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a b s t r a c t

This paper presents methods for design optimization and performance analysis of radial inflow turbines.
Both methods are formulated in an equation-oriented manner and involve a single mathematical
problem that is solved by an efficient, gradient-based optimization algorithm. In addition, the compar-
ison of the model output with experimental data showed that the underlying mean-line flow model
accurately predicts the variation of mass flow rate and isentropic efficiency as a function of the pressure
ratio, rotational speed, and nozzle throat area. Moreover, the capabilities of the proposed methods were
demonstrated by carrying out the preliminary design and performance prediction of the radial inflow
turbine of an organic Rankine cycle. The results indicate that the design optimization method converges
to the global optimum solution, regardless of the start values for the independent variables. In addition,
the performance maps generated by the performance analysis method are physically consistent and
agree with general findings from experimental data reported in the open literature. Considering the
accuracy, robustness and low computational cost of the proposed methods, they can be regarded as a
powerful tool for the preliminary design and performance prediction of radial inflow turbines, either as a
standalone component or as part of a larger system.
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Rankine cycle using an organic working fluid, convention-
ally referred to as the Organic Rankine Cycle (ORC), is an attractive
technology for power production from low-temperature heat
sources [1]. The ORC is currently applied for power production from
waste heat [2] and renewable energy sources such as biomass
combustion [3], concentrated solar energy [4] and geothermal en-
ergy [5]. Despite these energy sources could provide a significant
fraction of the world's power demand [6], the full potential of ORC
power systems has not yet been realized because the specific in-
vestment cost of this technology is relatively high compared with
that of conventional power plants based on the combustion of fossil
fuels [7]. Therefore, a key factor to enable further utilization of the
ORC technology, and thus facilitate a reduction of CO2 emissions, is
to increase its cost-effectiveness.

One way to achieve this in applications for which the heat
n).
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source or sink characteristics vary with time is to account for the
off-design performance of the system during the design phase. For
instance, Capra and Martelli [8] demonstrated that a design opti-
mization that takes into account the off-design performance of the
Rankine cycle can significantly increase the cost-effectiveness of
the system with respect to a conventional design approach that
only accounts for the system performance at the nominal operating
point. More specifically, Capra and Martelli [8] applied the two
aforementioned methods to design a combined heat and power
Rankine cycle and showed that the former resulted in up to 22 %
higher annual profit than the latter [8].

In order to account for the off-design performance of the
Rankine cycle during the design phase, it is necessary to resort to
accurate performance prediction methods for each of its compo-
nents. In this context, the expander model is of key importance
because the performance of this component has a strong influence
on the mass flow rate and efficiency of the system. The importance
of the expander efficiency prediction for ORC design optimization is
illustrated by Song et al. [9], who performed two separate working
fluid screening analyses; one using a prescribed expander effi-
ciency and the other using amean-line turbinemodel to predict the
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Latin symbols
a Speed of sound [m/s]
A Cross sectional flow area [m2]
b Blade height [m]
c Blade chord length [m]
C Absolute velocity [m/s]
C0 Spouting velocity [m/s]
ci Rankine cycle state points
h Specific enthalpy [J/kg]
k Ratio of specific heat capacities [�]
Kp1;Kp2;Kp3;Kin Loss model calibration coefficients [�]
Lz Rotor axial length [m]
Ma Relative Mach number, Ma ¼ W=a [�]
o Throat opening [m]
p Pressure [Pa]
r Radial distance from shaft [m]
s Specific entropy [J/kg K], Blade pitch [m]
t Blade thickness [m]
U Rotational velocity [m/s]
W Relative velocity [m/s]
x0 Independent variable e start value [�]
xl Independent variable e lower bound [�]
xu Independent variable e upper bound [�]
Z Number of blades [�]

Greek symbols
a Absolute flow angle [rad]
b Relative flow angle [rad]
d Deviation angle [rad]
Dh Specific work reduction due to loss [J/kg]
h Total-to-static efficiency [�]
ε Clearance [m]
ε Convergence criterion [�]

n Velocity ratio [�]
m Dynamic viscosity [Pa s]
r Density [kg/m3]
u Rotational speed [rad/s]

Subscripts
0 Total state
1e6 RIT expansion state points
b Blade
cl Clearance loss
corr Corrected
d Design value
df Disc friction loss
h Hub
i Incidence loss; State point index
int Interspace loss
l Loss
m Meridional direction
n Nozzle
opt Optimal
out Outlet of a blade row
p Passage loss
r Rotor
ref Reference
s Shroud; Specific
su Supersonic loss
t Tangential direction
te Trailing edge loss
th Throat of a blade row

Abbreviations
KKT Kerush Kuhn Tucker
ORC Organic Rankine Cycle
RIT Radial Inflow Turbine
RMS Root mean square
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expander efficiency at its design point. Their results showed that
the inclusion of the mean-line model can change the optimal
working fluid in terms of net power output and that the predicted
expander efficiency can differ up to 11% points among the working
fluids considered. Expander performance prediction is arguably
even more important for off-design analyses because both the
expander efficiency and mass flow rate can change when the
operating conditions are modified. As an example of this, Chatz-
poulou et al. [10] performed off-design analyses of an ORC con-
verting heat from an internal combustion engine into power. They
considered a constant expander efficiency and a variable efficiency
predicted by a piston expander model, and they found that the
analyses that assumed a constant expander efficiency led to a net
power underestimation of up to 17 %.

Among the different architectures available for ORC expanders,
the Radial Inflow Turbine (RIT) is particularly promising thanks to
its high-compactness and its capability to accommodate a large
pressure ratio in a single stage [11]. In addition, the RIT can be
equipped with movable nozzle blades, known as variable guide
vanes, that can modify the nozzle throat area and the nozzle exit
flow angle by rotating around a pivot point [12,13]. As a result,
variable-geometry RITs offer more flexibility during off-design
operation than fixed-geometry turbines [14].

From the point of view of a Rankine cycle system analysis, using
a mean-line flow model to predict the performance of a RIT can be
2

regarded as a satisfactory compromise between model complexity
and prediction accuracy. A selection of RIT mean-line models
developed for Rankine cycle applications and documented in the
open literature is summarized in Table 1. The methods differ on
whether they can be applied for design optimization, performance
analysis, or both. In addition, some of the methods considered RITs
with movable nozzle blades, whereas most of them are limited to
fixed-geometry turbines. Moreover, the mean-line models also
differ with respect to which loss mechanisms are included. In
particular, the losses associated with supersonic flow conditions in
the nozzle or rotor blade rows, such as shock waves and intense
mixing, are especially relevant in Rankine cycle turbines due to the
potential combination of high-pressure ratio and low speed of
sound of the working fluid. However, only a limited number of RIT
mean-line models account for these complicated loss mechanisms
and, to the knowledge of the authors, the only correlations available
in the open literature are simple functions of the Mach number
whose generality and accuracy could be questioned [15,16](p. 82).

As seen in Table 1, most of the RIT mean-line models docu-
mented in the open literature have been validated against experi-
mental data or CFD simulations. In most cases, themodel validation
only considered data from one turbine operating at its design
pressure ratio. Indeed, the model predictions from Refs. [17,23,24]
showed a good agreement with the experimental data by Jones [27]
at the design pressure ratio of 5.7. However, these authors did not



Table 1
Selection of RIT mean-line models applied for Rankine cycle analyses in the open literature.

Reference Variable geometry Design optimization/Performance analysis Supersonic loss mechanisms Validation

Hu et al. (2015) [17] No Both No Exp.
Demierre et al. (2015) [18] No Performance analysis No Exp.
Song et al. (2016) [19] No Both No No
Da Lio et al. (2017) [20] No Design optimization Yes No
Meroni et al. (2018) [21] No Both Yes Exp./CFD
Alshammari et al. (2018) [22] No Performance analysis No Exp.
Du et al. (2019) [23] Yes Both No Exp
Liu and Gao (2019) [24] Yes Both No Exp
Zhou et al. (2020) [25] No Design optimization No CFD
Schuster et al. (2020) [14] Yes Both No Exp.
Lee et al. (2021) [26] No Performance analysis No CFD
Present work Yes Both Yes Exp.
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present a comparison between experimental data and model pre-
dictions for the other 7 pressure ratios reported in Ref. [27].
Therefore, the accuracy of their models for off-design operation at
other pressure ratios or for other turbine geometries is unknown.

The mean-line model presented byMeroni et al. [21] is arguably
the most accurate for high-pressure ratio applications. The reason
for this is twofold. First, the loss model that they adopted considers
various loss mechanisms occurring in the nozzle and the rotor
blade rows, including supersonic losses that are present when the
flow velocity exceeds the speed of sound. Secondly, they calibrated
some of the fitting constants of the loss model to minimize the
deviation between the experimental data from six high pressure-
ratio RITs and the corresponding model predictions. However, the
performance prediction method proposed by Meroni et al. [21]
requires an a priori numerical solution strategy to identify the
choked nozzle mass flow rate, which is followed by an evaluation of
whether the nozzle or the rotor chokes first as the pressure ratio
increases. The remaining calculation procedure depends on the
results from the initial analysis and it involves the solution of
several systems of nonlinear equations. Although their method
appears suitable for generating RIT performance maps, Meroni
et al. [21] did not report the execution time required to compute
each operating point and, therefore, it is not clear if their method is
suitable for system-level analyses.

In fact, the robustness and computational cost of the methods
for RIT design optimization and performance analysis documented
in the open literature is overlooked in the majority of cases. As a
notable exception, Hagen et al. [28] proposed an equation-oriented
RIT design optimization method and applied it to a case study to
show that the optimization problem is well-behaved and that the
design optimization reliably converged to the global optimum in
about 1 s.

Considering the limitations of the methods surveyed in Table 1,
the aim of the present paper is to extend the work presented in
Hagen et al. [28] and document the development of two robust and
computationally efficient methods for the design optimization and
performance analysis of RITs. The methods proposed in this work
are based on a mean-line flow model and contain the following
novel aspects: (1) the design optimization method uses a gradient-
based optimization algorithm and relies on equality constraints to
search for the optimal solution and close the model equations; (2)
the performance prediction method uses a new numerical treat-
ment of flow choking that is valid for subsonic and supersonic
conditions and does not require an a priori solution strategy to
identify whether the nozzle or the rotor are choked; and (3) each of
the methods only requires the solution of a single mathematical
problem, namely, a constrained optimization problem (design
optimization) or a system of nonlinear equations (performance
analysis).
3

The paper is organized as follows. The mean-line model and the
mathematical formulation of the design optimization and perfor-
mance analysis methods are described in Sec. 2. After that, the
experimental data by Jones [27] and Spence et al. [29,30] are used
to validate the mean-line flow model in Sec. 3. Finally, the capa-
bilities of the proposed methods are demonstrated in Sec. 4
through a case study. First, a preliminary design for a RIT for an ORC
power system is obtained using the design optimization method.
Thereafter the RIT performance analysis method is applied to
predict the performance maps of the designed turbine for various
rotational speeds and nozzle throat areas. The conclusions drawn
from this study are summarized in Sec. 5.

2. Methodology

The proposed methods for RIT design optimization and perfor-
mance analysis consist of a problem formulation, a mean-line flow
model and a gradient-based optimization algorithm. The illustra-
tion of the methods shown in Fig. 1 is valid for both design opti-
mization and performance analysis.

The main difference between the two methods is the problem
formulation step, where the RIT parameters are divided into three
categories:

1. The fixed parameters are predefined by the user and do not
change during the simulation. The RIT inlet state and outlet
pressure are examples of fixed parameters in both the design
optimization and performance analysis.

2. The independent variables are adjusted by the optimization al-
gorithm to find the numerical values that optimize a certain
objective function subject to constraints.

3. The dependent variables are computed using the independent
variables and fixed parameters and they include the objective
function and constraints.

A major part in the development of the problem formulation is
grouping the RIT parameters into the three above-mentioned
parameter categories and defining corresponding constraints and
an objective function. A detailed presentation of methods for
design optimization and performance analysis is presented in the
following two subsections.

2.1. Design optimization

The problem formulation for RIT design optimization is shown
in Table 2 (independent variables, constraints and objective func-
tion) and Table 3 (fixed and dependent RITgeometry variables). The
optimization objective is to maximize the total-to-static isentropic
efficiency. This objective function was selected because it is



Fig. 1. Overview of the proposed methods for RIT-design optimization and performance analysis.

Table 2
Independent variables, constraints and objective function for design optimization.

Description Symbol/formula xl x0 xu

Nozzle outlet velocity C2=C0 0.1 0.7 0.9
Nozzle outlet flow angle a3 40� 60� 80�

Rotor inlet meridional velocity C4m=C0 0.02 0.20 0.40
Rotor outlet velocity W6=C0 0.1 0.3 0.9
Rotor outlet flow angle b6 �70� �68.5� �20�

Specific speed us ¼ u _V
1=2
6;is =Dh

3=4
is

0.2 0.4 0.8

Velocity ratio n ¼ U4=c0 ¼ ur4=C0 0.5 0.65 0.8
Rotor radius ratio (shroud/inlet) r6s=r4 0.4 0.65 0.7
Rotor radius ratio (hub/shroud) r6h=r6s 0.4 0.7 0.8
Blade height to radius ratio b3=r4 0.04 0.1 0.34
Blade row outlet entropya,b sout=s1 1.0 1.0 sref =s1

Constraints
Consistent outlet pressure 1:0� p6=pout ¼ 0
Consistent nozzle outlet enthalpy h3 � hðp3; s01Þ �

P
lDhn;l

0:5C2
3

¼ 0

Consistent rotor outlet enthalpy h6 � hðp6; s4Þ � Dhint �
P

lDhr;l
0:5W2

6

¼ 0

Conservation of massc 1:0� rWA cos b= _m ¼ 0
Minimum degree of reaction h4 � h6

h01 � h06
� 0:45 � 0

Objective function
Maximize total-to-static efficiency

h ¼ h01 � h06
Dhis

a Two variables (nozzle and rotor).
b Reference entropy, sref, is the resulting outlet entropy when h ¼ 0:5.
c Three constraints (nozzle outlet, rotor inlet and rotor outlet).
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assumed that the kinetic energy leaving the rotor outlet is not
recovered. The independent variables that govern the geometry,
flow and thermodynamic parameters include both engineering
decision variables, such as specific speed and velocity ratio, and
parameters that are unknown a priori, such as the entropy distri-
bution. The upper and lower bounds used to constrain the inde-
pendent variables, as well as typical start values, are indicated in
Table 2. The bounds on the independent RIT geometry and flow
Table 3
Value of fixed parameters and formulas of the dependent RIT geometry variables for de

Parameter Symbol

Nozzle blade trailing edge thickness t3
Rotor blade trailing edge thickness t6
Rotor axial length Lz
Blade tip clearances εa; εr
Disc clearance εd=r4
Nozzle chord to pitch ratio cn=s3
Interspace distance r3 � r4
Number or rotor blades Zr
Number of nozzle blades Zn
Blade height, rotor inlet b4

4

angle variables were set in accordance with the limits suggested in
Refs. [16,17,31]. More specifically, this work applies the most con-
servative values from the above-mentioned references to ensure a
feasible design. The normalized velocity variables cannot, due to
conservation of energy, exceed the range between 0 and 1. How-
ever, a slightly smaller range of those variable were applied to limit
the domain of the design space. In addition, the bounds for the
specific speed and velocity are based on the results obtained by Da
sign optimization.

Value Source

0:012cn [16] (p. 256)
0:02r4 [16] (p. 240)
1:5ðr6s � r6hÞ [16] (p. 240)
0.4 mm [33]
0.05
1.33 [16](p. 256)
2b3 cos a3 [16](p. 256)

12þ 0:03ða3 � 57�Þ2 [16,32], (p. 240)

Zr þ 3
b3
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Lio et al. [20], who found that the maximum efficiency predicted by
their model occurs when the specific speed is around 0.4 and the
velocity ratio is in the range of 0.6e0.7.

When formulating the design problem, it was realized that some
RIT geometry parameters are not suitable for optimization. For
instance, the number of blades and the nozzle chord to pitch ratio
always reached either their lower or upper bounds during initial
design optimization tests. Consequently, fixing these parameters to
the value of their active bound reduces the complexity of the
mathematical problem without affecting the outcome of the opti-
mization. In addition, other parameters, such as blade edge thick-
nesses and rotor tip clearances, are constrained due to factors not
included in the model (e.g., manufacturing requirements or stress
considerations).

Consequently, all these parameters are either fixed or calculated
from the set of independent variables during the optimization. The
value of the fixed parameters and formulas for the dependent RIT
geometry variables are shown in Table 3, and most of these were
suggested default values from Aungier [16]. The empirical formula
used to compute the number of rotor blades was developed by
Rohlik [32] and recommended by Aungier [16]. Several scientific
works report or assume rotor blade tip clearances, εa; εr , in the
range 0.21e0.50 mm [14,20,27,29,31]. However, extensive devel-
opment of small gas turbines have shown that it is difficult to
maintain clearances less than about 0.4mm [33,34](p. 354). For this
reason, a conservative value of 0.4 mm is assumed for the rotor tip
clearances. Finally, the disc clearance and the number or nozzle
blades were assigned arbitrary, yet realistic, values. The influence of
these two variables on the design efficiency is negligible in com-
parison to that of other parameters, as demonstrated in the sensi-
tivity analysis shown in Fig. 9.

The design optimization starts by computing the isentropic
enthalpy change, Dhis ¼ h01 � hðpout ;s01Þ, using the prescribed inlet
state and outlet pressure. This enables the calculation of the
spouting velocity, C0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2Dhis

p
. Thereafter the rotational speed and

the rotor inlet radius can be computed from the independent
specific speed and velocity ratio variables. After that, the remaining
geometry parameters can be calculated using the independent
geometry variables and the fixed- and dependent geometry pa-
rameters. The geometry parameters involved in the mean-line
model are illustrated in Fig. 2.
Fig. 2. Illustration of the radial inflow turbine and the geo

5

Once the RIT geometry is described, the dependent variables
required to evaluate the objective function and constraints are
computed by means of the mean-line model. This model assumes
that the flow is uniform along the blade span and evaluates the
velocity triangles and thermophysical properties at the inlet, throat,
and outlet of the nozzle and rotor blade rows, see Fig. 2. As usually
done in the context of mean-line modelling [14,21], the presence of
boundary layers near the surfaces of the blades, hub, and shroud
was neglected. Consequently, the mass flow rate constraints of
Table 2 were evaluated using the geometrical cross-section area
given by Eqs. (1) and (2).

Ai ¼2pribi; i ¼ 3;4 (1)

A6 ¼p
�
r26s� r26h

�
(2)

The mean-line model starts by computing the nozzle outlet
enthalpy by conservation of energy, Eq. (3).

h3 ¼h01 �
1
2
C2
3 (3)

The enthalpy and velocity at the inlet of the rotor are calculated
by conservation of angular momentum, Eq. (4), and energy, Eq. (5),
through the interspace.

C4t ¼
r3
r4
C3t (4)

h4 ¼h01 �
1
2

�
C2
4mþC2

4t

�
¼h01 �

1
2
C2
4 (5)

The rotor outlet enthalpy is then calculated by conservation of
rothalpy through the rotor, Eq. (6).

h6 ¼h4 þ
1
2

�
W2

4 �U2
4

�
� 1
2

�
W2

6 �U2
6

�
(6)

A simplification is performed regarding the computation of the
thermodynamic state and velocity at the throat of the blade rows
(state points 2 and 5). Namely, the thermodynamic state at the
throat is assumed to be equal to the blade row outlet state and the
relative velocity at the throat is computed according to Eq. (7).
metry parameters involved in the mean-line model.



Table 5
Values of the calibration coefficients in the loss models [21].

Calibrated loss model Original loss model

Kp1 1.3881 1.0
Kp2 0.6370 1.0
Kp3 0.1042 1.0
Kin 0.8952 1.0
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Wth ¼
�
Wout ; Maout <1
aðhout ; soutÞ; Maout � 1 (7)

The thermodynamic states except the inlet state are defined by
enthalpy and entropy. The remaining relevant thermophysical
properties in these states are calculated by enthalpy-entropy
function calls, Eq. (8).

ri; Ti; pi; mi; ai ¼ f ðhi; siÞ; i¼f2;6g (8)

The mean-line model is compatible with any thermodynamic
library that supports enthalpy-entropy function calls. In this work,
the thermodynamic calculations were performed using REFPROP
v10.0 [35].

Furthermore, the losses due to irreversibilities within the tur-
bine are estimated using an empirical loss model. The loss model
adopted in this work, Table 4, was proposed by Meroni et al. [21]
and considers loss mechanisms in the nozzle, interspace and the
rotor, including the losses related to supersonic flow conditions.

The coefficients Kin; Kp1; Kp2 and Kp3 were introduced by Mer-
oni et al. [21] to calibrate the loss model. More specifically, they
adjusted the calibration coefficients by means of a genetic algo-
rithm with the aim to minimize the average root mean square
Table 4
Summary of the loss model from Meroni et al. [21] that is applied in this work.

Mechanism Correlation

Nozzle passagea

Dhn;p ¼Kp1
0:05
Re0:22

�

Nozzle trailing edgea

Dhn;te ¼
�

t3
s3 cos a

Nozzle supersonic

Dhn;su ¼
�
M3 �M

M3

Interspace

Dhint ¼Cf
L
D

1
2

�
C3

Rotor incidence

Dhr;i ¼Kin
1
2
W2

4 sin

Rotor passagea

Dhr;p ¼0:11
�
Kp2D

Rotor trailing edgea

Dhr;te ¼
�

Z
pðr6s þ r

Rotor clearance

Dhr;cl ¼
U3
4Zr
8p

n
0:4

Rotor disc frictiona

Dhr; df ¼0:25Kf
r4

Rotor supersonic

Dhr;su ¼
�
M6 �M

M6

a The point indices corresponding to the blade row throat states (points 2 or 5) do not m
states (points 3 or 6). However, a personal communication with Andrea Meroni confirme
compute the passage- and trailing edge losses because they believed it to be the most c

6

(RMS) deviation between experimental data from six high-pressure
ratio RITs and corresponding model predictions. The model vali-
dation presented in this work consider both the original- and the
calibrated loss model defined in Table 5. A more complete account
of the equations and parameters involved in the loss model is
presented in Appendix A.

The proposed design strategy takes advantage of equality con-
straints to ensure that the mathematical model is consistent. For
example, two equality constraints are imposed to ensure that the
calculated enthalpy distribution is consistent with the predicted
enthalpy losses and three equality constraints are imposed to
ensure that the mass flow rate is conserved and its value is equal to
the design specification. In addition, other equality- or inequality
constraints may be readily imposed to ensure that the outcome of
3 tan a2
s3=cn

þ s3 cos a2
b3

�
1
2
C2
2 (9)

2

	21
2
C2
2Y2 (10)

2
	21

2
C2
3Y3 (11)

þ C4
2

	2

(12)

2
b4 �b4;opt
�

(13)

LH
H
þ0:68Kp3

�
1�

�
r6
r4

	2� cos b6b
b6=cr

�
1
2

�
W2

4 þW2
5

�
(14)

r t6
6hÞcos b5

	21
2
W2

5Y5 (15)

εaKa þ0:75εrKr �0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εaεrKaKr

p o
(16)

þ r5
2

U3
4 r

2
4

_m
(17)

5
	21

2
W2

6Y6 (18)

atch with the indices stated in Ref. [21] who, instead, adopted the blade row outlet
d that Ref. [21] actually used the throat velocity (and not the row outlet velocity) to
onsistent way to express the losses.
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the optimization satisfies additional design requirements such as a
given degree of reaction or a maximum rotational speed.

The gradient-based algorithm applied in this work was NLPQL
[36], which is a sequential quadratic programming (SQP) method
that can be applied for solving both constrained optimization
problems and systems of nonlinear equations. Gradients are
calculated using a second order central difference approximation
for numerical differentiation. The step length used to perturb the
independent variables during the gradient estimation is shown in
Table 6 and is approximately three orders of magnitude smaller
than the value of the independent variables. The Kerush Kuhn
Tucker (KKT) optimal criterion is set to 1.0E-7 and the maximum
number of iterations is set to 80. This means that NLPQL returns an
unfeasible result if the KKT optimal criterion is not met within 80
iterations or other issues occur, see Ref. [36] for details.
2.2. Performance analysis

The independent variables and constraints for the RIT perfor-
mance analysis are summarized in Table 7. The independent vari-
ables include the unknown velocities and entropy distribution, and
several equality constraints are imposed to ensure internal con-
sistency. The number of independent variables equals the number
of equality constraints, meaning that there are zero degrees of
freedom for optimization and the mathematical problem is a sys-
tem of nonlinear equations.

The calculation procedure for performance analysis is very
similar to that for design optimization. However, in the perfor-
mance analysis method, the RIT geometry and rotational speed are
defined as fixed parameters. In addition, instead of being inde-
pendent variables, the blade row outlet flow angles are calculated
using the throat area and the equation of conservation of mass as
indicated in Fig. 3. The only inner iteration in the mean-line model
activates when outlet velocity of a blade row is supersonic. In such
case, the throat velocity is first guessed as the speed of sound at the
outlet. Thereafter multiple successive substitutions are performed
until the throat Mach number converges to 1.0. A relatively strict
convergency criterion (ε ¼ 10�10) is set to ensure accurate nu-
merical gradient estimations. In the case of subsonic outlet velocity,
no iteration is required to compute the thermodynamic state at the
throat. Instead, the thermodynamic state at the throat and outlet
are assumed to be equal. In this case, the formula for computing the
outlet flow angle becomes equivalent to the well-known cosine
rule since the density and velocity factors cancel each other out.

In contrast with the design optimization formulation, the per-
formance analysis also uses the entropy at the throat of each blade
row as independent variables. The reason for this additional
complexity is to ensure physically consistent results in the case
when the flow in either of the blade rows is choked. A reliable RIT
performance analysis should predict a mass flow rate that increases
with pressure ratio (by reducing the outlet pressure) until it con-
verges to a limiting value that corresponds to the case when the
Table 6
Step lengths for numerical differentiation used in the model validation and the case
study.

Independent variable Step length for numerical differentiation

C3= c0, C4m= c0, W6=

c0
us

n, r6s= r4, r6h= r6s

10�3

b3= r4 10�4

a3, b6 10�3 rad
Entropy variables ð1 � sref =s01Þ,10�3
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flow velocity in either of the blade rows reaches the speed of sound.
At this point the blade row is choked and a further increased
pressure ratio will not affect the mass flow rate, or the thermody-
namic states and velocity triangles upstream of the throat [37] (p.
264e265) The additional entropy variables and corresponding
constraints ensure that, once a blade row is choked, a further in-
crease in pressure ratio will not affect the thermodynamic state at
the throat or any points upstream of the throat. Instead the addi-
tional entropy production due to supersonic losses is assigned at
the outlet of the blade row. Thus, the mass flow rate, which de-
pends on the density at the throat, will remain constant beyond the
choking point.

2.3. Model implementation and compilation

Themean-linemodel, problem formulations and interfaces with
the Fortran source code of the optimization algorithm and the
thermodynamic library arewritten in the C programming language.
The executable files for running the design optimization and per-
formance analysis were built using the GNU [38] compilers gcc and
gfortran.

2.4. Discussion of the problem formulations

Developing a simple and effective problem formulation is a
challenging task that requires creativity and a solid understanding
of the underlying mathematical models and the numerical algo-
rithms used to solve the problem. We believe that the proposed
design optimization and performance analysis problem formula-
tions have some advantages that are worth highlighting:

1. The independent variables, constraints and the objective func-
tion are written in non-dimensional form. For instance, the
velocity variables are scaled by the spouting velocity and the
angular variables are converted to radians. A non-dimensional
problem formulation is not only advantageous from a numeri-
cal point of view, but it is also advantageous from a practical
standpoint because the initial guess and bounds of the inde-
pendent variables can be defined using physical principles and
general design guidelines instead of being tailored to each
specific application.

2. The use of a predefined outlet pressure in the performance
analysis ensures a unique solution of the problem. In the case of
predefined mass flow rate (as in Schuster et al. [14] and Meroni
et al. [21]), care must be taken to specify a problem with a
unique and feasible solution. This is because, once the flow is
choked, there is an infinite number of values for the outlet
pressure that yield the same mass flow rate, see Fig. 11. Schuster
et al. avoided numerical problems by considering subsonic
turbines only, while the approach in Ref. [21] involved use of a
numerical method to detect the choked mass flow rate. In
addition, in the case of a choked turbine, Meroni et al. [21]
provided a predefined outlet pressure together with the mass
flow rate to ensure a unique solution.

3. The use of blade row outlet velocities as independent variables
avoids the need for an a priori numerical solution strategy for
identifying whether any blade rows are choked as in Meroni
et al. [21]. Instead, the choked flow calculation activates every
time the blade row outlet flow velocity is supersonic. However,
whether the blade row actually chokes depends solely on the
magnitude of the outlet Mach number at the last iteration
before a feasible solution is found.

4. In contrast with other published methods, see Table 1, the
equation-oriented formulation of the design optimization
avoids the use of inner iterations. Instead, the model equations



Table 7
Independent variables and constraints for performance analysis.

Description Symbol

Nozzle outlet velocity C3=c0
Rotor inlet meridional velocity C4m=c0
Rotor outlet velocity W6=c0
Blade row throat entropya sth=s01
Blade row outlet entropya sout=s01

Constraints
Consistent outlet pressure 1:0� p6=pout ¼ 0
Consistent nozzle throat enthalpy h2 � hðp2; s01Þ �

P
lssuDhn;l

0:5C2
3

¼ 0

Consistent nozzle outlet enthalpy h3 � hðp3; s01Þ �
P

lDhn;l
0:5C2

3

¼ 0

Consistent rotor throat enthalpy h5 � hðp5; s4Þ � Dhint �
P

lssuDhr;l
0:5W2

6

¼ 0

Consistent rotor outlet enthalpy h6 � hðp6; s4Þ � Dhint �
P

lDhr;l
0:5W2

6

¼ 0

Conservation of massb 1:0� rWA cos b=r3C3A3 cos a3 ¼ 0

a Two variables (nozzle and rotor).
b Two constraints (Rotor inlet and rotor outlet).

Fig. 3. Method used to compute the velocity and thermodynamic state at the throat and the outlet flow angle of a blade row in the performance analysis method.

Table 8
RIT operating conditions and geometry for model validation.

Spence et al. [29,30] Jones [27]

Operating conditions Fluid Air Air
p01 [bar] 1.3e3.6 4.136
T01 [�C] 126.85 204.45
pout [bar] 1.01325 0.44e1.36

Nozzle r3 [mm] 55.5 63.5
b3 [mm] 10.2 6.0
Zn [�] 16 19
A2 [mm2] 653e1387b 491
t3 [mm] 1.0 0.51
cn [mm] 37.4 22.9

Rotor u [RPM] 30000e60000a 56000e83000
r4 [mm] 49.5 58.2
r6s [mm] 39.5 36.8
r6h [mm] 15.0 15.2
b4 [mm] 10.2 6.35
Zr [�] 11 16
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are closed bymeans of equality constraints that are processed at
once by the gradient-based optimization algorithm. As a result,
the model equations do not have to be converged at each opti-
mization iteration and the computational cost of the problem is
reduced.

5. The optimization algorithm used in the performance analysis
method could be replaced by a nonlinear equation solver
because the number of equality constraints equals the number
of independent variables. However, using the same algorithm
for design optimization and performance analysis yields a
smooth transition between the two methods. In addition, the
optimization algorithm gives the additional flexibility of
formulating the performance analysis as an optimization prob-
lem. For instance, little additional effort is required to modify
the proposed performance analysis method to automatically
find the rotational speed that maximizes the off-design
efficiency.
t6 [mm] 1.60 0.76
A5 [mm2] 2317 1910
Lz [mm] 41.0 38.9
cr [mm] 47.8c 45.7
εa [mm] 0.40 0.40
εr [mm] 0.40 0.21
εd [mm] 0.25 0.33

a Corrected speed, ucorr ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01=Tref

q
, Tref ¼ 288 K.

b Computed as.A2 ¼ Znb3on .
c Computed by Eq. (A.6) using b6b ¼ � 50:1� .
3. Model validation

Several sets of experimental RIT data have been published in the
open literature, but only a few of them are of sufficient quality to be
applied for model validation [39]. A high-quality set of experi-
mental data should contain measurements taken at different
pressure ratios and rotational speeds. In addition, the RIT geometry
should be documented such that it can be replicated within the
8
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mean-line model. In this work, the proposed mean-line model was
validated against two comprehensive data sets whose geometric
parameters and operating conditions are listed in Table 8. The
reader is referred to Refs. [12,17] for an overview of other experi-
mental data sets that could be used for RIT mean-line model
validation.

3.1. Experimental data

The first data set is by Spence et al. [29,30], who performed
experiments on 10 different turbine configurations. All cases con-
sisted of the same rotor surrounded by a ring of nozzle blades
operating at different setting angles. Consequently, the geometric
characteristics of the turbines only differ in nozzle throat opening
[29,30]. Hence, this data set is ideal for validating a variable-
geometry RIT model. To the best of our knowledge, the experi-
mental data of Spence et al. has rarely been used for model vali-
dation. The only study found inwhich data fromRef. [29] were used
for model validation was Ref. [22]. However, only data for the tur-
bine with the smallest nozzle throat opening was considered in
that study. The experimental data from Spence et al. covers effi-
ciency and corrected mass flow rate measured at different pressure
ratios and rotational speeds. To facilitate comparison of predicted
mass flow rates with experimental data, the corrected mass flow
rate was calculated by Eq. (19). The reference pressure and tem-
perature were set to standard atmospheric conditions in accor-
dance with Ref. [29].

_mcorr ¼ _m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T01

.
Tref

r
,pref

.
p01 (19)

The second data set is by Jones [27], who performed measure-
ments at 8 different pressure ratios, ranging from 3 to 9. Hence, this
data set is ideal for validating a RIT mean-line models for high-
pressure ratio applications, such as Rankine cycle power systems.
Data from Ref. [27] has been widely used for model validation after
it was rediscovered by Sauret [39], who also published more ge-
ometry information regarding Jones’ turbine. However, to the best
of our knowledge, only the data at the design pressure ratio of 5.7
have previously been used for model validation. The turbine
analyzed by Jones had an exhaust diffuser to recover some of the
kinetic energy leaving the rotor. In order to account for this, we
modeled the diffuser with a fixed recovery coefficient, cd ¼ 0.55,
(value given in Ref. [27]). This means that the computed rotor outlet
pressure had to be replaced by the diffuser outlet pressure in the
equality constraint used to ensure a consistent outlet pressure, see
Table 7.

3.2. Results

A qualitative comparison of experimental data from three of the
turbines from Spence et al. [29,30] and the corresponding mean-
line model predictions with the original and calibrated loss
models, as defined in Table 5, is shown in Fig. 4. As seen in
Fig. 4(b,d,f), the mean-line model slightly overpredicts the mass
flow rate in both cases. Part of this overprediction could be
attributed to the neglection of boundary layer effects. Indeed, an
approximate flat-plate boundary layer analysis indicated that the
combined displacement thickness in the nozzles might be about
2e3% of the throat opening. The loss model also affects the pre-
dicted mass flow rate illustrated by the larger mass flow rates
predicted by the calibrated loss model. In any case, the mean-line
model is able to predict that the mass flow rate increases with
increasing pressure ratio, decreasing rotational speed, and
increasing nozzle throat opening, which agrees with the
9

experimental data. Concerning the efficiency, Fig. 4(a,c,e), the
mean-line model generally overestimates its value except for some
pressure ratios at the lowest rotational speed. Despite this, the
model captures the main trends; the rotational speed has a strong
effect on the efficiency and lower rotational speeds yield better
efficiency at lower pressure ratios and vice versa. In addition, the
pressure ratio in which the peak efficiency occurs is predicted
reasonably well for different rotational speeds and nozzle throat
openings. Moreover, it can be observed that the predictions ob-
tained using the calibrated loss model deviate more from the
experimental data in Fig. 4 than those obtained using the original
loss model.

A comparison of experimental efficiency data from Jones [27]
and corresponding model predictions are shown in Fig. 5. Each plot
(a,b,c,d) represents data at a single pressure ratio and the x-axis
corresponds different rotational speeds expressed as the velocity
ratio. The calibrated loss model predicts a higher efficiency than the
original loss model in all cases. In addition, the original loss model
agrees better with the experimental data at the lower pressure
ratios, while the calibrated loss model agrees better with the
experimental data at the larger pressure ratios. Moreover, both loss
models predict the velocity ratio in which the peak efficiency oc-
curs to be around 0.7. This agrees quite well with the experimental
data at pressure ratio of 4.0, see Fig. 5(a). However, at larger pres-
sure ratios, the experimental data indicates that the maximum
efficiency is achieved at a slightly higher velocity ratio (about 0.75).

Figs. 4 and 5 only represent a fraction of the experimental data
from the 10 turbine configurations in Spence et al. [29,30] and the 8
pressure ratios in Jones [27]. Nonetheless, the trends observed in
these figures also hold for the remaining test conditions and they
were not plotted for the sake of brevity. Instead, the Root Mean
Square (RMS) deviation between experimental data and model
prediction in terms of mass flow rate and isentropic efficiency was
computed for all test conditions and summarized in Table 9. The
results indicate that the original loss model, on average, agrees
better with the experimental data of Spence et al. [29,30] than the
calibrated loss model does. However, this situation is reversed for
the experimental data by Jones [27]. In this case, the calibrated loss
model yields a lower RMS efficiency-deviation and predicts the
design point mass flow rate with a deviation below one percent.
The calibrated loss model was trained using data from high-
pressure ratio RITs and it is not surprising that it is more accurate
than the original loss model for such cases.

4. Case study

In this section the proposed design optimization and perfor-
mance analysis methods were applied to design and analyze a RIT
for the transcritical ORC considered in Ref. [40], see Fig. 7. As the
design pressure ratio for this case study is relatively low (4.87), the
calculations were carried out using the more conservative original
loss model.

4.1. Design optimization

The design optimization was performed using the problem
formulation from Tables 2 and 3 and the operation conditions
indicated in Fig. 6. The main results obtained from the design
optimization are summarized in Table 10. The values of the specific
speed and velocity ratio agree well with the values reported by Da
Lio et al. [20]. The design optimization performed by Hu et al. [17]
obtained almost the same specific speed (0.42) as in this work, but a
slightly larger velocity ratio (0.7). Moreover, two independent RIT
geometry variables had an active variable bound. Namely, the ratio
r6s=r4 reached its upper bound of 0.7 and the ratio b3=r4 reached its



Fig. 4. Qualitative comparison between experimental data by Spence et al. [29,30] and corresponding model predictions: Total-to-static efficiency (a, c, e) and corrected mass flow
rate (b, d, f).
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lower bound of 0.04. These bounds were suggested by Aungier
[16](p. 243) and Hu et al. [17], respectively. In addition, the
inequality constraint for minimum degree of reaction, whose lower
limit was proposed by Aungier [16](p. 243), was active.

The T-s diagrams of the ORC process and the expansion within
the RIT are illustrated in Fig. 7. It can be observed that the working
fluid enters the turbine at supercritical conditions and leaves as
superheated vapor. In addition, the close-up view of the expansion
process indicates that most of the entropy generation occurs in the
rotor row and that the kinetic energy leaving the turbine is small.
These results are confirmed by the loss distribution, rotor geome-
try, and velocity triangles illustrated in Fig. 8. More specifically, the
sum of the rotor clearance, passage, and trailing edge losses leads to
a reduction in the total-to-static efficiency of about 11% points,
which represents 70 % of the losses. By contrast, the kinetic energy
loss only penalizes the turbine total-to-static efficiency by 2.6%
points, which is explained by the large flow area (A6= A4 ¼ 3.5) and
small flow angle (a6 ¼ 2.8�) at the exit of the rotor. The rest of the
entropy generation can be attributed to the rotor disc friction loss,
10
the interspace loss and the losses in the nozzle ring. Notably, the
nozzle operates at supersonic conditions, Ma3 ¼ 1:22, which leads
to a supersonic loss that penalizes the total-to-static isentropic
efficiency about one percentage point.

A one-at-a-time sensitivity analysis was performed to illustrate
the sensitivity of the design efficiency to some of the assumptions
used in the design problem formulation. In particular, the lower
limit of the degree of reaction and values of selected parameters
from Table 3 were modified up and down by 20 % of their nominal
value, and a design optimizationwas carried out for each parameter
configuration. The results from the sensitivity analysis, see Fig. 9,
show that a higher design efficiency can be obtained by allowing a
lower degree of reaction and that the sensitivity of the design ef-
ficiency to the number of nozzle blades and the disc clearance are
negligible in comparison with the sensitivity to the degree of
reaction.

One drawback of gradient-based optimization algorithms is that
theymay converge to a local optima close to the starting point used
for the optimization. In addition, the convergence to a feasible



Fig. 5. Qualitative comparison between experimental data by Jones [27] and corresponding model predictions.

Table 9
Average RMS deviation between experimental data and corresponding model
predictions.

Experimental data Jones [27] Spence et al. [29,30]

Parameter hts _ma hts _m

Original loss model 3.4 %-points 2.1% 4.0 %-points 3.2%
Calibrated loss model 2.5 %-points 0.9% 5.3 %-points 3.8%

a Experimental data available at design point (pressure ratio of 5.78, n ¼ 0:70)
only.

Fig. 6. Fixed operating conditions for the case study and indication of the main output
parameters for the design optimization and performance analysis.
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solution is only guaranteed if the objective- and the constraint
functions are twice continuously differentiable. In this work, the
11
robustness of the proposed design optimization method was
assessed by carrying out 100 design optimizations starting from
random initial values for the independent variables. As seen in
Fig. 10(a), essentially all optimizations converged to the same so-
lution as the optimal value of the independent variables differed by
less than ± 0.06 %. The consistency in the optimization results is a
strong indication that the proposed design optimization method
reliably converges to the global optimum solution despite the non-
smooth transition between subsonic and supersonic flow velocities
in Eq. (7). The average execution time on a personal computer with
an Intel Core i7-8650U CPU of 2.11 GHz was 0.97s and 76 % of the
optimizations spent less than 1 s to converge, see Fig. 10(b).
4.2. Performance analysis

The off-design performance analyses were carried out using the
problem formulation from Table 7 and the operating conditions
indicated in Fig. 6. To this aim, the RIT geometry obtained during
the design optimization, see Table 11, was provided as fixed pa-
rameters and the influence of the rotational speed, pressure ratio,
and nozzle throat area on the isentropic efficiency and mass flow
rate was analyzed. More specifically, the rotational speed was var-
ied between 70 % and 110 % of its design value, the outlet pressure
was varied such that the pressure ratio varied between 1.8 and 8.0,
and the nozzle throat areawas varied between 60 % and 120 % of its
design value.

The mass flow rates predicted by the mean-line model are
shown in Fig. 11. Each of the plots (a,b,c,d) corresponds to a certain
nozzle throat area, whereas each colored line represents a certain
rotational speed. The design condition is indicated with an “x” in
the figures. It can be observed that the mass flow rate increases
with the pressure ratio until choking occurs and then remains
constant. Moreover, the model predicts that the pressure ratio in



Fig. 7. Process flow diagram of the ORC considered in Ref. [40] and T-s diagrams of the ORC process and the expansion within the RIT obtained from the design optimization.

Table 10
Main results from the design optimization.

Parameter Symbol Value

Specific speed us 0.41
Velocity ratio n 0.65
Degree of reaction R 0.45
Nozzle outlet flow angle a3 69.3�

Rotor outlet flow angle a6 2.8�

Rotor area ratio A6=A4 3.5
Design rotational speed ud 57 579 RPM
Design efficiency hd 0.841
Shaft power _W 140 kW

Fig. 9. Sensitivity of design efficiency to input parameters.
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which choking occurs is higher for higher rotational speeds. Inmost
cases, the value of the choked mass flow rate is unaffected when
the rotational speed changes. This is an indication that the flow in
the nozzle is the first to choke, because in case the flow in the rotor
was the first to choke, an increase in rotational speed would lead to
a reduction in the mass flow rate [12] (p. 24). However, for the case
when A2 ¼ 1:2A2d and u ¼ 1:1ud the mean-line model predicts
that only the rotor is choked, see Fig.12. Indeed, as seen in Fig.11(d),
the red line is lying slightly below the other curves.

The results depicted in Fig.11 also indicate that the nozzle throat
area strongly affects the mass flow rate. Indeed, the results shown
in Fig. 13 demonstrate that the mass flow rate is roughly propor-
tional to the nozzle throat area. This trend agrees well with the
experimental data of Spence et al. [30], which also suggests a
relationship between mass flow rate and nozzle throat area that is
Fig. 8. Loss distribution, rotor geometry (values in mm) and rotor inle

12
roughly proportional.
The total-to-static efficiencies predicted by themean-linemodel

are shown in Fig. 14. These results indicate that the rotational speed
has a strong influence on the efficiency and that, for each rotational
speed, there is a pressure ratio that maximizes the efficiency. In
addition, the results illustrated in Fig. 14(c) suggest that using a
rotational speed lower than the design one is advantageous when
the pressure ratio is lower than the design value.

The nozzle throat area also affects the total-to-static efficiency.
t and rotor outlet velocity triangles from the design optimization.



Fig. 10. Results and execution time of 100 design optimizations with random start values of the independent variables.

Fig. 11. Predicted mass flow rate vs. pressure ratio for different rotational speeds and nozzle throat areas.
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For instance, when comparing Fig. 14(a) and (d) it is clear that, for
small nozzle throat areas, the highest efficiencies occur at larger
pressure ratios, while, for large nozzle throat areas, the highest
efficiencies occur at the lowest pressure ratios. This trend agrees
well with the experimental data concerning variable-geometry RIT
measured by Spence et al. [30]. The efficiency penalization at high
pressure ratios and large nozzle throat opening can be attributed to
increased kinetic energy loss due to larger rotor outlet velocities
[30]. Indeed, a comparison between Fig. 15(a) and (b) shows that
the reduction in the total-to-static efficiency due to the kinetic
energy loss for the case A2 ¼ 1:2A2d is up to five percentage points
higher than that of the case A2 ¼ A2d. This is not surprising because
the flowrate and flow velocity leaving the rotor are larger when the
nozzle throat area is increased.
13
The efficiency trends depicted in Fig.14 also provide information
about the pressure ratio in which the rotor chokes. In the cases
when A2 ¼ 0:6A2d and A2 ¼ 0:8A2d the flow in the nozzle is the first
to choke and the rotor remains unchoked. However, when A2 ¼ A2d
and A2 ¼ 1:2A2d the rotor chokes at a pressure ratio about 7 and 6,
respectively. The transition between unchoked and choked rotor
can be observed as a kink point in the efficiency vs. pressure ratio
curves in Fig. 14(c and d). After this point, all the losses upstream
the rotor throat remain constant in terms of enthalpy change, see
Table 4, and any additional losses are due to the rotor supersonic
loss and the kinetic energy at the exit of the rotor. In fact, as illus-
trated by the loss distribution in Fig. 15, the predicted supersonic
loss is almost negligible in comparison with the other losses and
the decrease in efficiency as the pressure ratio increases can be



Table 11
RIT geometry obtained from the design optimization.

Nozzle r3 [mm] 45.5
b3 [mm] 1.77
Zn [�] 20
A2d [mm2] 167a

t3 [mm] 0.23
cn [mm] 19.4

Rotor r4 [mm] 44.3
r6s [mm] 31.0
r6h [mm] 20.3
b4 [mm] 1.77
Zr [�] 17
t6 [mm] 0.89
A5 [mm2] 681a

Lz [mm] 16.0
cr [mm] 24.6
εa [mm] 0.40
εr [mm] 0.40
εd [mm] 2.21

a Computed such that the performance analysis at the design point and the design
optimization predict equal flow angles.

Fig. 12. Mach number at the throat and outlet of the blade rows from the performance
analyses with the largest rotational speed and nozzle throat area.

Fig. 13. Relationship between mass flow rate and nozzle throat area from the per-
formance analyses.
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attributed almost exclusively to the kinetic energy loss. The reason
why some of the losses depicted in Fig. 15 (e.g., rotor passage and
clearance losses) seem to decrease when the pressure ratio in-
creases beyond the rotor choking point is that they are expressed in
terms of efficiency loss, rather than as a change in enthalpy.

In order to assess the computational efficiency and robustness of
the performance analysis method, all performance analyses applied
the same set of start values for the independent variables. The start
values of the velocity variables were equal to the corresponding
optimized values from the design optimization, whereas the start
values of the entropy variables were equal to 1.0. All performance
analyses converged to the feasible solution at the first attempt
within less than 2.5 s, see Fig. 16. This is a strong indication that the
performance analysis method reliably converges to the feasible
solution despite the non-smooth transition between subsonic and
supersonic flow. Although the performance analysis involves fewer
independent variables and constraints than the design optimiza-
tion, the computational cost of the twomethods is comparable. The
main reason for this is that the performance analysis requires an
inner iteration to compute the thermodynamic state at the throat of
the blade rows when the flow conditions are supersonic. Indeed, as
depicted in Fig. 16, there is a positive correlation between the
execution time and the nozzle outlet Mach number.
14
5. Conclusion

This paper presented a method for the design optimization of
RITs. In contrast with other design methods documented in the
open literature, the proposed method was formulated following an
equation-oriented approach and it uses equality constraints, rather
than inner iteration loops, to close the model equations. As a result,
the gradient-based algorithm used to solve the problem does not
need to satisfy the model equations at each intermediate optimi-
zation iteration and the computational cost of the problem is
reduced significantly. In addition, the present paper also presented
a method to analyze the performance of RITs. The novelty of the
proposed performance analysis method lies in the numerical
treatment of choked flow conditions. Indeed, the method uses a
predefined outlet pressure, rather than a predefined mass flow, to
guarantee that the underlying mathematical problem has a unique
solution, and it automatically detects whether the nozzle and rotor
blade rows are choked. This is different from other performance
analysis methods documented in the open literature, which are
only suitable for subsonic flow conditions or need an a priori nu-
merical solution strategy to identify whether any blade rows are
choked.

Both the design optimization and performance analysis
methods are based on amean-line flowmodel and use an empirical
loss model to account for the irreversibilities occurring within the
turbine. The mean-line model was validated against two compre-
hensive sets of experimental data concerning RITs operating at
different pressure ratios, rotational speeds and nozzle throat
openings. It was found that the RMS deviation between the isen-
tropic efficiency and mass flow rate predicted by the mean-line
model (when using the original loss model) and the experimental
measurements was less than 4% points and 3.5 %, respectively.
Moreover, the mean-line model was able to correctly predict the
trends of isentropic efficiency and mass flow rate as a function of
the pressure ratio, rotational speed and nozzle throat area.

Finally, in order to demonstrate their capabilities, the design
optimization and performance analysis methods proposed in this
workwere applied to design and predict the performance of the RIT
of an ORC operating with propane as working fluid. The design
optimization problem was solved starting from 100 random initial
values of the independent variables, and the method converged to
essentially the same solution. Although not formally proved, this
gives a strong indication that the optimization algorithm reliably
converges to the global optimum solution despite the non-smooth



Fig. 14. Predicted efficiency vs. pressure ratio for different rotational speeds and nozzle throat areas.

Fig. 15. Loss distribution vs. pressure ratio from some of the performance analyses.

Fig. 16. Execution time vs. nozzle outlet Mach number from the performance analyses.
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transition between subsonic and supersonic velocities within the
mean-line model. In addition, the performance maps predicted by
the performance analysis method are physically consistent and
agree with general findings from experimental works available in
the open literature. Notably, the performance analysis method
predicts that the mass flow rate increases with the pressure ratio
until choking occurs and that the corresponding mass flow rate is
roughly proportional to the throat area of the choked blade row.
Considering the accuracy, robustness and low computational cost
of the proposed methods, they can be regarded as a powerful tool
for the preliminary design and performance prediction of RITs,
either as a standalone component or as part of an integrated system
such as a Rankine cycle power system.
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Appendix A. Implementation of the loss models

This Appendix describes the implementation of the loss model
proposed by Meroni et al. [21]. The Reynolds number in the nozzle
passage loss correlation, Eq. (9), was computed using properties at
the nozzle throat and the blade height as the characteristic length,
Eq. (A.1).

Re2 ¼C2b3=n2 (A.1)

The trailing edge and supersonic loss correlations were origi-
nally proposed by Glassman [41] and Aungier [16](p. 82), respec-
tively. However, in their original form theywere expressed in terms
of the total pressure loss coefficient. The factor Yi in Eqs. (10), (11),
(15) and (18) was included to convert the total-pressure-based loss
correlations to enthalpy-based loss correlations. The expression for
the conversion factor Yi is given by Eq. (A.2) and it was proposed by
Horlock [42].

Yi ¼
�
1þ ki � 1

2
Ma2i

�� ki
ki�1

(A.2)

The rotor incidence loss was implemented differently in the
design optimization and the performance analysis methods. The
incidence loss was disregarded in the design optimization, whereas
in subsequent performance analyses the optimal rotor inlet angle,
b4;opt , was assigned the value of the flow angle from the design
optimization, i.e. b4;opt ¼ b4;d. This approach of forcing the mini-
mum incidence loss to occur at the design point was proposed in
Ref. [12](p. 238).

The optimal rotor inlet relative flow angle was not given in the
references of the experimental data used for model validation.
Therefore, a correlation given by Eq. (A.3) was applied to estimate
b4;opt during the model validation.

tan b4;opt ¼
�1:98 tan a4
Zr � 1:98

(A.3)

The rotor passage loss correlation, Eq. (14), requires the pa-
rameters LH , DH ; cr to be estimated. Moustapha et al. [12](p. 226)
suggest to estimate the hydraulic length as the average of two
quarter circles, Eq. (A.4), the hydraulic diameter as the average of
the inlet and outlet hydraulic diameter, Eq. (A.5), and the rotor
chord length according to Eq. (A.6). For the case of Jones’ turbine
[27], the value of the rotor chord was obtained from Ref. [39] rather
than from Eq. (A.6).

LH ¼p

4

�
Lz � b4

2
þ r4 � r6s þ

b6
2

�
(A.4)

DH ¼1
2

"
4pr4b4

2pr4 þ Zrb4
þ

2p
�
r26s � r26h

�
pðr6s þ r6hÞ þ Zrb6

#
(A.5)
16
cr ¼ Lz
cosb

; tanb ¼ 1
2
tan b6b (A.6)

To the best of our knowledge, there exists no reliable correlation
for the rotor deviation angle, d6 ¼ b6 � b6b. In addition, the use of
blade metal angles is restricted to the loss model only. For these
reasons the deviation angle is assumed zero unless the blade metal
angle is known a priori, as was the case for the rotor in Spence et al.
[29,30].

The factors Ka and Kr in the clearance loss correlation were
computed by Eq. (A.7), and the derivation of these factors can be
found in Ref. [12] (p. 229).

Ka ¼1� r6t=r4
Cm4

; Kr ¼ r6t
r4

,
Lz � b4
Cm5r6b6

(A.7)

The friction coefficient, Kf , in the disc friction loss correlation,
Eq. (17), is computed according to Eq. (A.8). This approach is similar
to that of Meroni et al. [21] and the only difference is the value of
the Reynolds number in which the transition between the laminar
and the turbulent correlation occurs. As this work relies on the use
of a gradient-based optimization algorithm, the transition Reynolds
number of 1:58,105 was used to ensure a continuous transition
between laminar and turbulent flow.

Kf ¼

8><
>:

3:7ðεd=r4Þ0:1Re�0:5
4 ; Re4 ¼ U4r4r4

m4
<1:58,105

0:102ðεd=r4Þ0:1Re�0:2
4 ; Re4 >1:58,105

(A.8)
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