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Abstract
The ubiquity of personal cellular phones in society has led to a surging interest in using 
Big Data generated by mobile phones in transport research. Studies have suggested that the 
vast amount of data could be used to estimate origin–destination (OD) matrices, thereby 
potentially replacing traditional data sources such as travel surveys. However, construct-
ing OD matrices from mobile phone data (MPD) entails multiple challenges, and the lack 
of ground truth hampers the evaluation and validation of the estimated matrices. Further-
more, national laws may prohibit the distribution of MPD for research purposes, compel-
ling researchers to work with pre-compiled OD matrices with no insight into the methods 
used. In this paper, we analyse a set of such pre-compiled OD matrices from the greater 
Oslo area and perform validation procedures against several sources to assess the quality 
and robustness of the OD matrices as well as their usefulness in transportation planning 
applications. We find that while the OD matrices correlate well with other sources at a low 
resolution, the reliability decreases when a finer level of detail is chosen, particularly when 
comparing shorter trips between neighbouring areas. Our results suggest that coarseness of 
data and privacy concerns restrict the usefulness of MPD in transport research in the case 
where OD matrices are pre-compiled by the operator.

Keywords Mobile phone data · Origin–destination (OD) estimation · Travel surveys

Introduction

Origin–destination (OD) matrices are a crucial component in the design of transporta-
tion networks and the development and planning of public transportation. Traditionally, 
OD matrices have been constructed with the help of household questionnaires and road 
surveys. Such sources constitute an invaluable source of information as they provide trip 
details at a fine detail (origin and destination, recurrence of trips, transport mode, trip pur-
pose, etc.) and can be designed to answer precise research questions. In Norway, the public 
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transport authority for the capital metropolitan area performs around 9000 interviews each 
year in order to map and understand travel habits of inhabitants in Oslo and Akershus (joint 
population of 1.3 million). The outcome of the interviews can then be used to estimate the 
number of trips undertaken between predefined areas of the cities so that OD matrices can 
be constructed.

There is, however, an inherent drawback associated with individual surveys. The prepa-
ration, collection and processing are costly and time-consuming. In a 2006 study of house-
hold travel surveys, Stopher and Greaves (2007) estimated that the costs of conducting a 
face-to-face travel survey amounted to $350 per household. Furthermore, sample sizes 
are small and keep decreasing; surveys often cover much less than 1% of the population 
(Stopher and Greaves 2007). Hence, the collected data needs to be considerably scaled up 
to generalise for the entire population. Increasing costs and safety concerns have led to a 
shift towards telephone-based interviews. These have been shown to be less accurate as 
respondents tend to omit a significant number of trips (between 20 and 30% for most sur-
veys) (Forrest and Pearson 2005; Wolf et al. 2003) and the self-reported answers are not 
always reliable because respondents of such surveys often tend to over- or underestimate 
their own consumption (in this case of transportation). While face-to-face interviews are 
reportedly more accurate and complete, Stopher et  al. (2007) still find a shortfall of trip 
recording between 7 and 12%. Household travel surveys also suffer from a low response 
rate, which tends to decrease as the size of the household and travel frequency increase, 
since these factors typically make the completion of a travel survey more burdensome.

The demand for more extensive, accurate and complete travel data has led to the emer-
gence of alternatives to these traditional data collection methods (Stopher and Greaves 
2007). The use and ubiquity of mobile phones have exploded in the last 2 decades, mak-
ing the prospect of using data signals from mobile phones in traffic applications interest-
ing, particularly as a data source for constructing OD matrices. Dozens of studies applying 
mobile phone data (MPD) to estimate vehicle and passenger flows have been published, 
and a lot of the research has focussed on the development of algorithms that filter through 
the vast amount of data generated in an attempt to identify travel patterns, in many cases 
in large cities such as Singapore (Aksehirli and Li 2018; Holleczek et al. 2015; Poonawala 
et al. 2016), Boston (Alexander et al. 2015; Qu et al. 2015; Wang et al. 2010; Toole et al. 
2015; Vazifeh et  al. 2019; Calabrese et  al. 2011a), Paris (Bachir et  al. 2019; Aguiléra 
et al. 2014; Smoreda et al. 2013; Larijani et al. 2015) and Barcelona (Bassolas et al. 2019; 
Montero et al. 2019). In recent years, access to mobile phone data has become a commod-
ity in many markets and is often available to public authorities (e.g. transport planners) 
for use in non-research/commercial purposes. The data in these studies range from simple 
counts (with temporospatial filtering) and various forms of aggregated data to OD matri-
ces. However, national laws may restrict the resolution and detail of the distributed data. In 
Norway, privacy laws prohibit the distribution of raw MPD to transportation researchers. 
As such, it is currently only possible to purchase OD matrices that have been pre-compiled 
by the mobile phone operators. The pre-compilation procedure includes anonymisation of 
the data as well as additional censoring measures that prevent potential re-identification of 
users.

In this paper, we aim to assess whether a set of OD matrices that have been compiled 
by a mobile phone operator, with little to no insight into the compilation procedure given 
to the end user, could be used as a potential replacement for travel surveys in transport 
planning applications, for instance by a public transport management company. We begin 
with an analysis of the OD matrices purchased from a mobile phone operator, describing 
the main challenges involved in their construction and discussing an optimal spatial and 
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temporal resolution. Since the OD matrices were computed, processed and anonymised 
by the mobile phone operator prior to being distributed, we begin with several preliminary 
assessments of their reliability. We then proceed with comparisons of the matrices with 
OD matrices constructed from other sources such as population statistics, ridership counts 
and traditional travel surveys, and then discuss on the usefulness of these pre-compiled OD 
matrices.

Background

Given the described drawbacks of traditional data collection methods, MPD has emerged 
as an appealing alternative for constructing OD matrices. The pervasiveness of mobile 
phones in today’s society makes it an optimal source for obtaining data from a large share 
of the population [worldwide mobile subscription rate now exceeds one device per person 
(World Bank 2019)] and covering a vast spatial scale in almost all regions of the world. 
As computational power is constantly increasing, the magnitude of the data becomes less 
of the impediment it once was, allowing the big data generated by mobile phones to be 
processed relatively quickly, which makes MPD a tempting replacement for traditional data 
sources such as surveys or data logs from electronic travel cards. This has led to a wave of 
studies assessing the usefulness of MPD in transport research, many of which concluding 
on a positive note. Nevertheless, a range of difficulties has been highlighted.

Multiple papers mention the spatial accuracy and coarseness of MPD as a limiting fac-
tor (Ahas et al. 2010; Calabrese et al. 2011a, 2013; Gundlegård et al. 2016; Huang et al. 
2019; Montero et al. 2019; Di Lorenzo et al. 2015; Becker et al. 2013; Bachir et al. 2019; 
Phithakkitnukoon et al. 2017; Poonawala et al. 2016; Aksehirli and Li 2018; Wang et al. 
2018). Some studies suggest that the highest resolution of MPD ranges from 200 to 400 m 
in urban areas (Kalatian and Shafahi 2016; Huang et al. 2019), while others find localisa-
tion errors of several kilometres (Di Lorenzo et al. 2015). This entails several problems. 
Firstly, it makes the differentiation between transport modes difficult, e.g. between car 
drivers and public transport users, for instance when roads and train tracks run parallel 
(Aguiléra et  al. 2014; Bachir et  al. 2019; Phithakkitnukoon et al. 2017). Secondly, since 
antenna density is strongly correlated with population density, the spatial resolution rap-
idly decreases with the remoteness of the analysed areas (Gundlegård et al. 2016), while 
overlapping antenna coverage may blur shorter trips in populated areas (Wu et al. 2013). 
Thirdly, the coarse spatial resolution also limits the minimum size of the regions that can 
be considered (Calabrese et  al. 2011a), and makes it hard to determine what constitutes 
a trip (Gundlegård et  al. 2016). Fourthly, it makes it difficult to detect changes in mode 
within a trip as well as tracking shorter trips [e.g. biking and walking trips (Bachir et al. 
2019)]. Huang et al. (2019) perform a systematic literature review of studies using MPD to 
detect transport modes and find that only one of the analysed papers differentiates between 
all available transport modes [which in that specific study include car, bus, tram, train, 
cycling and walking (Danafar et al. 2017)], but note that the study does not provide any 
measure of accuracy of the proposed detection algorithm.

Other concerns include the coverage of the data. Most studies are conducted using data 
obtained from one mobile phone operator, which limits the sample size to the market share 
of the operator (Calabrese et al. 2011a; Di Lorenzo et al. 2015; Gundlegård et al. 2016; Ni 
et al. 2018; Sørensen et al. 2018; Doyle et al. 2011; Aguiléra et al. 2014; Schlaich et al. 
2010; Chen et  al. 2016). As such, sample data is often scaled up using e.g. population 
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census data (Chen et al. 2016). Furthermore, most studies are based on call detail records 
(CDR) and/or internet protocol detail records (IPDR), which implies that the data sampling 
is event-driven (that is, MPD is only recorded when the phone user is actively using the 
phone for calling, texting or accessing the Internet). Hence, connection patterns of users 
affect data capture (Calabrese et  al. 2011a, 2013; Gundlegård et  al. 2016; Huang et  al. 
2019; García-Albertos et al. 2019; Phithakkitnukoon et al. 2017; Wu et al. 2013; Yamada 
et al. 2016). Gundlegård et al. (2016) found that users tend to make fewer calls in the morn-
ings, thereby making CDR less reliable for analysing e.g. morning commute patterns. CDR 
data is therefore also dependent on users’ calling plans (Calabrese et al. 2011a, 2013; Di 
Lorenzo et al. 2015), particularly in countries where unlimited calling/texting plans are less 
common.

Perhaps the most crucial limitation concerns the validation of MPD since no ground 
truth data exists (Huang et al. 2018, 2019; Phithakkitnukoon et al. 2017; Chen et al. 2016). 
In their literature review, Huang et al. (2019) find that few studies evaluate let alone vali-
date their methods, and conclude that the lack of standardised evaluation procedure and 
the scarcity of results validations make it difficult to assess which mode detection meth-
ods work best. Amongst the studies that provide some degree of data validation, several 
avenues are taken. Methods include cross-checking against log data from travel cards 
(Bachir et  al. 2019; Montero et  al. 2019; Aguiléra et  al. 2014; Poonawala et  al. 2016) 
and against mode share statistics data from official source (e.g. census statistics) or self-
reported data (questionnaires and surveys) (Becker et al. 2013; Calabrese et al. 2011a, b; 
Phithakkitnukoon et al. 2017; Qu et al. 2015; García et al. 2016). Other studies validate 
their data through georeferencing (using geographic data of the analysed area and check-
ing if MPD trajectory intersects with pre-defined spatial areas) (Wu et al. 2013; Li et al. 
2017; Doyle et al. 2011; García et al. 2016; Holleczek et al. 2015; Horn and Kern 2015), 
via manual counts along roads (Bassolas et al. 2019; Iqbal et al. 2014) and public transport 
stations (Holleczek et al. 2015), or by cross-checking models with e.g. observed congestion 
observations (Huang et al. 2018), traffic sensor data (Wu et al. 2015) or sighting data (cell 
tower triangulation) (Wang and Chen 2018). The few studies that do validate against actual 
ground truth data (for instance by having volunteers install tracking software on their 
devices or share their GPS coordinates (Becker et al. 2013; Isaacman et al. 2011; Zheng 
et al. 2010; Xu et al. 2010; Asgari 2016)), do so on a sample size usually several orders of 
magnitude smaller than the studied region.

Using MPD in transport research also entails some inherent problems associated with 
how it is collected. For instance, some studies mention the issue of users carrying sev-
eral devices (e.g. personal and work phones) (Calabrese et  al. 2011a, 2013; Di Lorenzo 
et al. 2015; Doyle et al. 2011; Chen et al. 2016), car-sharing (Calabrese et al. 2011a) and 
non-randomness of users (e.g. larger groups of users travelling together) (Calabrese et al. 
2011a, 2013; Di Lorenzo et al. 2015). Other studies mention the sheer size of the data as 
being a problem in itself (Ahas et al. 2010) and the fact that the data is only stored for a 
relatively short period of time (Huang et al. 2018). Additionally, collecting MPD involves 
issues of privacy (Ahas et al. 2010; Sørensen et al. 2018; Smoreda et al. 2013). Data col-
lection and processing may be impeded by mobile phone operators not sharing e.g. loca-
tion estimation methods and size of network cells (Ahas et al. 2010; Huang et al. 2019). 
Moreover, because the data needs to be anonymised before it can be used in studies, MPD 
does not provide semantic information about users (age, income groups, environmental 
awareness, etc.) or purpose of trip (work, leisure, travel) (Sørensen et al. 2018; Doyle et al. 
2011; Calabrese et al. 2011a; Alexander et al. 2015), which means that it cannot be used 
to study e.g. underlying behaviour mechanisms of households or individuals and therefore 
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narrows the scope of analyses that can be done (Phithakkitnukoon et al. 2017; Calabrese 
et al. 2013). For instance, this entails that MPD is not detailed enough to study how various 
policy measures (congestion charges, public transport subsidies, etc.) affect different types 
of trips or income groups—information that could be highly relevant for policymakers. 
Another consequence of privacy regulation is that data may have to be censored to inhibit 
the probability of potential re-identification of users from anonymised data.

Data and methods

Data

The MPD used in this study was purchased from one of the two largest mobile phone oper-
ators in Norway. Between them, these operators account for an 85% share of the national 
telecom market. The datasets (summarised in Table 1) are based on CDR, IPDR, as well 
as cell tower switches (which occur when a device is moving and leads to a shift in the cell 
tower channelling the activity). These comprise a spatiotemporal snapshot handset counts 
(dataset A), and two sets of OD matrices constructed by the mobile phone operator; one 
based on the same spatiotemporal window (dataset B) and one more spatially refined (data-
set C). Due to Norwegian privacy regulations, details about how the OD matrices were 
compiled are scarce, including which algorithms were used to identify trips from cell phone 
data and how these trips were aggregated into OD matrices. The MPD vendor did state that 
the provided data had been censored using k-anonymity (described in “Data anonymisa-
tion” section) and subsequently scaled up to the population of the analysed region.

Further data sources used include population statistics from Statistics Norway (the offi-
cial Norwegian statistical office), turnpike logs from the road toll operator in the region as 
well as door counts and travel survey statistics from the public transport management com-
pany. To enable comparison of these sources to the MPD data, the additional data sources 
were also scaled up (linearly) to population.

Defining features of the MPD used in the study

Temporal and spatial resolution

The data analysed stems from the four Wednesdays in February 2019 (one of which occur-
ring during Norwegian school holidays). Wednesdays were chosen as they were deemed 
representative of “normal” workdays. The OD matrices were computed and processed (i.e. 
smoothened, anonymised and censored) by the mobile phone operator prior to being deliv-
ered to the authors of this study and are provided in 1-h windows.

Table 1  Summary statistics for the datasets

Number of areas µarea ± σ (min–max)  km2 µpopl ± σ (min–max)

Datasets A and B 40 141 ± 188 (2.64–953.88) 19,170 ± 22,131 (1077–126,841)
Dataset C 2048 2.35 ± 7.27 (0.009–113,4) 653 ± 592 (0–2963)
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Norway is divided into 14,000 demographically homogenous basic statistical units (Sta-
tistics Norway 2019) (henceforth referred to as “boroughs”), which are the smallest official 
statistical unit in Norway. These range from under 1 to 2343 km2 and in population from 0 
to 6304. The region of Oslo consists of 40 “districts” that follow public municipality and 
neighbourhood delimitations. These districts are aggregates of these boroughs and vary 
substantially in size, ranging from a few units for the inner-city areas to entire municipali-
ties comprising several hundred boroughs, and correspond to public transport markets.

The main dataset (dataset B) used in this study consists of OD matrices describing trips 
between the 40 districts along with the number of travellers undertaking the described 
trips. Figure 1 shows the studied region of the Oslo metropolitan area partitioned into 12 
market areas and 40 districts. Two districts are excluded from the study (indicated in red 
in Fig. 1) as they cover public recreation areas without any major roads, making them less 
interesting from a transport planning perspective.

An additional dataset (dataset C) of more spatially refined OD matrices was also pur-
chased, covering trips to and from each of the six boroughs that constitute Asker city cen-
tre to other boroughs. Asker is a minor city but constitutes an important and significant 
suburb in the metropolitan area. This latter dataset was used to assess the loss of informa-
tion that occurs as a result of anonymisation algorithms when borough resolution is cho-
sen. The reason for choosing Asker city centre as a subfield of the study was its strategical 
importance as a regional highway and railway hub. In datasets A and B, Asker city centre 
is part of the greater municipality of Asker (pop. 60,000).

Fig. 1  Division of Oslo metropolitan area into units of study. Transparent colours indicate the 12 market 
areas defined by the operator, and areas delimited by solid black lines mark the 40 districts. Red areas indi-
cate public recreational/forest areas and are excluded from the study. (Color figure online)
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Data anonymisation

Working with data obtained from personal mobile devices entails inherent privacy con-
cerns, and studies using MPD are therefore usually required to adhere to stringent rules 
to preserve mobile users’ integrity and privacy. This includes not only anonymising data 
but also aggregating data to a level that prevents the reconstruction of individual signals 
so that the users’ (anonymised) travel patterns cannot be re-identified. Further steps may 
have to be taken depending on national regulations. Norwegian law mandates that CDR 
should be deleted (or at least anonymised) as soon as they are no longer needed for billing 
purposes [within 3–5 months (Drageide 2009)]. In addition, the law dictates that CDR may 
only be used for the same specific purpose as they were originally collected for, unless an 
active consent has been granted by the subscriber (Drageide 2009). As such, using CDR in 
transport research studies in Norway involves taking additional procedures to ensure that 
the data cannot be re-traced back to individuals. In practice, this means that the individual 
device IDs (IMSI) are hashed and assigned a new anonymous identification key each day, 
thereby making it impossible to track a specific (albeit anonymised) device across multiple 
days. Secondly, data is only shared if the number of trips between two areas and within 
a certain timeframe exceeds a certain value k (called k-value threshold or k-anonymity), 
which the operator has set to 5 (after rescaling to population census). This means that if the 
computed OD matrices result in less than 5 trips being taken between origin O and destina-
tion D within the predefined time interval, this value is censored (i.e. set to 0) before the 
OD matrices are delivered. Such a procedure inevitably leads to a trade-off between spatial 
and temporal resolution (and ultimately between both variables and data quality/availabil-
ity); the finer the temporal and spatial resolution, the higher the probability that the number 
of resulting observations will fall below the required threshold (as illustrated in Fig. 2).

Trip definition

One of the core difficulties of using MPD in the estimation of OD matrices is defining 
and detecting trips (i.e. trip generation). An advantage with OD matrices based on sur-
veys is that participants can precisely describe their undertaken trips according to the 
trip purpose, with the change of purpose marking the commencement of another indi-
vidual trip. However, MPD comprises a set of sampled data points from mobile devices 

Fig. 2  Conceptual graph illus-
trating the trade-off between 
spatial/temporal resolution and 
data quality that needs to be 
considered as a result of censor-
ing procedures. The blue line 
illustrates the k-value threshold, 
and observations below the line 
will be censored. (Color figure 
online)
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that need to be processed and analysed in order to distinguish potential trips between 
different areas, in other words challenging the usual order of trip generation and trip 
distribution in the traditional transport forecasting method.

As mentioned in the introduction, the spatial resolution of MPD is coarse, and the 
sampling rate is irregular and depends on user activity, which means that mobile phone 
signals are unevenly distributed in space and time. The MPD provided by the operator 
stems from CDR, IPDR and cell tower switches and is therefore event-driven, meaning 
that unless a user is actively using the device or travelling across different cell areas, 
data are not sampled. Event-driven data collection has been considered a limitation in 
previous studies, but since most mobile devices in Norway are almost constantly con-
nected to the internet, this results in a semi-continuous stream of signals being sent to 
cell towers. According to one operator, a typical mobile phone user in Norway transmits 
between 400 and 700 signals a day (which corresponds to an average sampling rate of 
17–30 signals per hour), though this metric varies substantially depending on user activ-
ity, geolocation and time of day. For instance, the sampling rate is lower at night due to 
less user activity and movement. A lower sampling rate entails that the probability that 
a short trip goes undetected increases, and it is therefore likely that short trips may be 
systematically under-represented in the data.

The algorithm used by the operator in this study relies on three main principles to 
define a trip:

1. A trip is assumed to begin when a previously stationary mobile device switches between 
network cells

2. A trip is assumed to end when a previously moving device remains stationary (i.e. within 
one cell) for longer than a certain period (a dynamic threshold)

3. A trip is also assumed to end when a device that has been moving in a certain direction 
(e.g. undertaking a trip) reverts direction, i.e. when a 180° turn is detected

The threshold described in the second point needs to be exogenously defined. In 
this study, it is set as a function of trip length, with the rationale that longer trips may 
include longer stopover times, for instance using public transportation that runs less 
frequently. The allowed length of a stopover lies between lower and upper bounds of 
10 min (for trips under 10 km) respectively 50 min (for trips over 200 km) and increases 
linearly between these bounds. This threshold function has been set by the mobile phone 
operator and is embedded in the algorithm used to construct the OD matrices (and could 
potentially be changed).

The drafting of such principles is necessary to distinguish between trip stopovers and 
trip destinations, which is, in turn, a prerequisite in the differentiation of the various 
trips undertaken by the device carrier during the course of a day. Nevertheless, the prin-
ciples listed above are likely to lead to certain misclassifications. One obvious example 
would be the case where a particular trip requires a stopover lasting more than 10 min 
(which is likely to occur during early or late hours of the day when public transport 
is less frequent). In such a case, the current definitions would imply that a single trip 
would be reported as two trips (or more). Regarding the third principle, misclassifica-
tion could occur in the case where a user travels by metro/train until a certain station 
and then retraces his/her steps above ground to reach the intended destination. This, too, 
could lead to a single trip being reported as two.
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Methods

The principal challenge associated with estimating OD matrices from MPD lies in the pro-
cessing of the collected data. This entails various pre-processing procedures of filtering 
out noisy data, data smoothing, sorting, etc., as well as algorithmic segmentation proce-
dures to identify trajectories and/or transport modes, and potentially also post-processing 
procedures to validate the obtained matrices (Wu et al. 2016). The MPD-based OD matri-
ces used in this study were processed by the mobile phone operator prior to being shared 
for further analysis due to privacy regulations. As such, we do not have detailed insight 
into how these matrices were compiled, other than information regarding how trips were 
defined and how sparse data were censored to prevent potential re-identification of users. 
We therefore undertook additional validation procedures to assess the reliability of the 
provided OD matrices, summarised in Table 2. Most of these procedures involve simple 
mathematical manipulations such as aggregation of data into comparable statistics or sta-
tistical calculations such as correlation with other available data sources and are therefore 
explained in the “Results” section.

We then proceeded with a comparison of the MPD-based OD matrices with OD matri-
ces constructed using public transport data (in “Validation against public transport data” 
section), turnpike logs (in “Validation against turnpike logs” section) and finally traditional 
travel surveys (in “Validation against travel surveys” section).

While the comparison to turnpike logs and travel surveys involved simple data aggrega-
tion and harmonisation procedures, the comparison to public transport data required con-
verting the available transport logs to OD matrices. The public transportation company 
keeps count of the number of passengers boarding and alighting from buses and trams 
running in the greater Oslo area through sensors located at every door. By taking the dif-
ference between these two measures, it is possible to estimate the number of passengers 
travelling along a certain route at a specific time. This, however, does not provide origin 
and destination points for individual travellers. To derive OD matrices from the passenger 
counts, a naïve estimation method was applied, where the number of passengers alighting 
at a certain stop is proportional to the number of passengers boarding. This is illustrated in 
Fig. 3, where the number of passengers boarding at stop A is assumed to alight at stops B, 
C and D (final stop) in the same proportion as the total number of passengers alighting at 
these stops. This naïve approach results in estimations for the number of passengers travel-
ling between different stops.

Once all public transport activity had been converted into individual trips, these were 
reconciled with the 40 studied subregions and temporally aggregated into 1-h periods to 
obtain comparable harmonised OD matrices.

Table 2  Quality assessment scenarios

Quality assessment scenario Hypothesis

Comparing different levels of aggregation (in 
“Effects of data censoring” section)

As a direct result of k-anonymity we expect more 
data to be censored as spatial resolution becomes 
more refined

Analysing net travels (in “Net travelling balance” 
section)

Net travels in and out of zones should be close to 
equal within a 24-h time span

Comparing to population statistics (in “Validation 
against population statistics” section)

The handset counts in dataset A should correspond to 
population statistics district-wise
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Results

Effects of data censoring

To assess how the privacy algorithm affects our data, we compared the number of trips 
recorded in a specific area using district respectively borough resolutions. Figure 4 shows 
the distribution of recorded OD combinations during a 24-h period over corresponding 
trip occurrences, for OD matrices based on district (LHS—left-hand side graph) and bor-
ough (RHS—right-hand side graph) resolution, respectively. In the LHS graph, we find no 
occurrences of district-to-district trips below ten. This is because districts are relatively 
large, and the odds of obtaining few trips between two areas are therefore small. The num-
ber of OD combinations then gradually increases to reach a peak at around 20 observa-
tions, meaning that 20 trip occurrences are the most common amongst the analysed OD 
combinations. Consequently, we can safely assume that the privacy algorithm does not 

Fig. 3  Illustration of the method used to estimate OD matrices from passenger counts

Fig. 4  Histogram of OD matrices at district (left graph) and borough (right graph) resolutions. The vertical 
axis shows the number of OD combinations that result in the number of trip occurrences on the horizontal 
axis. Trip occurrences below the k-value threshold of 5 are filtered out (i.e. set to 0)
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affect the results when a district resolution is applied, since it is performed independently 
on each dataset (i.e. at borough respectively district resolution).

The RHS graph, however, peaks at the k-value threshold (5 trips), suggesting that more 
trips would have been observed below the k-value had the algorithm not filtered out (cen-
sored) those observations (trips). This is an indication that analysing the OD matrices at 
the borough resolution is likely to substantially underestimate the total number of trips as 
a result of the privacy algorithm that the operator has applied. The results described in the 
rest of this paper are therefore derived from analyses at either district (40 regions) or mar-
ket area (12 regions) resolution.

Net travelling balance

To further validate the OD matrices, a comparison between the number of inbound and 
outbound trips was made for each district. It could be assumed that the net difference 
between these two measures during a full day ought to be close to zero (unless a trip spans 
over several 24-h periods).

This is confirmed in Fig. 5, which shows the cumulative inbound and outbound trips 
occurring during the analysed period for the 40 districts. The graphs show that the imbal-
ances that occur during the day (e.g. as a result of people going to work) are rectified at the 
end of the day, implying that the number of inbound and outbound trip is close to equal.

In the 40 districts shown, the average gross traffic flow is 90,000 ± 70,000 passengers 
and the net traffic flow is 0 ± 1000, with 38 of the districts having total net deviations 
smaller than 1% of the respective traffic volume. The remaining two have deviations of 
− 11% and + 13%. As such, the OD matrices are consistent with the assumption that the net 
traffic flow over a 24-h period is close to zero. Small deviations are to be expected, since 
not all travellers return to their origin at the end of a 24 h-period (for instance nightshift 
workers and travellers that spend the night elsewhere). Absolute numbers on the vertical 
axis are not shown to improve readability.

Validation against population statistics

Dataset A provides an hourly handset count per area. This count is fluctuating as people 
travel between different areas during the day. However, it could be assumed that the count 
should correspond to national population statistics at some point of the day (for instance, 
when all residents have returned home for the night). The boxplots shown in Fig. 6 show 
the relative hourly difference between population count estimated with the MPD and the 
official population statistics for the 40 districts. If all residents were indeed to spend a cer-
tain number of hours at their registered address each day, a substantial share of the obser-
vations ought to lay in the vicinity of the origin (i.e. entailing that the MPD count and 
population census concur). This, however, only occurs for a minority of the areas. For most 
of the districts, the number of residents exceeds the number of mobile signals, which can 
be explained by the fact that not all residents own mobile phones (for instance children). 
On the other hand, a few districts show opposite trends, notably that of St Hanshaugen. St 
Hanshaugen is a district located downtown, prominent with hotels (i.e. no official residents 
but many mobile signals) and popular with students, who tend to remain registered at their 
parents’ place for financial reasons while living and studying in Oslo. Furthermore, many 
of the apartments there are rented out to e.g. foreign short-time workers (notably Swedes), 
who often remain registered in their home countries. This also entails that one apartment 
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may have one (or zero) official resident despite that it houses several inhabitants. Lastly, 
it is worth mentioning that national population statistics also carry inherent uncertainty; 
Statistics Norway estimate the accuracy of its census statistics to ± 5–10% (Schjalm 1996).

Validation against public transport data

To further validate the MPD, we compared the OD matrices with OD matrices constructed 
using door counts from public transportation, as described in the method section. Figure 7 
shows the number of passengers travelling between the city centre of Oslo and the Frogner 
district during 1 day using both data sources. The shapes of the curves indicate that the dis-
tributions of the trips during the course of a day are similar. However, we do note that the 
centre-bound travel peak that occurs in the morning according to public transportation data 
does not appear in the MPD.

Fig. 5  Cumulative inbound and outbound trips for the 40 districts included in the study. The horizontal axis 
represents time (from 00:00 to 24:00) and the vertical axis shows the number of trips under taken (the scale 
is different in each graph)
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We also find a discrepancy regarding the absolute number of trips, with the MPD 
leading to estimations two to three times higher than the estimations based on public 
transport. This is to some extent expected, as the MPD reports all undertaken trips 
while the latter only accounts for bus or tram trips. Figure 8 summarises the magnitude 
of the discrepancy between both metrics. Each dot represents a unidirectional trip 
between two subregions, and the values on the axis show the number of estimated trips 
obtained from passenger counts (horizontal axis) and MPD (vertical axis). As the 
study comprises 40 districts, this results in 40P

2
=

40!

(40−2)!
= 1560 combinations/trips 

(where P symbolises the permutation operator). Most observations lie above the diago-
nal (blue line), indicating that OD matrices from MPD systematically lead to more 
observations.

Fig. 6  Boxplot of hourly handset 
count per area as a percentage 
of the official population for the 
same area (census − MPD)/cen-
sus * 100%

Fig. 7  Number of passengers travelling from the city centre of Oslo to the district of Frogner (left) and vice 
versa (right), during the course of a day, estimated using MPD and passenger counts respectively
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Validation against turnpike logs

The next validation procedure entails comparing the MPD to estimates of the number 
of eastbound travellers passing the highway turnpikes situated between the district of 
Bærum and the city centre based on the OD matrices stemming from MPD. The number 
was obtained by summing all trips originating from any of the western districts and end-
ing in any of the other districts. This number was then compared with the vehicle count 
performed at the turnpikes (Fig. 9).

Fig. 8  Comparison between the travel counts estimated using MPD (vertical axis) and passenger counts 
(horizontal axis). Each dot represents a unidirectional trip between two districts

Fig. 9  Number of eastbound travellers passing the highway turnpike between the district of Bærum and the 
city centre (LHS graph), estimated with MPD data (red line) and based on vehicle counts (green line), and 
correlation plot of the two curves (RHS graph)
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Akin to the comparison with the public transport data, the shapes of curves correlate 
well over the course of the day, but the total number of trips differ, with the MPD resulting 
in more trips. This, again, can be expected; the turnpike counter does not discern whether 
a vehicle contains one or several passengers, and not all trips are undertaken by car. For a 
short period, we see that MPD registers fewer trips than registered at the turnpikes. It is not 
clear from any of the two data sources and their metadata what causes this effect, but it is 
likely a consequence of temporal aggregation.

Validation against travel surveys

The final validation procedure consists in comparing the MPD-based OD matrices with 
OD matrices obtained from travel surveys. Such a comparison entails two important limita-
tions. Firstly, the definition of a “trip” differs; while a travel survey respondent has perfect 
knowledge (in theory) of the distinct trips undertaken during a day, the OD matrices con-
structed from MPD require to mechanically define what constitutes a trip, the implications 
of which have already been discussed in the “Methods” section. Secondly, OD matrices do 
not account for trips occurring within one of the 40 districts of study (nor trips occurring 
outside the system boundaries of Oslo and Akershus), whereas survey respondents may 
account for such trips. As such, it is reasonable to expect that the total number of trips esti-
mated from MPD lays below the estimations obtained from travel surveys.

The OD matrices provided by the operator resulted in 1.89 million trips for an average 
Wednesday (based on the four studied Wednesdays). With a population of around 1.33 mil-
lion, this results in 1.4 trips per person per day. Alternatively, using the number of regis-
tered cell phones as a benchmark (1.08 million), the number still only amounts to 1.7 trips 
per person per day. According to a 2013/2014 report by Hjorthol et al. (2014), the average 
Norwegian citizen undertakes 3.3 trips per day, which confirms that the OD matrices sig-
nificantly underestimate the number of reported trips, though it must be emphasised anew 
that these figures are based on different approaches and definitions and can therefore not be 
compared on the same basis.

To obtain an overall sense of how well the two OD sources correlate, we aggregated 
the 40 districts into the 12 market areas defined by the operator and plotted the under-
taken trips in the matrices shown in Fig. 10, where values are normalised by origin so that 
the sum along the columns equal 100. Inter-market area trips were set to zero to enable 
comparison, and the district of West4 was excluded as it was not considered in the travel 
surveys. The plots are colour-scaled in shades of blue, with opaqueness decreasing with 
increasing shares.

Figure  10 indicates that the general distribution of trips seems to be consistent 
between the two data sources. In order to quantify the discrepancies, we constructed a 
distribution difference matrix (Fig.  11), which shows the cellwise difference between 
the two matrices from Fig. 10. The difference lies within a range of [− 13, 11] %, with 
more than half of the cells differing less than 1%. This indicates that the OD matrices 
obtained from MPD and travel surveys correlate well. We note that the largest differ-
ences occur for trips into the city centre, where MPD systematically underestimates the 
number of undertaken trips. This could be a result of the city centre area being relatively 
small (geographically), which increases the odds of misidentifying trips. We also note a 
general trend of larger discrepancies along the diagonal for regions that are geographi-
cally close (e.g. within the same cardinal directions, such as West3 to West2, Northeast4 
to Northeast3, etc.). This entails that estimating OD matrices from MPD appears less 
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precise for trips between neighbouring areas (under the assumption that OD matrices 
based on travel surveys constitute ground truth), although this is to be expected as a 
consequence of the low geographical precision.

A similar analysis was performed at the district level. Because the survey data was 
not as temporally precise as the OD matrices, the comparison could not be done in abso-
lute numbers unless data was extrapolated. Hence, we performed the analysis on the 
same basis as for the market areas (shown in Fig. 10), and instead compared the share of 
trips originating from each origin to all destinations, for the MPD and the survey data 
respectively. Each point in Fig. 12 symbolises one OD combination (trip from district X 
to district Y). For instance, the uppermost point shows that of all trips originating from 

Fig. 10  Distribution of trips between different market areas (aggregated districts) using OD matrices from 
travel surveys (LHS graph) and MPD (RHS graph). Shares are normalised by origins (i.e. the sum along 
columns equal 100)

Fig. 11  Cellwise difference 
between the OD matrices dis-
played in this figure (difference 
in absolute percentage points)
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district X, 50% end in district Y according to the MPD, but only 14% according to the 
survey data. While some distinct outliers can be observed, the distribution of trips from 
the two sources correlate well, with a coefficient of determination  (R2) of 0.82.

Discussion

MPD constitutes a new and vast source of information that entails new opportunities for the 
fields of transport network designs and public infrastructure planning. The unprecedented 
size and comprehensiveness of MPD compared to traditional sources used to estimate OD 
matrices make it an invaluable complement to e.g. travel surveys, which typically contain 
only a few thousand samples, and to travel card logs, which only cover travellers using a 
particular transport mode. As a result, MPD has been praised in the literature as a virtual 
gold mine for transport planning and modelling. While the sheer amount of data may be 
unprecedented, its usefulness in the estimation of reliable OD matrices is still unclear. The 
various problems associated with the use of MPD in the estimation of OD matrices have 
already been thoroughly described in the introduction of this paper, and while their extent 
depends largely on the characteristics of the studied area and the quality of the MPD used, 
the inherent nature of MPD entails a range of systematic issues that inevitably hamper its 

Fig. 12  Share of trips originating from each origin to all destinations, for trips compiled using MPD (verti-
cal axis) and travel surveys (horizontal axis). Each point symbolises one unique OD (e.g. district X to dis-
trict Y), and the percentage is the share of all trips starting in district X that end in district Y
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robustness. Notably, coarseness of data and privacy concerns restrict the resolution to rela-
tively large geographical areas. In this study, we have addressed the latter characteristic 
by assessing the robustness of a set of OD matrices that had been pre-compiled (including 
anonymised and censored) by the mobile phone operator prior to be distributed for analy-
sis. We compared the data to several other sources, including travel surveys.

When studying the OD matrices at borough level, we found that a substantial share of 
the trips had been censored by the privacy algorithm applied by the mobile phone operator, 
rendering those matrices incomplete and unreliable for describing travel patterns. Further-
more, our results reflected the complexities involved in defining what constitutes a trip; a 
trip defined by a travel survey (e.g. an individual travelling from A to B) does not neces-
sarily coincide with a trip as defined by MPD, especially for relatively short trips involving 
stopovers. This was confirmed in our results, where discrepancies between OD matrices 
estimated from travel surveys and MPD-based OD matrices tended to be larger for trips 
between neighbouring areas (despite choosing a relatively coarse resolution). This concurs 
with findings from other studies as well; for instance, Alexander et  al. (2015) find good 
correlation of MPD with travel surveys when aggregating trip origins and destinations to 
areas larger than one square mile.

Perhaps the greatest challenge in assessing the reliability of MPD is the lack of exact 
ground truth. As seen in this study and others (e.g. Mamei et al. (2019)), matching MPD 
to other sources entails multiple challenges. All potential validation sources suffer from 
inherent issues of incompleteness and/or inaccuracy; public transport logs cover only pas-
sengers on buses and trams and often do not provide enough detail to accurately describe 
the undertaken trips (e.g. because cards are only validated on entry, because of monthly 
subscriptions, etc.); traffic cameras/sensors capture only vehicle passengers and cannot 
determine the amount of passengers in each vehicle; travel surveys involve selection bias 
and misreporting, etc. Comparing MPD against other sources linked to specific transport 
modes always entails a comparison between sample data of different sizes (as more people 
own mobile phones than e.g. travel by car), and comparing distribution curves as we have 
done in this study implicitly assumes that the percentage of phone owners (and number of 
phones per user) in each group (e.g. car drivers and bus passengers) is equal. These rela-
tively large and variable errors, combined with a lack of quality metrics for MPD-sourced 
trip generation (Huang et  al. 2019), makes direct comparison of algorithms and models 
difficult.

Additionally, practical challenges regarding use of MPD in transport planning remain. 
MPD is currently not freely available in most countries and needs to be purchased from 
mobile operators. This is usually costly, which has resorted many published studies to pur-
chase data from specific periods and specific areas (typically a city and/or the surround-
ing agglomeration) in order to answer specific research questions. Constructing a dynamic 
transport model based on regularly updated travel information would require continuous 
(or at least semi-continuous) access to MPD and would therefore entail a significant cost. 
However, this might change in the future if the use of MPD for transport-related purposes 
increases, potentially creating a well-functioning market for storage, exchange, and pricing 
of relevant products.

In this study, we only considered data and transformation methods that were commer-
cially available, and only stemming from one mobile phone operator. These data sources 
lag behind some of the research frontier, for instance with respect to transport mode detec-
tion (Huang et al. 2019), which are currently not available for purchase. While this is of 
high importance for transport planning, the results from such advanced methods emerg-
ing from the research field seem to be more on the level of “proof of concept” rather than 
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“proof of value” or business ready. As such, we have relied on the less complex approaches 
of trip identification and population scaling, limited by k-anonymity. Nevertheless, we 
found that the lack of coherent and transparent definitions and approaches between mobile 
phone operators makes the work of establishing quality metrics more important.

Concluding remarks and topics for further research

In this paper, we have studied a set of pre-compiled OD matrices of the greater Oslo area 
estimated using MPD and validated them against several other sources including passen-
ger counts from public transportation, population census and highway traffic logs. We also 
compared the matrices with OD matrices constructed using individual travel surveys to 
assess whether such pre-compiled matrices could be used as a potential replacement for 
travel surveys, which have traditionally been the source of choice in the estimation of OD 
matrices.

We found that the scaled-up results from the OD matrices stemming from MPD and 
from travel surveys concur well in terms of travel patterns, but that the number of under-
taken trips differ substantially. We also found that the accuracy of the used MPD (in terms 
of how well it correlates with travel surveys) was lower for trips between neighbouring 
areas, differing up to 13% even when a relatively coarse resolution was chosen. The accu-
racy was also shown to be lower for trips bound for the city centre of Oslo as a result of 
that area being geographically small, which increases the odds of misidentifying trips. We 
therefore concluded that such as set of pre-compiled MPD-based OD matrices could poten-
tially be useful for mapping long-distance trips, but that additional data would be needed to 
accurately identify shorter trips.

The results of this study show that while MPD does constitute a vast and worthwhile 
resource for transport-related applications, the usefulness rapidly decreases at finer reso-
lutions when privacy regulations limit the data available to transport researchers. In the 
case where OD matrices have been pre-compiled by the operator and where a relatively 
stringent privacy algorithm has been used to filter out data, we concluded that MPD does 
not constitute a comprehensive alternative to travel surveys for transport operators but 
should rather be considered a complementary source of information. We therefore sug-
gest several areas of potential future research that could contribute to the further advance-
ment and improvement of MPD-based transport-related analyses. Firstly, methods should 
be developed to harvest the full potential of MPD while still respecting governing privacy 
regulations. Cut-off thresholds may be suitable for large study areas and/or longer periods 
of time, but other anonymisation schemes should be developed for fine-grained studies, 
for instance based on those suggested by Machanavajjhala et al. (2008) and Chatzikokola-
kis et  al. (2017). Secondly, the robustness and validity of MPD should be compared to 
ground truth data in more detail. This will entail several varied, controlled experiments, 
where detailed information about the transport activity is collected simultaneously with 
MPD observations. Thirdly, business models for MPD data transactions and standardisa-
tion for MPD products should be developed, for the benefit of both MPD suppliers and 
MPD users, as the current complex pricing scheme on MPD and the lack of a commonly 
accepted standard for MPD format, content, and quality constitutes a fundamental impedi-
ment to transport research based on MPD.

Author contributions Journal submission guidelines do not indicate that these are mandatory.



 Transportation

1 3

Funding No funding to declare.

Availability of data and material Data and material used have not been made available due to privacy 
requirements.

Code availability Code used has not been made available.

Compliance with ethical standards 

Conflict of interest The authors declare no conflict of interest.

References

Aguiléra, V., Allio, S., Benezech, V., Combes, F., Milion, C.: Using cell phone data to measure quality of 
service and passenger flows of Paris transit system. Transp. Res. Part C Emerg. Technol. 43, 198–211 
(2014)

Ahas, R., Aasa, A., Silm, S., Tiru, M.: Daily rhythms of suburban commuters’ movements in the Tallinn 
metropolitan area: case study with mobile positioning data. Transp. Res. Part C Emerg. Technol. 18, 
45–54 (2010)

Aksehirli, E., Li, Y.: Predicting MRT trips in Singapore by creating a mobility behavior model based on 
GSM data. In: 2018 IEEE International Conference on Data Mining Workshops (ICDMW), pp. 632–
639. IEEE (2018)

Alexander, L., Jiang, S., Murga, M., González, M.C.: Origin–destination trips by purpose and time of day 
inferred from mobile phone data. Transp. Res. Part C Emerg. Technol. 58, 240–250 (2015)

Asgari, F.: Inferring User Multimodal Trajectories from Cellular Network Metadata in Metropolitan Areas. 
Institut National des Télécommunications, Évry (2016)

Bachir, D., Khodabandelou, G., Gauthier, V., El Yacoubi, M., Puchinger, J.: Inferring dynamic origin–des-
tination flows by transport mode using mobile phone data. Transp. Res. Part C Emerg. Technol. 101, 
254–275 (2019)

Bassolas, A., Ramasco, J.J., Herranz, R., Cantú-Ros, O.G.: Mobile phone records to feed activity-based 
travel demand models: MATSim for studying a cordon toll policy in Barcelona. Transp. Res. Part A 
Policy Pract. 121, 56–74 (2019)

Becker, R., Cáceres, R., Hanson, K., Isaacman, S., Loh, J.M., Martonosi, M., Rowland, J., Urbanek, S., 
Varshavsky, A., Volinsky, C.: Human mobility characterization from cellular network data. Commun. 
ACM 56, 74–82 (2013)

Calabrese, F., Di Lorenzo, G., Liu, L., Ratti, C.: Estimating Origin–Destination Flows Using Opportunisti-
cally Collected Mobile Phone Location Data from One Million Users in Boston Metropolitan Area 
(2011a)

Calabrese, F., Di Lorenzo, G., Liu, L., Ratti, C.: Estimating origin–destination flows using mobile phone 
location data. IEEE Pervasive Comput. 10, 36–44 (2011b)

Calabrese, F., Diao, M., Di Lorenzo, G., Ferreira Jr., J., Ratti, C.: Understanding individual mobility pat-
terns from urban sensing data: a mobile phone trace example. Transp. Res. Part C Emerg. Technol. 26, 
301–313 (2013)

Chatzikokolakis, K., Elsalamouny, E., Palamidessi, C., Pazii, A.: Methods for Location Privacy: A compara-
tive overview. In: Foundations and Trends® in Privacy and Security, vol. 1, no. 4, pp. 199–257. Now 
publishers inc. https ://doi.org/10.1561/33000 00017  (2017)

Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M.: The promises of big data and small data for travel behavior 
(aka human mobility) analysis. Transp. Res. Part C Emerg. Technol. 68, 285–299 (2016)

Danafar, S., Piorkowski, M., Krysczcuk, K.: Bayesian framework for mobility pattern discovery using 
mobile network events. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 1070–
1074. IEEE (2017)

Di Lorenzo, G., Sbodio, M., Calabrese, F., Berlingerio, M., Pinelli, F., Nair, R.: Allaboard: visual explora-
tion of cellphone mobility data to optimise public transport. IEEE Trans. Visual Comput. Graph. 22, 
1036–1050 (2015)

Doyle, J., Hung, P., Kelly, D., Mcloone, S.F., Farrell, R.: Utilising Mobile Phone Billing Records for Travel 
Mode Discovery (2011)

https://doi.org/10.1561/3300000017


Transportation 

1 3

Drageide, V.: Towards Privacy Management of Information Systems. The University of Bergen, Bergen 
(2009)

Forrest, T.L., Pearson, D.F.: Comparison of trip determination methods in household travel surveys 
enhanced by a global positioning system. Transp. Res. Rec. 1917, 63–71 (2005)

García, P., Herranz, R., Javier, J.: Big data analytics for a passenger-centric air traffic management sys-
tem. Presented at the 6th SESAR Innovation Days, Delft, Netherlands (2016)

García-Albertos, P., Picornell, M., Salas-Olmedo, M.H., Gutiérrez, J.: Exploring the potential of mobile 
phone records and online route planners for dynamic accessibility analysis. Transp. Res. Part A 
Policy Pract. 125, 294–307 (2019)

Gundlegård, D., Rydergren, C., Breyer, N., Rajna, B.: Travel demand estimation and network assignment 
based on cellular network data. Comput. Commun. 95, 29–42 (2016)

Hjorthol, R., Engebretsen, Ø., Uteng, T.P.: Den nasjonale Reisevaneundersøkelsen 2013/14: Nøkkelrap-
port. Transportøkonomisk institutt, Oslo (2014)

Holleczek, T., Yin, S., Jin, Y., Antonatos, S., Goh, H.L., Low, S., Shi-Nash, A.: Traffic measurement and 
route recommendation system for mass rapid transit (MRT). In: Proceedings of the 21th ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining, pp. 1859–1868. ACM 
(2015)

Horn, C., Kern, R.: Deriving public transportation timetables with large-scale cell phone data. Procedia 
Comput. Sci. 52, 67–74 (2015)

Huang, Z., Ling, X., Wang, P., Zhang, F., Mao, Y., Lin, T., Wang, F.-Y.: Modeling real-time human 
mobility based on mobile phone and transportation data fusion. Transp. Res. Part C Emerg. Tech-
nol. 96, 251–269 (2018)

Huang, H., Cheng, Y., Weibel, R.: Transport mode detection based on mobile phone network data: a sys-
tematic review. Transp. Res. Part C Emerg. Technol. 101, 297–312 (2019)

Iqbal, M.S., Choudhury, C.F., Wang, P., González, M.C.: Development of origin–destination matrices 
using mobile phone call data. Transp. Res. Part C Emerg. Technol. 40, 63–74 (2014)

Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Ranges 
of human mobility in Los Angeles and New York. In 2011 IEEE International Conference on Perva-
sive Computing and Communications Workshops (PERCOM Workshops), pp. 88–93. IEEE (2011)

Kalatian, A., Shafahi, Y.: Travel mode detection exploiting cellular network data. In: MATEC Web of 
Conferences, pp. 03008. EDP Sciences (2016)

Larijani, A.N., Olteanu-Raimond, A.-M., Perret, J., Brédif, M., Ziemlicki, C.: Investigating the mobile 
phone data to estimate the origin destination flow and analysis; case study: Paris region. Transp. 
Res. Procedia 6, 64–78 (2015)

Li, G., Chen, C.-J., Peng, W.-C., YI, C.-W.: Estimating crowd flow and crowd density from cellular data 
for mass rapid transit. In: Proceedings of the 6th International Workshop on Urban Computing (in 
Conjunction with ACM KDD 2017) (2017)

Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., Vilhuber, L.: Privacy: theory meets practice on 
the map. In: 2008 IEEE 24th International Conference on Data Engineering, pp. 277–286. IEEE 
(2008)

Mamei, M., Bicocchi, N., Lippi, M., Mariani, S., Zambonelli, F.: Evaluating origin–destination matrices 
obtained from CDR data. Sensors (Basel) 19, 4470 (2019)

Montero, L., Ros-Roca, X., Herranz, R., Barceló, J.: Fusing mobile phone data with other data sources to 
generate input OD matrices for transport models. Transp. Res. Procedia 37, 417–424 (2019)

Ni, L., Wang, X.C., Chen, X.M.: A spatial econometric model for travel flow analysis and real-world appli-
cations with massive mobile phone data. Transp. Res. Part C Emerg. Technol. 86, 510–526 (2018)

Phithakkitnukoon, S., Sukhvibul, T., Demissie, M., Smoreda, Z., Natwichai, J., Bento, C.: Inferring 
social influence in transport mode choice using mobile phone data. EPJ Data Sci. 6, 11 (2017)

Poonawala, H., Kolar, V., Blandin, S., Wynter, L., Sahu, S.: Singapore in motion: Insights on public trans-
port service level through farecard and mobile data analytics. In: Proceedings of the 22nd ACM SIG-
KDD International Conference on Knowledge Discovery and data mining, pp. 589–598. ACM (2016)

Qu, Y., Gong, H., Wang, P.: Transportation mode split with mobile phone data. In: 2015 IEEE 18th 
International Conference on Intelligent Transportation Systems, pp. 285–289. IEEE (2015)

Schjalm, A.: Kvalitetsundersøkelsen for Folke- og boligtelling 1990. In: Norway, S. (ed.) Oslo—
Kongsvinger: Statistics Norway (1996)

Schlaich, J., Otterstätter, T., Friedrich, M.: Generating trajectories from mobile phone data. In: Proceed-
ings of the 89th Annual Meeting Compendium of Papers. Transportation Research Board of the 
National Academies (2010)

Smoreda, Z., Olteanu-Raimond, A.-M., Couronné, T.: Spatiotemporal data from mobile phones for per-
sonal mobility assessment. Transp. Surv. Methods Best Pract. Decis. Mak. 41, 745–767 (2013)



 Transportation

1 3

Sørensen, A.Ø., Bjelland, J., Bull-Berg, H., Landmark, A.D., Akhtar, M.M., Olsson, N.O.: Use of mobile 
phone data for analysis of number of train travellers. J. Rail Transp. Plan. Manag. 8, 123–144 (2018)

Statistics Norway: Classification of Statistical Tract and Basic Statistical Unit (2019). Available: https ://
www.ssb.no/en/klass /klass ifika sjone r/1. Accessed 29 Nov 2019

Stopher, P.R., Greaves, S.P.: Household travel surveys: Where are we going? Transp. Res. Part A Policy 
Pract. 41, 367–381 (2007)

Stopher, P., Fitzgerald, C., Xu, M.: Assessing the accuracy of the Sydney Household Travel Survey with 
GPS. Transportation 34, 723–741 (2007)

Toole, J.L., Colak, S., Sturt, B., Alexander, L.P., Evsukoff, A., González, M.C.: The path most traveled: 
travel demand estimation using big data resources. Transp. Res. Part C Emerg. Technol. 58, 162–177 
(2015)

Vazifeh, M.M., Zhang, H., Santi, P., Ratti, C.: Optimizing the deployment of electric vehicle charging sta-
tions using pervasive mobility data. Transp. Res. Part A Policy Pract. 121, 75–91 (2019)

Wang, F., Chen, C.: On data processing required to derive mobility patterns from passively-generated 
mobile phone data. Transp. Res. Part C Emerg. Technol. 87, 58–74 (2018)

Wang, H., Calabrese, F., Di Lorenzo, G., Ratti, C.: Transportation mode inference from anonymized and 
aggregated mobile phone call detail records. In: 13th International IEEE Conference on Intelligent 
Transportation Systems, pp. 318–323. IEEE (2010)

Wang, Z., He, S.Y., Leung, Y.: Applying mobile phone data to travel behaviour research: a literature review. 
Travel Behav. Soc. 11, 141–155 (2018)

Wolf, J., Loechl, M., Thompson, M., Arce, C.: Trip rate analysis in GPS-enhanced personal travel surveys. 
In: Stopher, P.R., Jones, P. (eds.) Transport Survey Quality and Innovation. Emerald Group Publishing 
Limited, Bingley (2003)

World Bank: Mobile Cellular Subscriptions (per 100 People) (2019). Available: https ://data.world bank.org/
indic ator/it.cel.sets.p2. Accessed 29 Nov 2019

Wu, W., Cheu, E.Y., Feng, Y., Le, D.N., Yap, G.E., Li, X.: Studying intercity travels and traffic using cel-
lular network data. In: Mobile Phone Data for Development: Net Mob 2013 (2013)

Wu, C., Thai, J., Yadlowsky, S., Pozdnoukhov, A., Bayen, A.: Cellpath: fusion of cellular and traffic sen-
sor data for route flow estimation via convex optimization. Transp. Res. Part C Emerg. Technol. 59, 
111–128 (2015)

Wu, L., Yang, B., Jing, P.: Travel mode detection based on GPS raw data collected by smartphones: a sys-
tematic review of the existing methodologies. Information 7, 67 (2016)

Xu, C., Ji, M., Chen, W., Zhang, Z.: Identifying travel mode from GPS trajectories through fuzzy pattern 
recognition. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 
pp. 889–893. IEEE (2010)

Yamada, Y., Uchiyama, A., Hiromori, A., Yamaguchi, H., Higashino, T.: Travel estimation using control 
signal records in cellular networks and geographical information. In: 2016 9th IFIP Wireless and 
Mobile Networking Conference (WMNC), pp. 138–144. IEEE (2016)

Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.-Y.: Understanding transportation modes based on GPS data for 
web applications. ACM Trans. Web (TWEB) 4, 1 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Andreas Dypvik Landmark is a Senior research scientist in SINTEF Digital. His background is in computer 
science from the Norwegian University of Science and Technology. He has worked for the last decade on 
transportation using novel data sources in railway. Primary research interest is in data-driven decision sup-
port for operational management of transport systems.

Petter Arnesen holds a PhD in statistics and M.Sc. in industrial mathematics from the Norwegian Univer-
sity of Science and Technology. He is a senior researcher at SINTEF working with analysis of data from the 
transport sector, including sensor data and travel behaviour, and in particular working towards the field of 
intelligent transport systems.

Carl‑Johan Södersten has a M.Sc. in Engineering Mathematics from Chalmers University of Technology 
and a PhD in Industrial Ecology from the Norwegian University of Science and Technology. He is currently 
working as a research scientist in the field of intelligent transport systems, specialising in data processing, 
modelling and analysis.

https://www.ssb.no/en/klass/klassifikasjoner/1
https://www.ssb.no/en/klass/klassifikasjoner/1
https://data.worldbank.org/indicator/it.cel.sets.p2
https://data.worldbank.org/indicator/it.cel.sets.p2


Transportation 

1 3

Odd André Hjelkrem received his PhD in Transportation Engineering (2016) and M.Sc. in Applied Physics 
(2007) from the Norwegian University of Science and Technology, and has worked as a researcher at SIN-
TEF since 2007. His research interests are vehicle technology, decarbonization of the mobility sector and 
mathematical modelling of transport demand and energy use.


	Mobile phone data in transportation research: methods for benchmarking against other data sources
	Abstract
	Introduction
	Background
	Data and methods
	Data
	Defining features of the MPD used in the study
	Temporal and spatial resolution
	Data anonymisation
	Trip definition

	Methods

	Results
	Effects of data censoring
	Net travelling balance
	Validation against population statistics
	Validation against public transport data
	Validation against turnpike logs
	Validation against travel surveys

	Discussion
	Concluding remarks and topics for further research
	References




