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Abstract 
Faults are major geological structures that can dominate the flow paths in subsurface reservoirs by, e.g., connecting 
otherwise unconnected layers. In CO2 storage sites where the faults act as the main structural trap, the sealing 
properties of the faults must be fully understood, thus, requiring an accurate representation of the fluid flow close to 
the faults on all scales. This paper study the effects low permeable deformation bands have on the fluid flow in the 
near fault region. Deformation bands are generated stochastically, and numerical simulations that include the 
deformation bands explicitly in the simulation domain are performed to obtain an upscaled effective permeability. 
The numerical examples show that using a simple harmonic average to calculate the effective permeability may 
overestimate the effective permeability by up to an order of magnitude. A new analytical approximation of the 
effective permeability based on the deformation band length, density, and rotation is given, and this approximation 
fits the numerical simulations better than the harmonic average. The results confirm that deformation bands 
significantly alter the fluid flow close to faults and may decrease the potential leakage of CO2 through faults. 
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1. Introduction
Fluid flow and migration in sedimentary basins have for 
centuries been a challenge to modelling in a variety of 
applications, such as groundwater management, 
hydrocarbon production [1], and recently CO2 storage 
[2]. To implement large-scale CO2 storage, a wide range 
of reservoir types must be exploited, including reservoirs 
where faults form the main structural trapping 
mechanism. A challenge with faults as structural traps is 
to validate their sealing potential due to the difficulty to 
predict the properties of the faults. For hydrocarbon 
reservoirs the fault sealing can be validated by drilling 
exploratory wells to confirm the existence of 
hydrocarbons, whereas this is not applicable to aquifers. 
Mitigating risks related to fault sealing by improving our 
understanding of the broad range of fluid flow dynamics 
around faults is therefore needed to unlock storage 
reservoirs where faults form the main structural trapping 
mechanism for CO2. 

Fluid flow around faults is governed by geometrically 
complex structures at a range of scales. There are two 
different fluid paths that are important to characterize 
with respect to fault leakage and loss of containment of 
CO2. We divide these two paths into the vertical fluid 
flow along the slip surface in the fault core, and 
horizontal fluid flow across the fault, see Figure 1 for a 
conceptual model. The Shale Gouge Ratio of a fault has 
been identified as a controlling parameter for the sealing 

properties of faults [3], and the current state-of-the art 
fault-seal analysis [4] are developed around the shale 
content as a controlling parameter. However, these 
methods only capture across-fault flow [5, 6] and not the 
complexity of the damage zone or fluid flow vertically 
along faults. 

Figure 1: Conceptual model of two possible leakage paths of 
CO2 when faults form the main structural trapping mechanism; 
across-fault flow and along fault flow. Deformation bands that 
form parallel to the fault may reduce both across-fault flow 
and along-fault flow by reducing the effective permeability. 

One of the structures that is found in the damage zone is 
deformation bands, which are millimeter-thick low-
displacement deformation zones [7]. Deformation bands 
can have a one to six orders of magnitude lower 
permeability than the host rock [8, 7, 9], which has led to 
investigations regarding the impact of deformation bands 
on fluid flow [10, 11, 12]. These studies have shown that 
deformation bands can alter the fluid flow paths in a 
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reservoir, especially if the permeability contrast is lower 
than four orders of magnitude, but also if the permeability 
contrast is as low as one order of magnitude [13]. The 
number of deformation bands around a fault can be 
related to fault throw [14] and can reach tens of bands per 
meter close to the fault core. In a potential storage site for 
CO2 the individual deformation bands will be unknown 
and their distribution must be derived from analogue 
outcrops and models. A quantity that is possible to 
measure on seismic imaging is the throw of a fault. This 
triggers the question if it is possible to quantify the effects 
of deformation bands based on the fault throw. In this 
paper we give insight into how geometric parameters of 
the deformation bands impact fluid flow within the 
damage zone around faults and relate these to fault throw. 
We do this by generating deformation bands 
stochastically using recent quantifications of deformation 
bands in the damage zone [14],  and upscale the effective 
permeability of the generated networks by numerical 
simulations and analytical approximations. 

The Smeaheia storage prospect in the North Sea is 
considered as a possible storage site for CO2 [15]. The 
site is confined by the Vette fault which is predicted to be 
a structural trap. Including deformation bands in a 
reservoir scale model will improve our understanding of 
the fluid flow around the Vette fault and help mitigate the 
leakage risks of the Smeaheia storage site. In reservoir 
scale simulations, the size of grid cells is typically on the 
order of 10 m to 100 m, while the length of the 
deformation bands is on the order of 10 cm to 100 m. 
Further, the aperture of the deformation bands is on the 
millimeter scale. This makes it clear that it is impossible 
to include deformation bands explicitly in a reservoir 
scale simulation. Instead, the deformation bands are 
typically included by considering an effective 
permeability that represents the combined permeability 
of the deformation bands and the host rock. This will in 
general lead to an anisotropic permeability tensor 
because of the geometric structure of the deformation 
bands [16]. The effectiveness of this approach is 
dependent on how well the effective permeability is 
estimated. An approach that has been used to calculate 
the effective permeability of the combined porous media 
of deformation bands and host rock is by a harmonic 
averaging procedure [12]. While this gives a lower bound 
on the effective permeability, it will miss the contribution 
of the geometry of the deformation bands, which has the 
potential to affect the fluid flow in complicated manners. 

The main contributions of this work are twofold. First, 
we propose a new analytical model for the effective 
permeability that includes geometry effects of the 
deformation bands. The derived expression can be used 
to calculate the effective permeability in other geological 
settings than around faults, however, this paper only 
validates the model with data generated from fault zones. 
Secondly, we perform fine-scale numerical simulations 
of fluid flow that resolve individual deformation bands 
explicitly in the simulation domain. In this study we vary 
the band permeability, band geometry, and band density 

to investigate how the different parameters affect the 
effective permeability in the damage zone around faults. 

The remainder of the paper is outlined as follows. The 
next section discusses the geometric setup and how this 
relates to faults. Section 3 defines the governing 
equations for single-phase flow, and Section 4 presents 
the numerical method used to solve the governing 
equations with explicitly represented deformation bands 
in the domain. Section 5 presents our new approximation 
of the effective permeability and validates it against cases 
where the band density is constant in the domain. Section 
6 contains the main results of this paper, a parameter 
study of the effective permeability in the damage zone of 
faults. Here we compare both the numerical simulations 
and the proposed analytical approximation from Section 
5. The final section contains discussion and conclusions.

2. Geometric setup
Deformation bands are thin surfaces that close to a fault 
tend to form parallel to the fault. While the horizontal 
extent of the deformation bands can vary from 
centimeters to hundreds of meters, the deformation bands 
are often bedding constrained in vertical direction [17, 
18]. To reduce the computational cost, we therefore 
collapse the vertical dimension of the permeable layer 
and run simulations on two-dimensional domains. 

In this work, the deformation bands are generated 
stochastically by a similar procedure as described in [19]. 
Deformation bands are represented by straight-line 
segments, and the line segments can be described by the 
band centers and the rotations from the y-axis, 𝜃, both 
stochastic variables. The distributions will be specified in 
each section. The length of the bands is denoted by 𝑙, and 
the band density, 𝜌, is defined as the expected number of 
band centers per unit area. Similarly, the directional 
density, 𝜌𝛼, is defined as the expected number of bands
intersecting a scan-line per unit length in the direction  𝛼. 

3. Governing equations
We consider an incompressible single-phase fluid in a 
porous media. The porous media consists of two 
materials, the host rock and the deformation bands. 
Quantities related to the host rock are denoted by a 
subscript 𝑚 and quantities related to the deformation 
bands are denoted by a subscript 𝑏. The permeability 
within the host rock and deformation bands are assumed 
to be each homogenous and isotropic and defined by the 
scalars, 𝑘𝑚 and 𝑘𝑏, respectively. The fluid flux, 𝒒, is
related to the pressure, 𝑝, through Darcy’s law. Together 
with conservation of mass this defines our governing 
equations: 

𝒒 = −𝑘∇𝑝,     ∇ ⋅ 𝒒 = 0, 
where 𝑘 = 𝑘𝑚 in the host rock and 𝑘 = 𝑘𝑏 in the
deformation bands. In addition, we assume appropriate 
boundary conditions to be defined. 
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Lower-bound on effective permeability 

A lower-bound of the effective permeability, 𝐾𝛼,𝑒, can be
obtained by taking the harmonic average of the 
deformation band permeability and the host rock 
permeability along the scanline 𝛼: 

𝐾𝛼,𝑒

𝐾𝑚

≥
1

(1 − 𝜌𝛼𝑎) +
𝜌𝛼𝑎𝐾𝑚

𝐾𝑏

≈
1

1 +
𝜌𝛼𝑎𝐾𝑚

𝐾𝑏

.  (1) 

Here, 𝑎, is the aperture of the deformation bands. This 
lower-bound is obtained if the fluid is not able to flow 
around the deformation bands but must cross all bands 
that intersect the scanline in the direction 𝛼. In the 
numerical results we observe that the lower bound is 
approached as the band length and/or band density 
increases. 

The error of the approximation in Equation (1) is small if 
𝜌𝛼𝑎 ≪ 1. Out of the 106 outcrop scanlines studied in [14]
none of the scanlines had a maximum band density of 
more than 110 bands per meter, with the mean being 34 
bands per meter. If the deformation bands have an 
aperture 𝑎 ≈ 1 mm, the error of the approximation is 
small. When 𝜌𝛼𝑎 ≪ 1, we observe that the reduction in
permeability given by the harmonic average in Equation 
(1) is only dependent on the dimensionless quantity
𝜌𝛼𝑎𝐾𝑚/𝐾𝑏 . Thus, a single dimensionless quantity may
describe the effect of the deformation bands! Finally,
when the density is varying in the domain the averaged
value should be used. Specifically, for the logarithmic
density in Section 6 (Equation (4)), the density in
Equation (1) can be replaced by −𝐵.

4. Numerical method
Before we describe the numerical method, we would like 
to make two comments. The aperture of the deformation 
bands, 𝑎, is typically on the order of magnitude of milli 
meters, while their lengths can span up to several hundred 
meters [7]. In addition, the permeability in the 
deformation bands, 𝑘𝑏, is lower than the permeability in
the host rock. We will therefore disregard the fluid flux 
in the tangential direction of the deformation bands. To 
represent the permeability reduction caused by the 
deformation bands, the computational grids are 
constructed to conform to the bands. That is, the 
deformation bands will be discretized by the faces in the 
computational grid. To discretize the governing 
equations, we use the two-point flux approximation. The 
two-point flux approximation is sufficient for our 
purposes because we are only interested in the reduction 
in effective permeability relative to the homogeneous 
case. In addition, we are using a completely unstructured 
grid that reduces the consistency error. By neglecting the 
tangential flow, assuming small apertures, and using a 
conforming grid, the deformation bands can be included 
in the discretization as a face transmissibility 
multiplicator, as described in the following paragraphs. 

Let 𝜎 be a face between cell 𝐿 and cell 𝑅. The fluid flux 
from cell L to cell R is approximated by 

𝐹𝜎 =  −𝑇𝜎(𝑝𝑅 − 𝑝𝐿),
where 𝑇𝜎  is the transmissibility and 𝑝𝑅 and 𝑝𝐿  are the cell
center pressure. If the face between the cells do not lie on 
a deformation band the transmissibility is calculated by 
the harmonic average of the two half transmissibilities: 

𝑇𝜎 =
𝑇𝜎𝐿𝑇𝜎𝑅

𝑇𝜎𝐿 + 𝑇𝜎𝑅

,     𝑇𝜎𝑘 =
𝑘𝑚𝐴𝜎𝒏𝜎𝑘 ⋅ 𝒅𝜎𝑘

𝒅𝜎𝑘 ⋅ 𝒅𝜎𝑘

,     𝑘 ∈ {𝐿, 𝑅}. 

Here, 𝐴𝜎 is the area of the face, 𝒏𝜎𝑘 is the unit normal
vector of 𝜎 that points out of cell 𝑘, and 𝒅𝜎𝑘 is the
distance vector from the cell center to the face center. If 
the face is on a deformation band, the transmissibility is 
modified to include the effect of the bands by taking the 
harmonic average of the band transmissibility and the 
half transmissibility of each cell: 

𝑇𝜎 =
𝑇𝑏𝜎𝐿𝑇𝑏𝜎𝑅

𝑇𝑏𝜎𝐿 + 𝑇𝑏𝜎𝑅

,    𝑇𝑏𝜎𝑘 =
𝑘𝑏𝑇𝜎𝑘

𝑘𝑏 +
𝑇𝜎𝑘𝑎
2𝐴𝜎

,   𝑘 ∈ {𝐿, 𝑅}. 

5. Layered approximation of the effective
permeability
In this section we propose a new approach to estimate the 
effective permeability. This approach approximates the 
effective permeability in the domain by using some well-
educated simplifications. In this section we assume that 
the band density, 𝜌, is constant in the domain. 

When the fluid approaches a deformation band, parts of 
the fluid will cross the band and parts of the fluid will 
flow around the band. The effective permeability is 
approximated by considering the path across the band 
and the path around the band as a layered porous media 
with two layers. This conceptual model is depicted in 
Figure 2 for fluid flow in the 𝑥-direction. 

Figure 2: Conceptual model of fluid flow in the 𝑥-direction. 
The complex geometry of the deformation bands is simplified 
to an area where the fluid only flow through the rock matrix 
(blue), and an area where the fluid crosses the deformation 
bands (white). 

Given the conceptual model of the porous media 
consisting of two layers, the effective permeability in the 
direction 𝛼 can be calculated as 

𝐾𝛼,𝑒 =
𝐾𝛼,𝑙𝑏𝐴𝛼,𝑏 + 𝐾𝑚𝐴𝛼,𝑚

𝐴𝛼,𝑏 + 𝐴𝛼,𝑚

,  (2) 

where 𝐴𝛼,𝑏 and 𝐴𝛼,𝑚 are the areas available for flow in
the band layer and host rock layer, respectively (see 
Figure 2). The permeability in the band layer, 𝐾𝛼,𝑙𝑏 , is
obtained by calculating the harmonic mean of the band 
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permeability and rock matrix permeability, using the 
approximation of small band aperture: 

𝐾𝛼,𝑙𝑏

𝐾𝑚

=
1

1 +
𝐾𝑚𝑎𝜌𝛼

𝐾𝑏
𝑐𝛼

 . 

Here, the constant 𝑐𝛼 defines the fraction of the number
of bands within the band layer the fluid must cross. When 
the rotation of the bands is normally distributed, 𝜃 =
𝒩(0, 𝜎), we use 

𝑐𝑥 = 1,   𝑐𝑦 = sin (𝐸(|𝜃|)),

where 𝐸(|𝜃|) is the expected value of the absolute value 
of the rotation. The challenging part of this approach is 
to obtain good estimates on the area available for flow 
around, 𝐴𝛼,𝑚, and across, 𝐴𝛼,𝑏, the deformation bands,
and the remaining of this section will focus on this. 

Let us consider an arbitrary deformation band, called 𝑟. 
Each other deformation band in the domain has a certain 
fixed probability of crossing this band. When 𝜌 is 
independent of position and the bands are independently 
distributed, the number of intersections, 𝑁, band 𝑟 has 
with other bands is Poisson distributed. The probability 
of the band having zero intersections can be calculated as 

𝑃(𝑁 = 0) = exp (−𝑙2𝜌 ∫ ∫ |sin(𝜃)| 𝑓(𝜃 + 𝜂)𝑓(𝜂)d𝜃d𝜂

∞

−∞

∞

−∞

) , 

where 𝑓(𝜃) is the probability density function of the 
rotation of the bands. If the rotation of the bands is 
uniform, the integral simplifies to 2/𝜋. If the rotation of 
bands is normally distributed the integral can be 
calculated numerically. Since 𝑁 is Poisson distributed, 
the expected value can be calculated as 

𝐸(𝑁) =  −log (𝑃(𝑁 = 0).            (3) 
Figure 3 shows a comparison of the Poisson distribution 
with expectation 𝐸(𝑁) and the probability density 
function calculated numerically by populating a domain 
with 10 000 deformation bands stochastically. The fit is 
good and gives no reasons to doubt that the number of 
intersections is Poisson distributed with expected value 
given by Equation (3). 

Let 𝑀 denote the number of bands you must pick at 
random before picking a band with 0 intersections. The 
expected value of M can be calculated as: 

𝐸(𝑀) =
1 −  𝑃(𝑁 = 0)

𝑃(𝑁 = 0)2
 . 

When the deformation bands intersect, they may form 
long chains of bands. When a band is added to the chain 
the chain grows in a random direction, and we postulate 
that the growth of the chain follows the same scaling as 
Brownian motion, that is, the length grows with the 
square root of the number of bands. We have confirmed 
this scaling numerically. We therefore suggest that the 
area available for flow across deformation bands is  

𝐴𝛼,𝑏 = 𝑙𝛼
⊤ + √0.5 𝑙𝛼

⊤ 𝐸(𝑀).

Figure 3: The probability of a band having 𝑁 intersections. 
The solid lines show the probability calculated numerically by 
distributing 10 000 bands randomly in a domain, while the 
dashed lines show the Poisson distribution. In the left figure 
the band rotation is uniformly distributed, while in the right 
figure the band rotation is normally distributed. 
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Figure 4: The effective permeability (y-axis) as a function of 
the band length (x-axis) for a band density independent of 
position in the domain. The box plots show the effective 
permeability obtained from numerical simulations, the solid 
lines correspond to the effective permeability obtained by the 
layered analytical approximation, and the dashed lines to the 
harmonic average. The orange color corresponds to the 
effective permeability in 𝑦-direction, while the blue color 
corresponds to the effective permeability in 𝑥-direction. Each 
figure shows the result of a different permeability ratio of the 
rock matrix and the deformation bands. 

Here, 𝑙𝛼
⊤, is the expected band length in the direction

perpendicular to 𝛼. If the rotation is normally distributed 
with standard deviation 𝜎,  ℛ = 𝒩(0, 𝜎2), and 𝜎 ≪ 1,
we obtain 

𝑙𝑥
⊤ = 𝑙 cos (

𝜎√2

𝜋
) , 𝑙𝑦

⊤ = 𝑙 sin (
𝜎√2

𝜋
) , 𝜌𝛼 = 𝜌𝑙𝛼

⊤.

For the conceptual layer of the host rock, the area 
available for flow is the area between bands. We 
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therefore suggest that the area for the host rock in our 
conceptual model scales as 

𝐴𝛼,𝑚 = 1/𝜌𝛼 .

Comparison to numerical simulations 

To test the suggested analytical solution for the effective 
permeability as a layered porous media we compare the 
analytical approximation given by Equation (2) to the 
effective permeability calculated from the numerical 
simulations. We let ℛ = 𝒩(0, (𝜋/12)2) and fix the
density to 𝜌 = 1 m-2. The band length, 𝑙, is varied 
between 0.25 m and 5 m. The comparisons between the 
analytical approximations and numerical solutions are 
shown in Figure 4. Using the harmonic average 
approximation given by Equation (1) consistently 
underestimates the permeability; up to two orders of 
magnitude in the worst case. The analytical 
approximation given by Equation (2) gives a much better 
approximation and is able to capture the increase in 
effective permeability as the deformation band network 
becomes disconnected. Finally, we note that as the 
deformation band length increases or the permeability 
ratio decreases, the error of the harmonic average 
becomes smaller. 

Figure 5 shows the comparison of the numerical 
simulations and the analytical approximation as a 
function of band density, 𝜌. The band length is fixed to 
𝑙 = 1 m. The analytical approximation of the effective 
permeability given by Equation (2), is able to capture the 
effective permeability both when the band network is 
disconnected (the band density small), and when it is 
highly connected (band density is large), while the 
harmonic average given by Equation (1) is only 
applicable when the band density or the band 
transmissibility, 

𝐾𝑓

𝑎𝐾𝑚
, is large. This is the same 

qualitative behavior as observed in Figure 4. 

6. Application to fault damage zones
Around faults the number of deformation bands is not 
constant but varies as a function of the distance from the 
fault. In this section we assume the density function along 
a scanline normal to the fault (𝑥-direction) follows the 
logarithmic law given in [14]: 

𝜌𝑥(𝑥) = 𝐴 + 𝐵 ln (
𝑥

1m
) ,          (4) 

where 𝐴 and 𝐵 are two constants that can be used to fit 
the density function to a specific fault. We will use the 
average values from the data given in [14]: 

𝐵 = −8.33 m−1, 

𝐴 = 13.33 ln (
𝑊5

1 m
 ) m−1 − 5 (ln (

𝑊5

1 m
) − 1) m−1,

where 𝑊5 is the distance from the fault to where the band
frequency is 5 m-1, that is 𝜌(𝑊5) = 5 m-1. We refer to this
value as the damage zone width. The damage zone width 
can be related to fault throw, 𝑇, as (see [14]) 
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Figure 5: The effective permeability (y-axis) as a function of 
the band density (x-axis) for a density that is independent of 
position in the domain. The box plots show the effective 
permeability obtained from numerical simulations, the solid 
lines correspond to the effective permeability obtained by the 
layered analytical approximation, and the dashed lines to the 
harmonic average. The orange color corresponds to the 
effective permeability in 𝑦-direction, while the blue color 
corresponds to the effective permeability in 𝑥-direction. Each 
figure shows the result of a different permeability ratio of the 
rock matrix and the deformation bands. 

𝑊5 = 1.74 (
𝑇

1 m
)

0.43

m, 

which allows us to generate deformation band networks 
based on only the fault throw. 

Figure 6 shows three examples of generated deformation 
band networks using the logarithmic density function. 
The figure illustrates that increasing values of 𝑊5 both
widens the damage zone and increases the frequency of 
the bands within the zone. The deformation zone widths 
are 1 m, 5 m, and 10 m, which correspond to fault throws 
of 0.28 m, 12 m, and 58 m, respectively. 

The analytical expression using the approximation of the 
effective permeability given in Equation (2) was derived 
for domains where the density was constant, however, if 
the density is varying slowly enough, we expect that 
Equation (2) gives a good point estimate of the effective 
permeability. By integrating the point estimate of the 
effective permeability, the effective permeability of the 
whole domain can be obtained. 
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Figure 6: Example of three generated deformation bands 
networks that follow the logarithmic density function (bottom 
row). The damage zone width is 𝑊5 = 1, 5, and 10 meters
from the left figure to the right figure. The top row shows the 
histograms of the deformation bands crossing the horizontal 
scan line through the center of the domain, while the orange 
line shows the density function given by Equation (4). The 
fault is parallel to the 𝑦-axis and located at 𝑥 = 0. Note the 
different axis is each plot.  

We will test the analytical approximation by comparing 
it to numerical simulations. Three tests are performed, 
varying the parameters going into the model 
independently. 

Common setup 

The following parameters are used in all the following 
examples. The coordinate system is chosen such that the 
fault is parallel to the 𝑦-axis, and the 𝑥-axis defines the 
distance from the fault. In the numerical simulations the 
effective permeability in 𝑥- (resp. 𝑦-) direction is 
calculated by imposing a unit drop in pressure in 𝑥- (resp. 
𝑦-) direction and imposing a no-flow condition on the top 
and bottom (resp. left and right) boundaries. 

The computational domain is a square, [𝑋, 𝑌]. The height, 
𝑌, is set is set to 8 times the band length. This domain 
height has been found to be sufficiently large so that a 
doubling of the domain height does not alter the results. 
The domain width, 𝑋, is set equal the width at which no 
deformation appears, that is, 𝜌𝑥(𝑋) = 0.

In all test cases the band transmissibility is defined as the 
permeability ratio divided by the aperture. In each test 
case the band transmissibility is varied four orders of 
magnitudes, 𝐾𝑏

𝑎𝐾𝑚
= {10−2 , 10−1 , 100, 101} m−1.  The

lowest band transmissibility corresponds to, e.g., an 
aperture of 1 mm and permeability ratio of 5 orders of 
magnitude. 

In all test cases the rotation of the bands, 𝜃, is assumed 
normally distributed with standard deviation 𝜎,  ℛ =
𝒩(0, 𝜎2).

  (𝑎) 
𝐾𝑏

𝑎𝐾𝑚
= 10−2 m-1   (𝑏)  

𝐾𝑏

𝑎𝐾𝑚
= 10−1 m-1

  (𝑐)  
𝐾𝑏

𝑎𝐾𝑚

= 100 m-1   (𝑑) 
𝐾𝑏

𝑎𝐾𝑚
= 101 m-1 

Figure 7: The effective permeability of the fault damage zone 
as a function of the band length. The box plots show the 
effective permeability obtained from numerical simulations, 
the solid lines correspond to the effective permeability 
obtained by the layered analytical approximation, and the 
dashed lines to the harmonic average. Blue color is the 
permeability normal to the fault, while the orange color is the 
permeability parallel to the fault. 

6.1 Effective permeability vs. band length 

In this test, the damage zone width is fixed to 𝑊5 = 5 m,
which corresponds to a throw of 12 m. The standard 
deviation of the rotation is set to 𝜎 = 𝜋/ 12. The band 
length is varied between simulations and takes values 0.5, 
1, 2, 4, and 8 meters. For each band length a total of 48 
simulations were run. 
Figure 7 shows the effective permeability in 𝑥- and 𝑦- 
direction as a function of band length. As the length of 
the bands increase, the effective permeability approaches 
the lower-bound given by the harmonic average in 
Equation (1). The layered approximation in Equation (2) 
gives quite good match with the numerical results. We 
observe that the effective permeability varies an order of 
magnitude between band lengths of 0.5 m and band 
lengths of 4.0 m and has an anisotropy up to two orders 
of magnitude in the normal and parallel directions. 

6.2 Effective permeability vs rotation 

In this test case the expected band length is fixed to 𝑙 =
1 m, and the damage zone width to 𝑊5 = 5 m. Varying
the standard deviation in the normal distribution, 
𝜎, changes how much the deformation bands intersect. 
When the standard deviation is 0 all bands are parallel, 
and no bands intersect. When the standard deviation is 
more than 𝜋/ 5 there is not much structure in the 
deformation bands and the generated network resembles 
that of a uniform distribution. In the numerical tests, we 
consider this full range of rotations. For each value of 𝜎
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  (𝑎) 
𝐾𝑏

𝑎𝐾𝑚
= 10−2 m-1   (𝑏)  

𝐾𝑏

𝑎𝐾𝑚
= 10−1 m-1 

  (𝑐) 
𝐾𝑏

𝑎𝐾𝑚
= 100 m-1   (𝑑) 

𝐾𝑏

𝑎𝐾𝑚
= 101 m-1 

Figure 8: The effective permeability of the fault damage zone 
as a function of the band rotation. Each subplot shows the 
result for a different permeability ratio. The box plots show 
the effective permeability obtained from numerical 
simulations, the solid lines correspond to the effective 
permeability obtained by the layered analytical approximation, 
and the dashed lines to the harmonic average. Blue color is the 
permeability normal to the fault, while the orange color is the 
permeability parallel to the fault. 

a total of 48 realizations of the deformation band network 
was created. 

Figure 8 shows the effective permeability for each case. 
The effective permeability decreases as the rotation 
increases because the bands tend to intersect each other 
more which creates long connected chains of 
deformation bands that the fluid must cross. The 
permeability parallel to the fault is approximately 2 
orders of magnitude larger than the permeability normal 
to the fault for the fault transmissibility 10-2 m-1, but 
decreases as the fault transmissibility increases. 

6.3 Effective permeability vs damage zone width, 𝑾𝟓

We upscale the effective permeability for the damage 
zone widths 𝑊5 = 1, 2, 3, 5, 7, 10, 20 meters numerically
by generating 48 realizations of the deformation bands 
for each length. These damage zone widths correspond to 
a throw of 0.28, 1.4, 3.5, 12, 25, 58 and 293 meters, 
respectively. 
The effective permeability is plotted in Figure 9. The 
variance of the effective permeability decreases with 
increasing damage zone width, however, the value of the 
effective permeability appears to be constant. That the 
effective permeability is independent of fault throw is 
also predicted by both the harmonic average 
approximation in Equation (1), and the layered

  (𝑎) 
𝐾𝑏

𝑎𝐾𝑚
= 10−2 m-1   (𝑏)  

𝐾𝑏

𝑎𝐾𝑚
= 10−1 m-1 

  (𝑐) 
𝐾𝑏

𝑎𝐾𝑚
= 100 m-1   (𝑑) 

𝐾𝑏

𝑎𝐾𝑚
= 101 m-1

Figure 9: The effective permeability in the damage zone as a 
function of damage zone width. Each subplot shows the result 
for a different permeability ratio. The box plots show the 
effective permeability obtained from numerical simulations, 
the solid lines correspond to the effective permeability 
obtained by the analytical approximation, and the dashed lines 
to the harmonic average. Blue color is the permeability normal 
to the fault, while the orange color is the permeability parallel 
to the fault. 

approximation in Equation (2). The reason for this is that 
the choice of 𝐴 and B causes the total number of 
deformation bands in the domain divided by the damage 
zone width to be constant. That band density averaged 
over the damage zone is independent of damage zone 
width is consistent with field observations [14]. This 
causes the width of the damage zone to increase at the 
same rate as the number of bands in the damage zone. 
Thus, the changes in these two parameters cancel each 
other in the calculation of the effective permeability. 
Note that this is only true for the effective permeability 
averaged over the whole damage zone; the point value of 
the effective permeability, e.g., 1 m from the fault is 
much lower for a fault throw of 300 m than a fault throw 
of 2 m. 

8. Discussion and conclusion
In this paper a novel analytical expression for the 
effective permeability of a porous media with 
deformation bands is presented. The analytical 
expression assumes the porous media can be represented 
as two layers, one with deformation bands and one 
without. The analytical solution is validated by numerical 
simulations over a wide range of parameters.  

The results from the numerical simulations show that 
deformation bands can significantly alter the effective 
permeability in the damage zone of faults. It is also 

353



TCCS-11 - Trondheim Conference on CO2 Capture, Transport and Storage 
Trondheim, Norway - June 21-23, 2021 

Berge et. al., NORCE, Bergen and Norway 

shown that the geometry of the deformation bands is 
important when estimating the effective permeability. 
Counting the number of deformation bands along a scan 
line from a fault and taking the harmonic average 
between the deformation bands and host matrix can 
overestimate the reduction in permeability by an order of 
magnitude. The main mechanism that increases the 
effective permeability is that the geometry allows the 
fluid to bypass bands without crossing them. This effect 
is especially important when the permeability ratio of the 
deformation bands and the rock matrix is smaller than 
three orders of magnitude. 

In the results presented in this paper it is assumed that 
deformation bands are placed randomly in the domain by 
a stochastic process and that each deformation band is 
independent of all others. This is an assumption that not 
necessary holds true for a field case, and an important 
part of further work will be to quantify the difference 
between the proposed method and field observations. In 
this work it will be necessary to explore appropriate 
methods for including the suggested model in a reservoir 
simulation. The discrepancy in scales between the 
damage zone and grid cell size may cause a 
straightforward upscaling of the grid cell permeability to 
underestimate the effects of the bands. Special care 
should then be taken close to faults where, due to the 
logarithmic density function of deformation bands, the 
deformation band density varies significantly, and a 
representative elementary volume of the combined 
deformation bands and host rock may not exist. 
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