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a b s t r a c t

The aim of this study was to develop a data analysis method which could provide operational insights
and guidelines waste-to-energy (WtE) plant operators. A method to filter outliers with changing prop-
erties was combined with a cross-correlation analysis method that can capture nonlinearity and quantify
time lags between variables. The method was applied to a dataset obtained from a commercial WtE
plant. The method was able to detect already established correlations such as the influence of com-
bustion conditions on NOx and CO emissions, which both had positive correlation with O2 concentration
in the flue gas, while the effect of combustion conditions was unnoticeable for HCl emissions. Further-
more, the method could detect that NOx and SO2 emissions exhibited positive correlations with the
furnace temperature. Time lags provided additional information about the sensor locations and plant
dynamics. This methodology can be used especially when process data is available while good process
models are not immediately accessible for determining non-obvious process phenomena not only for
WtE sector but also for process industry in general.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Heat and/or power can be produced frommunicipal solid waste
(MSW) in Waste-to-Energy (WtE) plants. WtE technology helps to
improve resource and energy efficiency by recovering the energy
from waste fractions that cannot be material recycled [1]. The
number of WtE plants in Europe reached 512 in 2016 and is ex-
pected to increase hitting an accumulated capacity of 216 PJ [2]. A
similar trend is observed for Norway with a 36% increase in total
WtE capacity since 2010 with 17 plants in operation [3]. As evident
from the progress in the field, applications of WtE will become
more widespread making it a necessity to generate knowledge to
advance this technology.

WtE plants are confronted with strict regulations in terms of
emissions in addition to efficiency and reliability demands.
Therefore, flue gas cleaning is crucial to achieve emission targets as
well as cost reduction deriving both from corrosion induced
maintenance and from the use of consumables such as chemicals
and filters [4,5]. Emissions in a WtE plant are influenced by i) the
chemical composition of MSW, ii) physical properties of MSW
.
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(moisture content, physical shape and geometry etc.) and iii)
operating conditions (incineration system, gas flow rates, waste
feeding rate etc.). After initial sorting, WtE plants need to incinerate
whatever is delivered and it is therefore difficult to apply emission
reduction measures related to the waste properties. As a result,
controlling operating conditions of the combustion unit to mini-
mize emissions has been central in numerous WtE studies and has
shown great potential [6]. In this study we focus on unveiling re-
lationships between gas emissions and combustion conditions by
unlocking the potential of process data.

WtE plants are typically monitored by hundreds of sensors
continuously measuring physical quantities. These high-
dimensional and large datasets hold a great potential for knowl-
edge mining. However, the data often need to be pre-processed
before utilization. Presence of noise and outliers is one of the
most common issues [7]. Noise can be defined as any point that is
not the true data/signal whereas outlier is a broader term covering
noise as well as failures, faults and natural variations in the system,
and is typically characterized as being significantly different from
the rest of the data [8]. The frequency and duration of noise and
outliers might vary for each sensor and/variable in the plant
requiring individual treatment. Conventional filtering methods
such as moving-average filters are widely used for noise removal.
However, they might not perform equally well in case of outliers
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
mailto:cansu.birgen@sintef.no
http://crossmark.crossref.org/dialog/?doi=10.1016/j.energy.2020.119733&domain=pdf
www.sciencedirect.com/science/journal/03605442
http://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2020.119733
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.energy.2020.119733


C. Birgen, E. Magnanelli, P. Carlsson et al. Energy 220 (2021) 119733
[9]. Therefore, it is crucial to implement a filtering technique that
can efficiently eliminate both noise and outliers in case of varying
characteristics. In this study, we address the problem of noise and
outliers with changing characteristics by applying a Hampel filter
[10] that has shown to be effective in a variety of applications [9,11].

Time lags are observed in process data due to inherent process
properties, feedback control systems, time dependent noises, etc.
[7]. Nonlinearity in data correlations is another issue that needs to
be considered when analysing dependencies [7]. Cross-correlation
analysis is used to quantify correlations as well as time lags be-
tween variables. However, this widely used method can only
identify linear relationship between variables as it is based on
Pearson’s correlation coefficient [12]. Despite its limitations, Pear-
son’s correlation was used in a MSW combustion emissions study
[13] with a small dataset size (5 data points of each variable) and a
corrosion kinetics study for MSW combustion [14]. These studies
did not have any focus on the method applicability even though
their data showed nonlinear trend. Similarly, the study of Akimoto
et al., 2005 investigated the effects of human activities through
cross-correlation of urban atmospheric concentrations of N2O, CO2,
CH4 as well as meteorological parameters without considering the
nonlinearity of data or other aspects such as missing data points in
their dataset [15]. Cross-correlation analysis has also been applied
in various renewable energy systems studies, for example, deter-
mining if nearby wind farms are providing ancillary information by
using time lags between measurements obtained from cross-
correlation analysis [16], or in an inter-annual and seasonal anal-
ysis of the cross-correlation betweenwind andwave resources [17].
However, these studies did not explain why this specific method
was used and its advantages over other methods. Moreover, these
studies contained limited information about the uses and limits of
Fig. 1. Overview of the methodo

Fig. 2. Simplified illustration of the W
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the method’s application e.g., linear correlation since neither of
them dealt with development of the method. It is also important to
mention the misuse of terms; for example, two studies that dealt
with variability in power systems used the term cross-correlation
[18,19], even though the cited source clearly names the method
correlation analysis [20] and there is no presence of time lags.
Therefore, it is necessary to develop methods that can address time
lag and nonlinear properties of data while considering the prop-
erties of the dataset.

The aim of this study was to develop a cross-correlation analysis
method that can capture the time lags and nonlinearity between
combustion conditions and gas emissions in a WtE plant.

2. Methodology

The methodology is briefly described in Fig. 1. First, relevant
process variables are selected, next each variable is filtered, later a
cross-correlation analysis is performed to estimate the correlations
as well as time lags between each variable pair. This section con-
tains details of each of these steps starting with a description of the
Returkraft WtE plant located in Kristiansand, Norway.

2.1. WtE plant and dataset

The Returkraft plant is schematically described in Fig. 2 and a
more in-depth description can be found in our previous work [21].
MSW is fed to the system from the waste bunker via a feeder. Then
it is incinerated using primary and secondary air to produce flue
gas. The hot flue gas is then sent to a heat exchanger where steam is
produced.

Twelve variables were selected for the analysis, each containing
logy followed in this study.

tE plant considered in this study.



Fig. 3. Raw data of the variables used in this study.

C. Birgen, E. Magnanelli, P. Carlsson et al. Energy 220 (2021) 119733
40320 observations recorded every minute covering 4 weeks of
plant operation (February 03, 2020 to March 01, 2020). The vari-
ables were selected according to domain knowledge and consid-
ering the suggestions from the experts working in WtE plant
operation. Fig. 3 shows raw data plots of the variables: waste level
in bunker, flue gas temperatures in boiler, heat exchanger and
furnace, feeder speed, primary and secondary air total flow rates,
O2, CO, SO2, HCl and NOx concentrations in flue gas.
2.2. Hampel filter

Outlier is a broader term covering noise as well. Therefore, all
points removed by filtering are referred to as outlier throughout the
study. The Hampel filter is calculated using the median value of the
data sequence x ¼ x1, x2, …, xn and the mean absolute (MAD) from
the median [10]. Two parameters that the Hampel filter works on
are the predefined threshold, T, and the local median value of the
chosenwindow size (2kþ 1) with k being the number of neighbors
on either side of a data point xs, as illustrated in Fig. 4. Local median,
mi and local MAD, MADi are shown in Equations (1) and (2),
respectively, adapted from Ref. [11].
Fig. 4. Illustration of the wind
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mi ¼ median(xi-k, xi-kþ1, …, xi, …, xiþk-1, xiþk) Eq. 1

MADi ¼ si / k Eq. 2

where si is the local standard deviation as shown in Equation (3)
that was adapted from Ref. [11] and k is the scaling factor chosen
as 1.4826 so that the standard deviation of the normal distribution
of the data covers 50% of the standard normal cumulative distri-
bution function [22]. The value of si becomes 0 when more than
half of the data has the same value as xi because of crudely quan-
tized data, and the rest of the data sequence is identified as outliers
regardless of their distance from mi [23].

si ¼ k median(|xi-k - mi|, …, |xiþk - mi|) Eq. 3

According to the Hampel filter algorithm, a data point is
detected as an outlier when Equation (4) holds, adapted from
Ref. [11].

|xi-k - mi| > T sI Eq. 4
ow size for Hampel filter.
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Outliers are replaced by the median value of the corresponding
window. Threshold value, T is chosen as 3 in this study.

The built-in function hampel from MATLAB® Signal Processing
Toolbox was used to apply the Hampel filter. First, the local MAD of
each variable was calculated using Equation (2) with a window size
of 2kþ1. Then, the local MAD value was used together with the
threshold to detect outliers according to Equation (4). Outliers were
then removed.

Near the sequence endpoints, the function truncates the cor-
responding window to calculate mi and si. Equations (5) and (6) are
used when i < kþ1, and Equations (7) and (8) are used when i < n-k
by the Hampel filtering algorithm, adapted from Ref. [9].

mi ¼ median(x1, x2, x3, …, xi, …, xiþk-2, xiþk-1, xiþk) Eq. 5

si ¼ k median(|x1 - m1|, …, |xiþk - mi|) Eq. 6

mi ¼ median(xi-k, xi-kþ1, xi-kþ2, …, xi, …, xn-2, xn-1, xn) Eq. 7

si ¼ k median(|xi-k - mi|, …, |xn - mn|) Eq. 8

The procedure is then repeated for the entire dataset and all
variables.

2.3. Hampel filter performance measures

Window size selection is of critical importance for an effective
outlier removal. Too large window size can cause outlier points to
remain undetected, while a too small window size could cause the
removal of significant datapoints. Therefore, the Hampel filter was
applied for awindow size range of 1e180 that corresponds to 1 min
- 180 min as the data is recorded every minute. This selection is
based on the fact that it takes approximately 3 h for MSW in the
waste bunker to be incinerated, and flue gas to be analysed by the
last sensors as shown in the simplified process figure, Fig. 2.

For the predefined window size range, the Hampel filter was
applied and the resulting performance measures were calculated to
find the optimum window size. Two performance measures were
considered: the root-mean-square error (RMSE) is more widely
used; however, it can be less appropriate than the mean absolute
error (MAE) in the presence of large outliers characterized as high
spikes standing out in a given data sequence [11]. For window size
of 2kþ1, RMSE and MAE equations are given in Equations (9) and
(10), respectively [9].

RMSE ¼ √(mean(sum((xiþk - yiþk)2, …(xiþk - yiþk) 2))) Eq. 9

MAE ¼ mean(sum(|xiþk - yiþk|, … |xiþk - yiþk|)) Eq. 10

where xi is the ith observation and yi is the filtered data point of the
same variable at the same location. For each window size and
variable, RMSE and MAE are calculated for the entire data sequence
of the individual variable.

Upper and lower limits i.e. confidence interval (CI) for each
outlier detectionwere estimated using Equation (11), adapted from
Ref. [24].

CI ¼ mi ± 3 si Eq. 11

2.4. Cross-correlation analysis

Spearman’s and Kendall tau’s rank correlation measures are
widely used in correlation analysis due to their robust performance
4

in presence of outliers and their ability to detect nonlinear de-
pendencies in contrast to the most used Pearson’s correlation [25].
Kendall’s tau is more robust to outliers than Spearman’s correla-
tion. However, Hampel filtering was applied prior to correlation
analysis; therefore, being insensitive to outliers was a less critical
quality. Therefore, the analysis in this study was based on Spear-
man’s correlation.

Spearman’s rank correlation for bivariate data (x,y) with se-
quences of x ¼ x1, x2, …, xn and y ¼ y1, y2, …, yn is calculated as in
Equation (12) adapted from Ref. [25].

ss(x,y) ¼ sum((sx,1 - ŝx)(sy,1 - ŝy), …, (sx,n - ŝx)(sy,n - ŝy)) Eq. 12

where sx,n and sy,n are ranks of the nth numerical value of variables
x and y. ŝx - ŝy are mean values of sx and sy, and ss(x,y) is the
Spearman’s rank correlation for x and y.

MATLAB® built-in function, xcorr for cross-correlation analysis
was used. For a variable pair of x and y, xcorr calculates the raw
correlation between x and shifted (lagged) copies of y as a function
of the lag. For a maximum lag k, xcorr returns a cross-correlation
sequence in range of -k to k. The normalization option of the
xcorr functionwas used so that autocorrelations at zero lag equal 1.

xcorr calculates raw correlations in the same way as Pearson’s
correlation coefficient but without extracting the variable means.
Cross-correlations were calculated for each pair of 12 variables with
a maximum lag of 180 min. This was done by implementing ranks
of the variables instead of the raw variables and extracted their
mean so that xcorr returns Spearman’s rank correlations that can
capture nonlinear dependencies.
3. Results and discussion

This section provides the results of the Hampel filtering first,
followed by the correlation, and the cross-correlation analysis
results.
3.1. Hampel filtering of variables

RMSE and MAE values give indication of the filter performance
and were used to find the optimal window sizes for each variable in
this study as illustrated in Fig. 5.

Optimal window sizes were selected based on the peak points in
RMSE and MAE values, then separately applied to the variables to
remove the outlier using the Hampel filter. A higher error value
suggests a better removal of outliers that have a large prominence
from the rest of the data sequence. RMSE and MAE values were
calculated for Hampel filteringwith window size range of 1e180 for
all 12 variables as shown in Fig. 5. The influence of window size on
filter performance measure values was prominent for all variables.
Local variations in RMSE and MAE values were also noticeable. For
all the variables except CO and O2 concentrations in the flue gas,
RMSE andMAE showed a parallel trend with respect to thewindow
size. The reason for this difference can be that this variable has
outliers characterized as higher spikes with shorter duration in
Fig. 3 compared to the rest of the variables.

Highest RMSE and MAE for CO concentration in flue gas were
calculated as 10.714 and 0.348 mg/Nm3. The window sizes corre-
sponding to these values were 15 and 2. Hampel filteringwith these
window sizes were applied to CO concentration in flue gas as
shown in Fig. 6. Both window sizes of 2 and 15 could successfully
remove the large outliers seen as high spikes (Fig. 6). However, the
Hampel filter with small window size identified 2834 outliers
compared to 295 for window size of 15.

For some variables, several local maxima occurred for both



Fig. 5. RMSE (left y-axis) and MAE (right y-axis) values for Hampel filter applied with varying window sizes.

Fig. 6. Hampel filtering of CO concentration in flue gas for window sizes of 2 (bottom) and 15 (top).
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RMSE and MAE values. One of themwas waste level in bunker that
was filtered with Hampel filter with different window sizes as
shown in Fig. 7. RMSE and MAE values for waste level in bunker
exhibited two apparent peaks at window sizes of 82 and 180
(Fig. 5). Hampel filtering was applied at these sizes and detected
5

395 and 269 outliers respectively out of 40320 data points.
Effect of window size is illustrated in Figs. 6 and 7 (two variables

shown). There is a trade-off between removal of outliers and pre-
serving the useful and meaningful process information. Therefore,
the window sizes were selected by consulting the error values



Fig. 7. Hampel filtering of waste level in bunker for window sizes of 82 (left) and 180 (right).
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given in Fig. 5. Selected window sizes for Hampel filtering and the
respective number of outliers detected by the filter are given in
Table 1.

As it can be seen in Table 1, for flue gas temperatures, feeder
speed and total air flow rates, optimal window sizes were in range
of 29e32, meaning that the outliers are best detected in a time
window of 29e32 min for these variables. The optimal time win-
dow for outlier detection was 84 min for waste level in bunker,
12e15min for O2 and CO concentrations in flue gas, and 53e54min
for SO2, HCl and NOx concentrations in flue gas. This shows that it is
important to tailor-make the data filtering procedure when we
address a dataset where outliers have varying characteristics and
occur with different time windows. Filtered data is used in cross-
correlation analysis for each variable, as shown in section 3.2.
3.2. Correlation analysis of variables

Spearman’s correlation was calculated for all variables without
considering time lags to obtain an overview of all correlations. The
correlation coefficient has a value between þ1 and �1, where 1 is
total positive correlation, 0 is no correlation, and �1 is total nega-
tive correlation [26e28]. In the literature, it is possible to find
different interpretations and rankings of correlation coefficients in
terms of statistical significance. Yet many researchers agree that
when the absolute value of the correlation coefficient is smaller
than 0.1, the correlation is considered insignificant, and a correla-
tion is considered strong for values greater than 0.9 [26e28].
Table 1
Window sizes for Hampel filtering and number of outliers filtered for ea

Variable Win

Waste level in bunker 84
Flue gas temperature boiler 32
Flue gas temperature heat exchanger 31
Flue gas temperature furnace 33
Feeder speed 32
O2 concentration in flue gas 12
Secondary air total flow rate 29
Primary air total flow rate 30
CO concentration in flue gas 15
SO2 concentration in flue gas 54
HCl concentration in flue gas 54
NOx concentration in flue gas 53

6

To avoid misinterpretation and overreading, the correlations
were discussed with experts in WtE operation and the proposed
explanations incorporated their perspectives and experiences in
addition to the domain knowledge supported by the information
and observations from scientific articles. The resulting correlations
are visualized with the heatmap in Fig. 8.

The first line in Fig. 8 shows the correlations between waste
level in the bunker and the other considered variables. Waste is
delivered to the plant during working hours of weekdays. There-
fore, waste level andwaste residence time in the bunker varies over
time. This influences the level of mixing of the waste in the bunker
thus, its homogeneity. Variation in waste properties has a strong
influence on combustion [21]. Waste level in bunker had positive
correlations with secondary air total flow rate, O2 (unreacted, sur-
plus in flue gas) and CO (not converted to full combustion product
CO2), which might indicate incomplete combustion supported by a
negative correlation with flue gas temperature in boiler (�0.217).
Therefore, according to the correlation results, waste homogeneity
can influence combustion efficiency.

Flue gas temperature boiler had a positive correlation (0.403)
with flue gas temperature heat exchanger. This was expected, since
these two temperatures are measured at the inlet and outlet of a
heat exchanger unit. On the other hand, the correlation with flue
gas temperature furnace was negative (�0.340), as well as the
correlation with secondary air total flow rate (�0.280). The high
correlations between feeder speed and primary air total flow rate
were a result of the combustion control system structure. Indeed,
ch variable.

dow size Number of outliers detected

285
405
192
341
437
487
234
370
395
523
361
261



Fig. 8. Spearman’s rank correlations between each pair of 12 variables.
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both parameters are controlled by the control system to maintain a
constant steam production. Flue gas temperature boiler showed
negative correlations with O2 and CO concentrations in flue gas as a
result of the good combustion status evident from its negative
correlation with flue gas temperature in the furnace as well.

Feeder speed had a negative correlation with flue gas temper-
ature in the furnace (�0.500); high feeder speed might cause a
thicker waste bed resulting in changed combustion conditions and
thus a lower flue gas temperature in the furnace. O2 and CO con-
centrations in flue gas give the most reliable information about
combustion status. This is confirmed by the strong correlation be-
tween them (0.763). Feeder speed showed strong correlations with
other manipulated variables as explained above.
Fig. 9. Cross-correlations betwe
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3.3. Cross-correlation analysis of variables

After obtaining the correlations between all variables, a cross-
correlation analysis between emissions and the other considered
variables was performed. Figs. 9e12 show the cross-correlations for
emissions (NOx, CO, HCl and SO2 concentrations in flue gas).

NOx emissions are a product of complete oxidation of nitrogen
that has three major generation mechanisms: fuel, thermal and
prompt NOxmechanisms [4]. InWtE plants, they typically originate
from fuel mechanism while some thermal production can also
occur. Correlation of NOx with waste level in bunker ranged from
0.171 to 0.203 for lags of �180 and 120 min, respectively. However,
this correlation did not vary greatly with changing lags (Fig. 9). The
en NOx and other variables.



Fig. 10. Cross-correlations between CO and other variables.

Fig. 11. Cross-correlations between HCl and other variables.
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same applies to flue gas temperature downstream heat exchanger.
NOx correlation with flue gas temperature in furnace was positive
with highest value at �5 min lag, as the flue gas takes some time to
travel from the furnace to the NOx sensor. Positive correlation can
be due both to thermal NOx formation at higher temperatures and
to higher heating value of nitrogen containing waste fractions.
Strong correlations of NOx with manipulated variables (i.e. primary
and secondary air and feeder speed) were highest at time lag of 1
that can be due to the control system action triggered by the O2
measurement. Positive correlations of NOx with CO and O2 suggest
that NOx formation in this WtE plant is related to combustion
conditions. Negative and weak correlations with SO2 and HCl can
8

be due to the elemental composition of different waste fractions,
and the time lags (�1, �2 min) can be explained by difference in
reaction kinetics as well as the measurement.

Correlation of COwith waste level in bunker was highest (0.306)
at time lag of �30, but it did not vary significantly with lag as for
NOx (Fig. 10). CO and flue gas temperature in boiler were neg-
ativelycorrelated, as high temperature promote CO oxidation. Cor-
relation was the highest at lag �5, which could be explained by the
time that flue gas takes from the boiler to the CO sensor location.
The lag was longer than that of NOx even though the gas sensors are
in the same location. CO had weaker correlations with manipulated
variables at different lags.



Fig. 12. Cross-correlations between SO2 and other variables.
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HCl concentration in flue gas showed a weak positive correla-
tion with flue gas temperature in furnace with the highest corre-
lation of 0.252 at time lag of 11; however, its value did not vary
greatly at similar lags (Fig. 11). HCl had significant correlations with
two other variables; NOx in flue gas that was explained above and
SO2 in flue gas that had its highest value of 0.357 at zero lag. The
latter could be explained by the elemental composition of thewaste
fractions whose combustion yield both HCl and SO2. It should be
noted that HCl forms due to Cl-containing waste fractions such as
plastics, which typically have a high heating value.

Correlations of SO2 were similar to that of HCl’s for flue gas
temperature in furnace and manipulated variables (Fig. 12). A
known S-rich waste fraction processed at the considered plant is
sludge, which can cause unstable combustion. This can result in
incomplete combustion that gives negative correlations with CO
and O2 concentrations in flue gas [29]. As for NOx concentration in
flue gas, SO2 concentration increases with increasing flue gas
temperature in the furnace, which is in line with the findings of a
lab-scale MSW incineration study without any sorbent addition
performed at the same temperature range [30]. Similarly, a coal
combustion study has shown the increase of NOx with added SO2,
where the NO emissionswas found to be influenced by the S/N ratio
in the flame, which was in turn controlled by the coal composition,
pyrolysis behaviour and physical properties [31].
4. Conclusions

In this study, a new method was developed to filter data from
outliers that have changing properties, and to perform cross-
correlation analysis that can capture nonlinear relationships be-
tween variables as well as quantify time lags. The method was
applied to a real time-series process dataset with 12 variables ob-
tained from a commercial WtE plant. RMSE and MAE values were
used as filter performance indicators when selecting optimal win-
dow size for Hampel filtering of each variable. This study revealed
the importance of [1] tailor-made data filtering to address the
outliers’ varying characteristics and [2] the selection of appropriate
time windows as outliers can be different for each variable in the
9

dataset. The cross-correlation analysis results unveiled the re-
lationships between combustion conditions and gas emissions
together with time lags between them. The main contributions of
this study can be stated as below:

1. The Hampel filtering of the high-dimensional real WtE process
plant datawas performed for the first timewith the extension of
optimal window size selection by using filter performance in-
dicators. This provides an advantage over existing approach in
which the specific outlier characteristics are not considered for
each variable in a large dataset, thus overlooking the trade-off
between outlier removal and restoring the useful data.

2. A cross-correlation analysis method that can capture the
nonlinear correlations together with time lags was developed.
The method was applied to a real WtE plant dataset to test its
applicability, and the correlations could explain causations to a
great extent; therefore, they can be used to provide operational
insights.

3. The method developed in this study can especially be useful in
situations where there is large amount of process data available
while good process models are not immediately accessible.

The operational insights and guidelines obtained by this study
can be summarized as follows:

i. NOx and CO emissions were highly influenced by the com-
bustion conditions (e.g. combustion air flow rate), and their
positive correlation with O2 concentration in the flue gas
suggested their link to incomplete combustion.

ii. O2 concentration in the flue gas increased with the level in
the waste bunker.

iii. CO concentration increased as the level in the waste bunker
increased. This may be due to poor combustion conditions
due to inhomogeneity of the waste. Indeed, a higher waste
level in bunker canmake it difficult to obtain a proper mixing
of the waste.

iv. HCl emissions were not linked to the combustion conditions.
Its correlation with SO2 suggest the presence of waste
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fractions whose combustion yield high levels of both HCl and
SO2.

v. NOx and SO2 concentrations increased with increasing
temperature in the furnace, which can be overcome by
temperature control in the furnace.

vi. Estimated time lags gave information about the sensor lo-
cations as well as plant dynamics in response to the control
system structure and actions, which can be fine-tuned by
using the time lags.

All in all, the method developed in this study gave correlations
some which were established knowledge in the WtE field,
demonstrating its credibility in a real case study that can motivate
its application to datasets from different plants containing a
different set of variables to confirm or discover correlations and
unveil dependencies.
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