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Abstract 

In this work, experimental data on carbamate polymerization of aqueous solutions of monoethanolamine (MEA) has 

been collected and analyzed. Three degradation models were developed describing thermal degradation of MEA in 

aqueous solutions to investigate the importance of taking into account MEA consumption when describing the 

experimental data. The models were fitted to literature data. It was found that with the same number of parameters, a 

better fit was obtained when considering MEA consumption. All the models showed increased deviations for longer 

experiments and at higher temperatures, indicating that the high concentration of degradation compounds might 

influence the degradation rate. 
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1. Introduction

One of the most promising ways to reduce carbon dioxide 

emissions into the atmosphere is through absorption-

based post-combustion carbon capture. In this process, 

exhaust gases from industry are treated with a water-

based solvent, which selectively absorbs the CO2 from 

the gas. The solvent is stripped at elevated temperatures, 

after which it is recycled. A fraction of the solvent is 

entrained in the flue gas or lost through degradation and 

is replaced. One of the main challenges is to reduce the 

loss of solvent through degradation and prevent the 

formation of degradation products [1]. 

Solvents degrade when brought into contact with oxygen 

in the absorber or through carbamate polymerization at 

increased temperatures and under the presence of CO2. 

Carbamate polymerization, typically happening during 

solvent regeneration in the stripper, is also referred to as 

thermal degradation under the presence of CO2. Aqueous 

30 wt-% of monoethanolamine (MEA) solution is one of 

the most established solvents used for post-combustion 

carbon capture [2] and the solvent studied in this paper. 

Figure 1 gives an overview of the predominant 

degradation reactions and products. The carbamate that 

is formed when CO2 reacts with MEA can undergo a ring 

closure to form 2-oxazolidone (OZD). Concentrations of 

this compound are low in degraded solutions, and 

therefore, OZD is suspected to be an intermediate [3]. 

OZD can react with free MEA to form N-(2-

hydroxyethyl)-ethylenediamine (HEEDA), which in turn 

can react with CO2 to form 1-(2-hydroxyethyl)-2-

imidazolidone (HEIA). 

Léonard et al. [4] modelled the carbamate polymerization 

rate as the product of a temperature-dependent reaction 

rate coefficient and the initial concentration of CO2. 

Because of the abundance of MEA, it was assumed the 

amine concentration did not affect the degradation rate. 

However, experimental data shows that the degradation 

rate is not constant and tends to decrease over time, 

especially at higher temperatures and loadings [5]. This  

indicates that the consumption of MEA might play an 

important role when modeling laboratory-scale 

degradation data. 

Figure 1: Overview of the most significant carbamate 

polymerization reactions, as proposed by [3], [5]–[7]. 

In this study, three different degradation models were 

developed, fitted, and evaluated to investigate the extent 

and effect of this consumption. 

2. Methodology

Experimental data from carbamate polymerization 

studies given in Table 1 was used in this work. No 

additional degradation experiments were performed. The 

experimental methods in these studies were similar to 

each other. Amine solutions were prepared and loaded 

with CO2 up to the specified loading. The solution was 

transferred into stainless steel cylinders, which were 

closed off. The cylinders' liquid volume and headspace 

varied slightly in the different experiments but were in 

the same order of magnitude. Next, the cylinders were 

placed in a heat-controlled chamber and kept at a 

specified temperature for a duration of time. During this 

time, no stirring or agitation took place. After the 

degradation, the cylinders were removed and cooled 

down. The solutions were then analyzed using different 

analytical methods. The MEA concentration was 

typically analyzed with (HP)LC-MS and/or Ion 
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Chromatography (IC).  In some cases, analysis via GC-

MS or LC-MS was used to identify and quantify 

degradation products. The uncertainty in these analytical 

methods is assumed to be the same, so each datapoint can 

be weighted equally. 

Table 1: Overview of the experimental data on carbamate 

polymerization used in this study. 

Datapoints Loading, α Temperature Reference 
30 0.2 - 0.5 100 - 150 [5] 

9 0.1 - 0.4 105 - 135 [8] 

25 0.1 - 0.5 135 [3] 

5 0.5 135 [9] 

6 0.44 120 - 140 [4] 

8 0.4 135 [10] 

3 0.4 125 - 145 [11] 

2 0.4 135 [12] 

2.1 Proposed degradation models 

The model equations are given in Table 2. The first model 

describes linear degradation, similar to the model by 

Léonard et al. [4]. The initial concentration ([MEA]0) has 

been taken into account to account for different starting 

concentrations of MEA. The second model takes into 

account the consumption of MEA, while the CO2 

concentration is kept constant at its initial concentration. 

The approach behind the third model is slightly different. 

Considering the degradation mechanism in Figure 1, one 

would expect the degradation rate of MEA to be 

proportional to the concentration of MEA-carbamate. 

Therefore, this model aims to predict the carbamate 

concentration, which is then used to fit the reaction rate. 

Since no experimental data is available on the speciation 

at these temperatures, the carbamate concentration is 

modeled with an in-house vapor-liquid equilibrium 

model calculating activities using an eNRTL-model. 

Table 2: Short description and equations of the investigated 

degradation models in this work. 

Description Equations 

M1 Linear degradation 
��MEA�

�� � 	
�� ⋅ �MEA���CO���

M2 MEA consumption 
��MEA�

�� � k
�� ⋅ �MEA��CO���

M3 
MEA consumption, 

CO2SIM speciation 

��MEA�
�� � k
�� ⋅ �MEACOO-� 

�MEACOO�� � �
�MEA�, �CO2�0�

2.1 Adjusted form of the Arrhenius equation 

For all models, the reaction rate coefficient at a specified 

temperature (	
��) is determined using an adjusted form

of the Arrhenius equation (1). Here �r and 	r are the

reference temperature and the reaction rate coefficient at 

reference temperature, respectively. A reference 

temperature of 400 K has been chosen as this is the rough 

average of the experiments. This adjusted form yields the 

same results, but provides a more meaningfull expression 

for the reaction rate coefficient, which allows for better 

model comparison and more intuitive initial estimates. 

k
�� � 	r � exp � !"# $  1
�

1
�r  '( (1) 

2.2 Fitting the parameters 

The model parameters have been fitted by minimizing the 

relative least square errors between the experimental data 

and the model results. Each experiment is treated 

individually and weighted equally. Optimization has 

been performed using the nonlinear Levenberg-

Marquardt algorithm. In addition, a particle swarm 

optimization (PSO) algorithm was used to check if the 

solution was a valid global minimum. Both routines 

yielded the same optimized parameters for all the 

investigated cases. 

2.3 Complete and refined dataset 

There appears to be no explicit agreement between the 

experimental results at higher temperatures and loadings 

(above 145 °C or α = 0.5). The relative deviation between 

the data sets is significantly larger than for experiments 

at more moderate temperatures and lower loadings. The 

reason for this difference is not known, but it may be 

caused by experimental challenges at high temperatures 

and loadings. Because only four experiments were 

performed at these extreme conditions, without clear 

agreement between them, the three models shown in 

Table 2 have been evaluated with both the complete 

dataset, taking into account all the data in Table 1 and by 

excluding experimental data above 145 oC or at a loading 

of 0.5 (refined dataset).  

2.4 Pure experimental error 

There were eight sets of replicate degradation 

experiments in the dataset (17 datapoints in total), for 

which the temperature, loading, initial concentration, and 

degradation time were the same (seven sets at 135 °C 

with various loadings, one at 120 °C with a loading of 

0.4). These replicates were used to get an indication of 

the sum of pure experimental errors (SSEP). The sum of 

squared erros (SSE) of the model in relation to the 

expirmental data is made up out of the SSEP and the sum 

of square erros caused by limitations in the model, the 

lack of fit (SSELOF). The part of the SSE, which the pure 

error cannot explain is thus caused by lack of fit. 

The degree of the lack of fit of the model can be evaluated 

by comparing the mean error due to lack of fit 

(MSELOF) against the mean pure square error (MSEP). 

This fraction is then compared to a F-distribution at 95%-

confidence, which is dependent on the total number of 

datapoints and the number of replicates, see equation (2). 

The model is considered to be inadequate if �LOF ) 1.

�LOF  �  
MSELOFMSEP.�.01,2LOF,2pure

(2)
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3. Results

Table 3: Fitted model parameters, confidence intervals and lack-of-fit tests for the complete dataset. Data used to fit the models 

covers temperature and loading range of 100 – 150 °C and α: 0.1 – 0.5.

Model Rate parameters Units Confidence intervals (95%) 4LOF
M1 	r � 6.05 ⋅ 10�77

!" � 3.16 ⋅ 109 �:;�mol�7�s�7��J�mol�7� �4.97-7.12� ⋅ 10�77
[1.95-4.38� ⋅ 109 6.201

M2 	r � 7.02 ⋅ 10�77 !" � 8.87 ⋅ 109 �:;�mol�7�s�7��J�mol�7� [5.68-8.36� ⋅ 10�77
[0.68-1.08� ⋅ 101 2.757

M3 	r � 3.91 ⋅ 10�E
!" � 1.22 ⋅ 101 �s�7��J�mol�7� [2.81-5.01� ⋅ 10�E

[0.90-1.54� ⋅ 101 3.671

Table 4: Fitted model parameters, confidence intervals and lack-of-fit tests for the refined dataset. Data used to fit the models covers 

temperature and loading range of 100 – 145 °C and α: 0.1 – 0.45.

Model Rate parameters Units Confidence intervals (95%) 4LOF
M1 	r � 2.71 ⋅ 10�77

!" � 1.38 ⋅ 101 �:;�mol�7�s�7��J�mol�7� �2.16-3.25� ⋅ 10�77
�1.06-1.69� ⋅ 101 0.309

M2 	r � 3.34 ⋅ 10�77
!" � 1.39 ⋅ 101 �:;�mol�7�s�7��J�mol�7� [2.88-4.01� ⋅ 10�77

[1.14-1.64� ⋅ 101 0.175
M3 	r � 1.76 ⋅ 10�E

!" � 1.58 ⋅ 101 �s�7��J�mol�7� [1.42-2.10� ⋅ 10�E
[1.29-1.87� ⋅ 101 0.187

Table 3 shows that the lack-of-fit test parameter is larger 

than 1 for each model. This shows that the residuals of 

the models are significantly larger than can be explained 

by the pure experimental error and thus, the full dataset 

cannot be fitted appropriately. The contribution of 

experiments at higher temperatures and loadings to the 

SSE was significant, however, a clear trend was not 

observed. There were no replicates for the experiments 

at higher temperatures and loadings, so the pure 

experimental error was the same for both datasets.  

Excluding the data at high temperatures (145 °C and 

above) improves the models ability to represent the 

experimental data significantly, as seen in  

Table 4. When comparing these to the results in Table 

3, the fitted activation energy is higher and the reaction 

rates lower for the total dataset, resulting in a higher 

temperature dependency of the reaction rate.  It would 

be good to investigate how reproducible the degradation 

experiments at temperatures above 145 °C or with a 

loading of 0.5 are, to evaluate their experimental error. 

For now, we will focus on the results from the refined 

dataset. 

Table 4 shows also that model 2 and 3 have a much 

better fit than the linear model (model 1). Because 

model 2 considers the consumption of MEA, the 

reaction rate coefficient is expected to be slightly larger 

than for model 1, as the concentration of MEA will 

decrease over time. The reaction rate coefficient for 

model three is several orders of magnitude higher 

because in this model, the reaction rate coefficient is 

only multiplied with the concentration of MEA-

carbamate, instead of both the concentration of CO2 and 

MEA, which is the case for the other models. In 

addition, the activation energy is higher for this model. 

Overall, model 2 has the best fit, but there is no 

significant difference between model 2 and 3. 

In Figure 2, several of the datapoints are compared to 

the fitted results of model 2. The experimental data by 

Davis et al. shows less degradation in comparison to the 

other experiments. Overall the model fits the 

experimental data adequately, with a relative standard 

deviation of 5.02% (6.29% and 5.15% for model 1 and 

3 respectively). 

Figure 2: Model 2 results compared with experimental data. 

Markers indicate experiments from Grimstvedt (ο), Davis

(+), Fytianos (), Eide-Haugmo (•), and Huang (x).

3.1 Compared model predictions 

The degradation experiments can replicate operational 

conditions but are not necessarily comparable. The 

cylinders in the degradation experiments are closed off, 

so consumption of the solvent and CO2 will influence 

concentrations and degradation rates. In a continuous 

capture plant there will be a constant supply of CO2 from 

the flue gas and a make-up of degraded solvent, so the 

conditions in for example the reboiler will not change 

significantly. 

Measurements at lower solvent concentrations are thus 

not representable, however, they can still be used, as 

they provide useful insight into the degradation 

mechanism. To evaluate and compare the predicted 
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degradation rates at continuous operation, the initial 

degradation rate is more interesting, because the initial 

conditions and concentrations of MEA and CO2 are 

more representative of the actual process. The predicted 

degradation rates are given in Figure 3. 

In comparison, the degradation models show similar 

trends with temperature at different loadings. Model 2, 

which had the best fit, predicts the most degradation. In 

comparison, the linear degradation model (model 1) 

predicts less degradation, especially at higher 

temperatures. This is because at higher temperatures, the 

concentration of MEA is reduced significantly and the 

degradation rate is also reduced over time.  

As a result, the linear concentration slope of MEA is less 

steep and less degradation is predicted. The higher 

activation energy in model 3 also becomes apparent as 

the degradation rate increases more rapidly with 

temperature. The model by Léonard et al. ([4]) is 

conservative with respect to the models fitted in this 

study. With a loading of 0.4 and at a stripper temperature 

of 120 °C, the degradation rate predicted by model 2 is 

47.5% higher than the degradation as predicted by the 

model of Léonard et al.. At the same conditions, model 

2 also predicts 25.9% more degradation than model 1. 

Figure 3: Predicted degradation rate due to carbamate 

polymerization for 30 wt-% MEA at a loading of 0.2 (above) 

and 0.4 (below). The kinetic model by Léonard et al. ([4]) is 

evaluated as a reference. 

3.2 Joint confidence region 

The marginal confidence intervals of the fitted 

parameters are relatively large. The correlation between 

the activation energy and the reaction rate coefficient at 

reference temperature was also significant for all 

models, but lowest for model 2 at 0.956. For this model, 

the approximate confidence region of 95% was 

determined and is given in Figure 4. From this figure, 

the strong correlation between the parameters is also 

apparent. 

Figure 4: Marginal confidence interval and joint confidence 

region for the parameter estimates of model 2 on the refined 

dataset. 

3.3 Residual plots 

The residuals for model 2 are analysed in Figure 5. The 

errors appear to be randomly distributed as a function of 

the loading since no clear pattern can be observed. The 

temperature, on the other hand, is strongly correlated 

with the error. This also explains why the regression was 

more accurate for the refined dataset. There also appears 

to be a slight increase in the residuals when the 

experiments last longer. The effect, however, is more 

pronounced than in the case of temperature. 

These trends indicate that the error is most likely not 

purely analytical and that fluctuations in experimental 

conditions play a role as well. These fluctuations could 

cause the reaction rate to deviate, resulting in larger 

errors in solvent concentration over time. It’s thus 

recommended to investigate the cause and extent of 

these fluctuations. 

Model 1 was found to underpredict the degradation at 

first, while overpredicting experiments with a longer 

duration. This shows that the model was unable to 

represent the non-linear degradation data, and explains 

the higher lack-of-fit parameter for the model. 
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Figure 5: Relative error as a function of initial loading (top), 

temperature (middle), and experiment duration (bottom) for 

the parameter estimates of model 2 on the refined dataset. 

4. Conclusion

To conclude, three models have successfully been used 

to evaluate and predict degradation through carbamate 

polymerization. Model 2, which takes into account the 

consumption of MEA in the rate equation, was able to 

explain the experimental data most accurately, with a 

relative standard deviation of 5.02%, compared to 

6.29% and 5.15% for model 1 and 3 respectively. Model 

2 predicts over 25.9% more carbamate polymerization 

at stripper conditions compared to model 1, the linear 

model, which do not take into account the concentration 

of MEA over time.  

The use of the speciation model to determine the 

carbamate concentration, in Model 3, also showed 

promise. It would be interesting to investigate how this 

model behaves when the concentration of CO2 and some 

of the major degradation products were also taken into 

account. Another recommendation is to perform more 

degradation experiments at increased temperatures and 

loadings to evaluate the experimental uncertainty. 
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