative to an aquaculture net cage. The signal quality is nearly as good as a DVL, at less
than 1/25th of the price.
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