
TCCS-11 - Trondheim Conference on CO2 Capture, Transport and Storage 
Trondheim, Norway - June 21-23, 2021 

Watson et al., SINTEF Digital, Oslo, Norway 

RAPID OPTIMISATION OF THE NEW SLEIPNER BENCHMARK MODEL
Francesca Watson1*, Odd Andersen1, Halvor Møll Nilsen1 

1 SINTEF Digital, Oslo, Norway 

* Corresponding author e-mail: francesca.watson@sintef.no

Abstract 

A new Sleipner benchmark model has recently been released. Basic petrophysical parameters are included in the 
dataset but it is intended that further modelling work should be carried out in order to refine parameter estimates. In 
this study we have developed a rapid calibration workflow, in the open source Matlab Reservoir Simulation Toolbox 
(MRST). We use this workflow to calibrate model parameters such that results match plume outlines interpreted from 
seismic data, also provided in the benchmark dataset. This is made feasible by the use of hybrid vertical equilibrium 
(VE) modelling and adjoint-based, continuous optimisation, using automatic differentiation. Parameters have been 
found which lead to simulation results that provide a reasonable match to the plume outline in the top layer, when 
using a slightly modified model top surface. This workflow provides a useful tool which allows us to use monitoring 
data to improve simulation models during and after CO2 injection. 
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1. Introduction
Underground CO2 storage has been undertaken at the 
Sleipner site since 1996. During this time a whole host of 
geophysical monitoring data, in particular seismic data, 
has been collected from the site, allowing us to infer 
information about the temporal evolution of the CO2 
plume as well as information about the internal structure 
of the reservoir. Importantly, seismic observations of the 
CO2 plume reveal a more detailed picture of the layered 
internal structure of the reservoir [1]. 
In conjunction with geophysical monitoring data we can 
use simulations to better understand the dynamic 
processes occurring in the subsurface and reduce 
uncertainties in simulation parameters (e.g. model 
geometry, petrophysical parameters). Initial simulation 
work at Sleipner involved simplified models with basic 
geometry to investigate the layered structure and CO2 
plume migration [2]. 
In 2011 a Sleipner benchmark model was released, with 
realistic geometry inferred from seismic data [3]. This 
model covered the uppermost layer of the reservoir, layer 
9, where we have the most accurate seismic coverage. 
Several studies used this model as a starting point to 
identify parameters which give simulation results that 
best match the CO2 spread at the top of the reservoir, 
identified in the seismic data [3] [4] [5] [6]. As this 
benchmark only comprises the top layer of the reservoir, 
assumptions have to be made regarding the amount of 
CO2 in the layer and the location it is first introduced into 
the model. 
These studies generally showed the strong influence of 
the permeability heterogeneity and the topography of the 
top surface on the resulting plume shape but several 
things are still debated. For example the mass distribution 
within the layers, the density of the plume and the vertical 
migration mechanism through the shale layers, capillary 
flow vs higher permeability pathways. 

A new Sleipner benchmark model was released by 
Equinor in 2019 [7]. It includes an updated reservoir 
model which covers the whole depth of the reservoir 
including the injection well. It also contains 
supplementary information such as injection rates, the 
suspected location of possible feeder chimneys through 
the shale, based on the changes in the nature of the 
seismic signal, and the extent of the plume at the top of 
each layer after 15 years injection, also based on the 
seismic data. 
The base model has been populated with a basic set of 
parameters (uniform permeability and porosity for the 
sand, uniform permeability and porosity for the shale) 
which can be used as a starting point to determine a more 
realistic parameter set. 
In this study we have developed a rapid optimisation 
workflow which uses hybrid vertical equilibrium 
modelling [8] and adjoint-based continuous optimisation 
to run simulations on the new benchmark model and find 
more realistic parameters, constrained by the observed 
data. Here we have used the plume outlines given in the 
dataset as the data we would like to match our simulations 
to. Further work has been undertaken in [9] where 
multiple types of monitoring data have been used in 
combination to further constrain the reservoir parameters. 
Simulations have been carried out using the Matlab 
Reservoir Simulation Toolbox (MRST) [10]. MRST is 
open source and highly flexible allowing for rapid 
prototyping and easy modification of model equations. It 
also contains functionality for vertical equilibrium 
modelling and gradient-based optimisation using 
adjoints. 
The combination of the hybrid VE framework with 
adjoint based optimisation and automatic differentiation 
is key to allowing us to run automatic optimisation, with 
a flexible objective function, on a model as large as the 
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Sleipner benchmark (~1.9 million cells in the original 
benchmark simulation grid). 

2. Methodology

2.1 Governing equations 

We use the equations for multiphase flow in porous 
media and a finite-volume discretisation. The mass 
conservation of phase α is given by: 

∂(ϕρα𝑠𝑠α)
∂𝑡𝑡

= −∇ ⋅ (ρα𝒖𝒖α) + ρα𝑓𝑓α (1) 

where ϕ is porosity, ρα is phase density, 𝑠𝑠α is phase 
saturation (volume fraction), 𝑓𝑓α is the sum of any sinks / 
sources and 𝒖𝒖α is the Darcy flux of phase 𝛼𝛼. The 
multiphase equation for the Darcy flux is: 

𝒖𝒖α = −
 𝐤𝐤𝑘𝑘𝑟𝑟α
μα

(∇𝑃𝑃α + ρα𝒈𝒈) (2) 

with permeability 𝒌𝒌, relative permeability, which is a 
function of the wetting phase saturation 𝑘𝑘𝑟𝑟α = 𝑘𝑘𝑟𝑟α(𝑠𝑠α), 
phase viscosity μα, phase pressure 𝑃𝑃α and gravity vector 
𝒈𝒈. All phase saturations sum up to unity. 

2.2 The hybrid vertical equilibrium model 

The hybrid VE model is a modification of the standard 
VE model and is described in detail by [8].  
In the standard VE model we solve a form of the 
governing equations which have been integrated 
vertically such that we are solving for the vertically 
integrated horizontal fluxes in the model. The vertical 
configuration of fluids can then be calculated from the 
results based on the assumption that fluids in a grid cell 
have reached vertical equilibrium. Thus we do not need 
to discretise the model in the vertical direction, leading to 
a large reduction in the number of grid cells required. 
This method has been shown to work well for systems 
with large buoyancy contrasts such as brine-CO2 systems 
[11] [12].
The internal layering of the new benchmark model 
requires a modification to this method. Here, the layers 
are in vertical equilibrium internally but there is still flux 
between layers and up through the reservoir. As a whole, 
the reservoir is not vertically equilibrated due to the low 
permeability shale layers, as indicated by the layered 
structure of the CO2 plume seen in the seismic data. 
The hybrid VE framework we have used allows us to 
have a hybrid grid, with volumes being modelled as VE 
cells connected to volumes modelled as fully resolved 
cells (normal 3D simulation). This means we can setup a 
simulation grid which uses VE simulation internal to 
each layer but which has fully resolved cells that 
represent the possible feeder chimneys and allow us to 
model vertical flow at these locations.  

2.3 Model setup 

The benchmark simulation grid contains approximately 
1.9 million cells. We convert the 9 sandstone layers in the 
grid into a series of stacked VE layers with impermeable 
boundaries between the layers to represent the low 
permeability shales. There are fully resolved cells in the 
locations of the suspected feeder chimneys (Fig. 1). In 
total the hybrid VE grid contains 76527 cells, which is 
about 4 percent of the original cell count. 

Figure 1: The three possible feeder locations included in the 
dataset. Red line is the plume outline at the top of layer 9. 
Numbers 1, 2 and 3 correspond to the permeability factors 
shown in Fig. 6. The main feeder chimney can be identified on 
the seismic data and intersects the whole of the reservoir up to 
layer 9. The other two chimneys are less clear in the seismic 
data and intersect only layer 5 and layer 7 respectively. 

The location of the injection well is taken from the 
benchmark dataset. Injection rates are given in [13]. 
Petrophysical properties for the model are given in the 
benchmark dataset. Fluid properties for CO2 are 
calculated based on temperature and pressure using the 
CoolProp library [14] [15]. Although temperature is not 
modelled in the simulation we impose a background 
temperature gradient with an injection temperature of 41 
°C and a temperature at the top of the reservoir of 37 °C. 
Fluid properties are shown in Table 1. 

Table 1. Simulation fluid properties. 
Brine density [kg m−3] 1020 

CO2 density [kg m−3] 318 - 497 

Brine viscosity [Pa s] 8.00×10−4 

CO2 viscosity [Pa s] 6.00×10−5 

Brine compressibility 
[bar−1] 

4.37×10−5 

CO2 compressibility [bar−1] 4.37×10−4 

292



TCCS-11 - Trondheim Conference on CO2 Capture, Transport and Storage 
Trondheim, Norway - June 21-23, 2021 

Watson et al., SINTEF Digital, Oslo, Norway 

2.4 Adjoint based optimisation 

Adjoint based optimisation is implemented in MRST as 
described in [5] [16]. 
The aim of the optimisation is to update model 
parameters so that simulated plume outlines match the 
plume outlines given in the benchmark dataset. Plume 
outlines, provided as polygons, show the extent of the 
CO2 plume at the top of each layer in the 2010 seismic 
survey. The objective function, Jplume, is given by: 

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = �ℎ𝑖𝑖−ℎ𝑚𝑚𝑖𝑖𝑚𝑚

𝐻𝐻𝑖𝑖−ℎ𝑚𝑚𝑖𝑖𝑚𝑚
�
2

,  ℎ𝑖𝑖 < ℎ𝑚𝑚𝑖𝑖𝑖𝑖

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = 0,   ℎ𝑖𝑖 > ℎ𝑚𝑚𝑖𝑖𝑖𝑖

𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = �ℎ𝑖𝑖−ℎ𝑚𝑚𝑖𝑖𝑚𝑚

−ℎ𝑚𝑚𝑖𝑖𝑚𝑚
�
2

, ℎ𝑖𝑖 > ℎ𝑚𝑚𝑖𝑖𝑖𝑖

𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = 0, ℎ𝑖𝑖 < ℎ𝑚𝑚𝑖𝑖𝑖𝑖

𝐽𝐽𝑝𝑝𝑝𝑝𝑜𝑜𝑚𝑚𝑖𝑖 = �𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖
𝑖𝑖

+ �𝐽𝐽𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖
𝑖𝑖

(3) 

where hi is the height of CO2 in cell i, hmin is the assumed 
minimum CO2 column height required for the plume in 
that cell to be visible in the seismic data and Hi is the total 
height of cell i. 
We have chosen individual layer and chimney 
permeabilities, porosity and CO2 density as the 
parameters to be optimised. Varying the parameters is 
carried out by multiplying them by a scalar value which 
is allowed to vary within a certain range. The ranges for 
porosity and permeability are chosen based on the range 
of values given in the dataset. 

We have chosen to vary the CO2 density as there is some 
uncertainty in the temperature distribution in the 
reservoir which may have a large impact on the density 
distribution in the plume. 

3. Results

3.1 Matching the benchmark model 

Fig. 2 shows the simulated CO2 saturation after 15 years 
injection for the unoptimised benchmark model. Plume 
outlines from the benchmark data are shown in red. Using 
the base case model does not give a good match between 
the observed and simulated plume outlines. 

Figure 2: CO2 saturation at the top of all layers. Unoptimised 
benchmark model. Plume outlines from the benchmark are 
shown in red. 

After running the optimisation, where we are only 
concerned with matching the outline in layer 9, we find 
that we are still unable to get a good match between the 
simulated plume in layer 9 and the plume outline (Fig. 3). 

Figure 3: CO2 saturation at the top of all layers. Optimised 
model matched to plume outlines in layer 9. Plume outlines 
from the benchmark are shown in red. 

Consistent with previous studies, all our simulations lead 
to outcomes where CO2 collects locally as a plume 
beneath each vertical flow barrier, with a shape that 
closely reflects the shape of the overlying confining 
layer. Closer inspection of the topography of the top layer 
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of the model (Fig. 4) shows that it is incompatible with 
the plume shape and therefore it is impossible for us to 
match the plume shapes with the topography that we 
have.  

Figure 4: Depth of top surface of the benchmark model with 
plume outline for layer 9 on top. Notice the bottom circle shows 
a dip in the surface which cuts across the plume edge. A similar 
feature can be seen in the top circle. If these areas are to be 
covered by the plume then CO2 will also be able to migrate 
outside of the plume outline, as happens in Fig. 3. 

3.2 Modified top surface 

Based on past studies which have had some success 
matching the plume outlines in the older benchmark 
model [5], we have adjusted the top surface of the new 
benchmark model such that it has the same topography as 
the older model given in [3]. Each column of grid cells 
has been shifted by a certain amount, this means all layers 
are affected by the shift in the vertical direction. 

Results from matching to the layer 9 plume with the 
modified top surface are greatly improved although there 
is still some CO2 outside of the plume outline (Fig. 5). 
We also see much better results for plume shapes in the 
underlying, internal layers even though matching plume 
outlines lower down the reservoir was not included in the 
objective function of this particular optimisation. 

Figure 5: CO2 saturation at the top of all layers after 15 years 
injection with the modified top surface. Optimised model 
matched to plume outlines in layer 9. Plume outlines from the 
benchmark are shown in red. 

Looking at the resulting optimisation factors (Fig. 6, row 
2) shows an increase in CO2 density and a reduction in
permeability for the main feeder chimney, this reduces
the amount of CO2 reaching the top of the model and
makes it spread out less. However, this is also in
conjunction with an increase in permeability in layer 9
which will conversely make the CO2 spread out more. It
is the interplay between all these factors, as well as the
topography of the layer, which controls the geometry of
the plume. In this way, it is possible that the result, in
terms of optimisation factors, could be ambiguous. We
could reduce the uncertainty by constraining with other
data such as gravity measurements or specified mass in
each layer [15].

Figure 6: Optimised parameter factors. From top to bottom the 
rows pertain to: Matching layer 9 with the benchmark top 
surface, Matching L9 with the modified top surface, Matching 
all layers with the modified top surface. 

294



TCCS-11 - Trondheim Conference on CO2 Capture, Transport and Storage 
Trondheim, Norway - June 21-23, 2021 

Watson et al., SINTEF Digital, Oslo, Norway 

We also observe an increase in permeability for chimney 
2 which is in the north-eastern part of the reservoir 
between layers 5 and 6. This suggests that more CO2 is 
required in the in the north-east part of the plume in layer 
6 to fit the plume outline better. 

Our modelling framework allows us to specify which 
individual outlines we would like to include in the 
optimisation. Fig. 7 shows the results when we optimise 
to fit plume outlines in all layers. Here the match in lower 
layers is improved compared to Fig. 5 at the expense of 
the match in the top layer. As there is much greater 
uncertainty in the outlines in lower layers, being able to 
get a good match to outlines in all layers is relatively 
unrealistic. 

Matching to plume outlines is only possible if the 
topography of the model is compatible with their shapes. 
This means that we cannot hope to obtain a close match 
without being able to modify the actual model geometry. 
Arguably the plume outlines only provide limited 
information on the CO2 spatial distribution. Although 
corresponding z coordinates are given, these are not of 
much use as they do not generally correspond to the 
topography of the surface. For more detailed information 
about CO2 migration we require a better measure of how 
the mass of CO2 is distributed in the plume. 

Figure 7: CO2 saturation at the top of all layers after 15 years 
injection with the modified top surface. Optimised model 
matched to plume outlines in all layers. Plume outlines from the 
benchmark are shown in red. 

3.2 CO2 mass distribution 

Fig. 8 shows that for both optimisations we reduce the 
CO2 mass in the top layer from the unoptimised case. 
There is some redistribution of CO2 in the layers in the 
middle of the reservoir (layers 3, 4, 5, 6).  For fitting all 

plumes we see increased CO2 mass in layer 5 compared 
to fitting only the layer 9 plume, this is where the 
optimisation algorithm tried to fit the larger plume 
outline of layer 5.  

In [17], the authors tried to estimate CO2 mass in each 
layer. In the future it would be interesting to use our 
model and attempt to match a certain CO2 mass in each 
layer as well as the plume outlines. This would be 
relatively easy to implement in our framework due to the 
rapid prototyping capabilities of MRST. 

It should be noted that CO2 mass is also closely 
connected to the density profile in the model. Here we 
have used an initial vertical density profile computed 
from local pressure and temperature using an equation of 
state, and then modified the density of CO2 in the whole 
model using a single scalar multiplier. This will lead to 
slightly unrealistic estimates of plume density as CO2 is 
highly non-linear in the region close to the conditions in 
the reservoir, i.e. a slight change in pressure and 
temperature can lead to a large change in CO2 density. 
Also, the temperature at the injection well is fairly well 
constrained but there are large uncertainties in the 
temperature at the top of the reservoir and therefore in the 
temperature gradient. To investigate the density profile 
of CO2 at Sleipner we should extend our model so that 
we can use the temperature gradient as an optimisation 
parameter instead of density. 

Figure 8: CO2 mass in each layer when matching to different 
plume outlines. 

4. Conclusions
We have used a hybrid VE model, implemented in the 
open-source code, MRST, to efficiently simulate the new 
Sleipner, multi-layered, benchmark model. A framework 
for rapid optimisation has been developed and we have 
optimised selected properties of the simulation model to 
match plume outlines given in the benchmark dataset. 
Closer inspection of the benchmark model shows that the 
topography of the surfaces is not compatible with the 
observed plume outlines, at least without significantly 
departing from the generally agreed assumptions of rapid 
gravity segregation and local CO2 pooling. Results from 
modifying the geometry so that the top surface resembles 
the 2011 benchmark model show a closer match to the 
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plume although an exact match cannot be found without 
being able to modify the top surface automatically. 
Being able to use more geophysical data in a combined 
fashion will allow us to better constrain the parameters 
we have and reduce the ambiguity in optimisation results. 
Future work should also focus on investigating the 
temperature and therefore density profile of the plume 
which may help our understanding of vertical migration 
within the reservoir. 
In general, this workflow can provide a valuable tool to 
integrate monitoring data acquired during and after CO2 
injection into dynamic simulation models. Thereby 
improving the accuracy of the simulation models and 
helping to elucidate processes occurring in the 
subsurface. 
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