
Clustering and Dimensionality-reduction Techniques
Applied on Power Quality Measurement Data

Gjert H. Rosenlund ID

Dept. of Energy Systems
SINTEF Energy Research

Trondheim, Norway
gjert.rosenlund@sintef.no

Kristian W. Høiem ID

Faculty of Science and Tech.
NMBU
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Abstract—The power system is changing rapidly, and new tools
for predicting unwanted events are needed to keep a high level
of security of supply. Large volumes of data from the Norwegian
power grid have been collected over several years, and unwanted
events as interruptions, earth faults, voltage dips and rapid
voltage changes have been logged. This paper demonstrates the
application of clustering and dimensionality-reduction techniques
for the purpose of predicting unwanted events. Several techniques
have been applied to reduce the dimensionality of the datasets and
to cluster events based on analytical features, to separate events
containing faults from a normal situation. The paper shows that
the developed predictive model has some predictive capability
when using balanced datasets containing similar muber of fault
events and non-fault events. One of the main findings, however,
is that this predictive capability is significantly reduced when
using unbalanced datasets. Thus, the development of an accurate
predictive model based on normal power system conditions, i.e.
an unbalanced dataset of events and non-events, is a topic for
further research.

Index Terms—Machine Learning, Unsupervised Learning,
Power system, Power Quality Analysis, Fault Prediction,
Dimensionality-Reduction

I. INTRODUCTION

A. Motivation and Background

The introduction of ever-increasing amounts of intermittent
renewable generation, coupled with the increasing electrifica-
tion of the European societies, leads to an increased strain on
the power grid and its operation. In order to maintain high
security of supply, it is paramount to evolve the tools used for
power systems operations. One such tool would be the ability
to predict undesired events with sufficient prediction horizon
to facilitate mitigating actions. Development of such a tool
is spurred by recent advancements in data-driven techniques,
machine learning (ML), available data volumes and computa-
tional resources.

B. Relevant Literature

Even though machine learning techniques are widely used in
other areas of power grid management, active work on predict-
ing fault events using power quality (PQ) data is quite sparse.

The authors would like to thank the Research Council of Norway and in-
dustry partners for the support in writing this paper under project 268193/E20
EarlyWarn.

Interesting work on the topic include [1]–[4]. [1] utilize µ-
phaser measurement units (µ-PMU) data and semi-supervised
learning for event detection and classification, [2] cluster
momentary faults that are recurring in the grid, for example
vegetation touching the overhead power line. [3] combine an
artificial bee colony algorithm with neural networks to find
optimal features for classifying disturbances in a simulated
data-set and [4] use anomaly detection techniques to identify
anomalies in PQ time-series.

C. Contributions and Organization

This paper presents work done within predictive methods
utilizing clustering and dimensionality-reduction techniques
on large datasets of PQ measurements from the Norwegian
power system. A number of techniques has been applied,
and the algorithmic performance on balanced and unbalanced
datasets have been investigated. Using two datasets ensure a
balanced set for model development, and a realistic one-node
sequential dataset for validation of how the algorithms work
in an operational setting.

This paper address the knowledge gap in the joint domains
of power systems and data science. More specifically, this
paper pursue the state-of-the-art in using power quality data
and unsupervised learning algorithms to group fault and non-
fault events based on analytical derived features.

Chapter II describes the input data. In Chapter III, the
methodology used in the analyses is presented. In the fol-
lowing two chapters, Chapter IV and V, the results from the
investigations are presented and discussed. Finally, the con-
clusion and suggested further works are presented in Chapter
VI. It is the desire of the authors that other groups working in
this young but active field will learn from the results of this
study, and be inspired to surpass our results.

II. DATA

The authors have been granted conditional access to power
quality data for the majority of the Norwegian power system
by a number of distribution system operators (DSOs) and
the Norwegian transmission system operator (TSO). The
underlying database utilized in this paper spans the period
from January 2009 to early March 2020. The nominal line
voltages varies from 10 to 420 kV. A total of roughly 270
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years of PQA data has been collected from 49 measurement
nodes, giving on average 5-6 years of historical data from
each node. However, the number of years of available data
varies significantly from node to node. The data owners
regard sharing of data as a joint effort to strengthen the
research within the field, a mutual beneficial endeavor.

1) Data sources: This paper exploits data from power
quality analysers (PQAs). The paper analyses data from El-
spec PQAs, which continuously sample voltage and current
waveform at a sampling frequency of up to 50 kHz, with data
being compressed where appropriate. The operational Elspec
devices collect and compress many events and disturbances
each year, and some nodes have been online for over 10 years.
To properly manage and extract value from such a massive
dataset, two software packages have been developed. The
Automatic Event Analysis (AHA) program is used to automat-
ically detect and report lists of fault events and disturbances
in the time series from the PQAs [5]. The tool can identify
and classify interruptions, earth faults, voltage dips and rapid
voltage changes. These are annotated with event type, start
time and end time for each event.

A large portion of applications and algorithms within ma-
chine learning requires labeled datasets for exploitation of
patterns and signals in the data, called supervised learning.
These labels are extracted using AHA, mentioned above. To
detect explanatory signals for predictive purposes, one also
need the power quality data leading up to the event. For
this purpose, the Dynamic Dataset Generator (DDG) software
has been developed. For details on DDG, see [6], [7]. This
program takes a fault event as an input and extract user-
specified variables, such as voltage and current waveforms,
harmonics and RMS values at the resolution and duration
requested by the user.

The analysis presented in this paper revolves around two
datasets. The first dataset consists of in total 4579 events,
whereas 2294 of these are fault events. Fault events include
voltage dips, earth faults and interruptions. This dataset is
termed the balanced dataset, since the number of faults to
non-faults are approximately balanced. The second dataset
consists of sequential data from one node in the Norwegian
power grid. This dataset consists of 66240 samples, where 22
are fault events. The second dataset is therefore labeled the
unbalanced dataset. Utilizing the relevant machine learning
models requires a large volume of data for each class. It
is the purpose of the balanced dataset to serve as a dataset
for experimentation, while the operational performance of any
models is tested by running the models on the unbalanced
dataset, simulating a real-time performance of the algorithms.

2) Data pre-processing: When presented with the data, the
most appealing approach is to leverage algorithms that are
tailored for time series forecasting, and use the raw data as
explanatory variables. This approach is investigated in [5]–[8].

In the proposed approach, manual feature engineering is
conducted, leveraging expert human insights and reasoning.

The engineering of features is based on discussions with in-
dustry experts and research scientist, bridging the gap between
industry and academia. The hypothesis is that when there is
a very short, rapid change in the harmonic components in the
signal, there is a larger than normal probability for a fault
occurring. To represent this signal, no averaging is done. The
maximum and minimum values of the line and phase voltages
are extracted, as well as the total harmonic distortion (THD)
and the 1st-25th harmonics of the voltages. These extracted
for each second in the hour leading up to the fault, resulting
in a dataset of 3600 by 300 matrix of explanatory variables for
each event. To further refine these data, only the maximum,
minimum, standard deviation, signal-to-noise ratio and the
number of outliers for the time-series are kept, compressing
the dataset to a 1500 by 1 vector of explanatory variables. The
large number of explanatory variables is the main motivation
for exploiting techniques for dimensionality reduction. The
data mining process is illustrated in Fig. 2.

III. METHOD

In previous work [5]–[7], the authors investigate other
methods for predicting faults, including supervised learning.
They all conclude that it is possible to predict an event of
either voltage dip, earth fault, rapid voltage changes, or power
interruptions, with a given prediction horizon. To complement
these results, unsupervised learning has been investigated. One
of the major benefits of using unsupervised learning is the
nature of the algorithm to find patterns in the data without the
need of labels.

A. Dimensionality-reduction

In the area of analysing multivariate datasets, a common
practice is to apply dimensionality-reduction techniques to
reduce the dimensions of the dataset, to remove correlated
features and to reduce noise [9]. Maaten et. al [10] conducted
a comparative review on available dimensionality-reduction
techniques. It concluded that even though linear techniques
cannot adequately handle complex non-linear data, non-linear
techniques for dimensionality reduction are not capable of
outperforming traditional linear techniques, such as principal
component analysis (PCA). The main function of PCA is to
decompose the data into components of explanatory variance,
where each sample can be represented in relation to these
components.

Another technique widely used in visualising high-
dimensional data is t-SNE [11], [12]. This technique minimises
the Kullback-Leibler divergence between a high-dimensional
point distribution and a proposed low-dimensional point dis-
tribution to find a suitable projection of the original points
onto the lower dimension. The t-SNE has mainly two hyper-
parameters that can be tuned when training; learning rate and
perplexity. The learning rate defines the size of the update
step in the optimization process. Perplexity is related to the
number of nearest neighbours a sample has [11]. To make the
figure text more readable, learning rate is denoted as lr while
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Fig. 1. Illustration of the line voltage time series and explanation of the time range related to an event with voltage dip. a) displays the whole time series of
60 minutes including the voltage dip. b) displays a 10 seconds view of the same sample as in a).

Fig. 2. Transformation of time series sample features of two dimensions into
a one-dimensional sample by feature engineering. The transformed samples
are to the right represented as a dataset where the columns are a combination
of all the elements in the three phases.

perplexity is denoted as p. The number of iterations is denoted
as ni.

B. Clustering

Clustering is the division of data into groups of similar
objects [13]. It is for the most part an unsupervised technique,
where the hidden patterns in the data are explored [14].
Multiple clustering techniques exist today [15]. Jani et. al [16]
point out that the k-means clustering algorithm is still widely
used despite the fact that it is over 50 years old.

For time series clustering there may be several approaches,
such as raw-data-based or feature-based [17]. The feature-
based approach is pre-processing the data before conducting
the clustering. In the work in this paper, both approaches have
been investigated using k-means clustering.

IV. RESULTS

In this section, the results from three different investigations
on the same dataset are presented.

A. t-SNE

The balanced and the unbalanced datasets were investigated
separately by applying t-SNE dimensionality reduction. Fig.
3, left, shows the t-SNE plot of the balanced dataset, where
the red dots indicate fault events, and the blue dots indicate
samples without fault events. This colouring scheme is the
same for other plots unless other is specified. The t-SNE
algorithm compress the data into two dimensions that is hard
to interpret. Since the value of the axes dont provide any
information, the axis labels have been removed for a clear,
concise figure. From the mentioned figure there are some
distinguishable clusters, but overall the samples with and
without events overlap. If the separation of fault and non fault
events had been trivial, the plot would have shown two distinct
groups, with red and blue dots.

Conducting t-SNE on the unbalanced dataset yields a 2D
representation displayed in Fig. 3, right. It should be noted that
the result does not show any sign of clear clusters, although
some separation of samples are done.

It is recommended to reduce the dimensionality of the
dataset before applying t-SNE, to reduce noise and to speed
up the computation. [11] PCA was used on both the balanced
and unbalanced dataset. The results are displayed in Fig. 4.
Comparing Fig. 4 with Fig. 3, it is clear that t-SNE did a
better job on separating the samples based on the event type
after doing PCA on the datasets. Due to the different nature of
the two datasets, the perplexity and learning rate differ in the
two cases. This is according to best practices and substantial
efforts are done in finding suitable values [11].

B. k-means

Based on the recommendations on reducing the dimension
of the dataset to suppress noise, PCA was applied to both the
balanced and unbalanced datasets.

K-means clustering was applied on the dimensionality-
reduced dataset. The algorithm was set to identify 20 clusters.
Table I shows the groups with the highest fraction of faults
in them. It is clear that the algorithm can to some extent
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Non-fault
Fault

Non-fault
Fault

Fig. 3. Left: t-SNE reduced 2-dimensional representation of the balanced dataset.( lr: 200, p: 30, ni: 26000.)
Right: t-SNE reduced 2-dimensional representation of the unbalanced dataset.(lr: 50, p: 100, ni: 60000.)

Non-fault
Fault

Non-fault
Fault

Fig. 4. Left: t-SNE reduced 2-dimensional representation of the balanced dataset with PCA reduction. (lr: 200, p: 30, ni: 26000.)
Right: t-SNE reduced 2-dimensional representation of the unbalanced dataset with PCA reduction. (lr: 50, p: 100, ni: 60000.

distinguish between fault and non-fault events. In group 18,
82.5% of the samples are faults.

For visualization of the k-means algorithm, the t-SNE plot
in Fig. 3 are kept. The samples are coloured according to
which group k-means predict that they belong to, and plotted
together with samples with fault-events represented as a black
dot. This is shown in Fig. 5, left. The groups containing the
highest fraction of samples with events are shown in Fig. 5,
right. From this figure it is clear that meaning-full separation
of groups can be done, both by t-SNE and k-means on the
balanced dataset.

The unbalanced dataset was treated the same way as the
balanced dataset. In Fig. 6, all gruoups, and groups with
highest percentage of faults are shown. The samples with fault-
events are also here represented by a black marker.

The groups containing the highest fraction of samples with

events are seen in Table II. From the table and from Fig 6,
it is seen that the algorithms do group many of the fault
events together, but they are not distinguishable from non-
fault events. For example, in Group 4, contains 7 faults but
also 722 non-faults.

TABLE I
TOP FIVE CLUSTER GROUPS ON BALANCED DATASET.

Groups Faults Events Faults / Events Faults / All faults
18 132 160 0.825 0.058
17 80 99 0.808 0.035
2 109 148 0.736 0.048
14 77 109 0.706 0.034
1 205 323 0.635 0.089
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Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15
Group 16
Group 17
Group 18
Group 19
Fault

Group 18
Group 17
Group 2
Group 14

Fig. 5. Left: t-SNE on PCA reduced balanced dataset. All samples are plotted in the xy plane according to their t-sne coordinates. The samples are colored
by which group k-means predict they belong to. The faults are plotted (again) as black dots.
Right: Plot of the group having the highest fraction of samples with events.

Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15
Group 16
Group 17
Group 18
Group 19
Fault

Group 4
Group 14

Fig. 6. Left: t-SNE on PCA reduced unbalanced dataset. All samples are plotted in the xy plane according to their t-sne coordinates. The samples are colored
by which group k-means predict they belong to. The faults are plotted (again) as white dots.
Right: Plot of the group having the highest fraction of samples with events.

TABLE II
TOP FIVE CLUSTER GROUPS ON UNBALANCED DATASET.

Groups Faults Total Faults / Total Faults / All faults
4 7 729 0.010 0.318
14 2 925 0.002 0.091
19 2 3828 0.001 0.091
11 1 857 0.001 0.045
18 0 3095 0.000 0.000

V. DISCUSSION

In a balanced dataset containing samples with and without
events, it is possible to extract some information to separate
the different sample types, as seen from Fig. 3, left. From this
figure, a clear grouping of samples with events can be seen
towards the lower center-right.

When the dataset becomes unbalanced, where 0.03 % of the

samples are samples with events, the information describing
the event samples drowns in the noise of samples without
events, as seen from Fig. 3, right.

To reduce the amount of noise, dimensionality reduction by
PCA was applied to the datasets. By doing this (Fig. 4, left),
the separation of the samples within the balanced dataset was
better compared to the non-reduced dataset. Despite this, only
small improvements of separation can be found in the reduced
unbalanced dataset, see Fig. 4, right. This indicates that in a
dataset with relatively similar samples, the variation among
the samples is more significant than the variation between the
event types when there is an unequal distribution of sample
types.

The main scope of this research was to investigate prediction
possibilities using unsupervised learning, applying k-means
clustering to the dataset. Fig. 5, left, shows a dimensionality-
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reduced representation of the clustered dataset. The clustering
algorithm is able to separate most of the same samples as the
dimensionality-reducing algorithm. Considering the top tree
clustering groups (isolated in Fig. 5, right), they are able
to cover 10 % of the events, where 79 % of all samples
within the clusters were samples with events. Clustering on
the unbalanced dataset, on the other hand, is able to cover
32 % of all events in one cluster. Despite this, the grous also
contain a large amount of samples without events, leaving the
total fraction of samples with events in the groups to be 1 %,
as detailed in Table II.

These various tests show that it is possible to isolate
information from the signal when enough samples are present.
It also shows that if a type of sample is undersampled, the
information from these samples may drown in the noise from
the majority sample type. To conquer this problem, a more
directed work on pre-processing should be applied to remove
most of the unnecessary noise.

The above results illustrate that problems that seem man-
ageable in the case of event separation with balanced datasets
drastically declines in performance when the categories in the
dataset become unbalanced. This is very relevant for predicting
events in the power grid, since there is no events in the vast
majority of time series.

The presented work show that there is still some work to be
done to rely solely on clustering for predicting fault events in
the power system. The research is successful in automatically
sort data-samples from the grid into groups with different
frequency of fault-events. These findings provide interesting
next steps in an automatic event-detection decision support
tools for power systems operators. By automatic clustering,
the overwhelming amounts of real-time sampled data can be
refined into more concise datasets, that can be studied in depth.
For example, the authors suggest to investigate the groups
shown in Table I further. By adding more non-fault events,
supervised learning can be leveraged to distinguish the faults
and non-faults in the group. The authors suggest to further
pursue feature engineering, other relevant data soruces (grid-
topology, weather data) and various sampling techniques.

VI. CONCLUSIONAND FURTHER WORK

This work demonstrates that clustering and dimensionality-
reduction techniques can be applied in when trying to predict
fault-events in the power grid. The algorithms show limited
predictive capability, but should be utilized in combination
with e.g. supervised learning algorithms. The paper also de-
scribe how the predictive capability is reduced when treating
unbalanced rather than balanced datasets, an important discov-
ery as sequential real-time data are unbalanced.

To further develop this line of investigative techniques, there
are a few avenues that could be pursued. Firstly, focus should
be given to the pre-processing of the data in order to establish
the normal variation under standard operating conditions.
That is, continue to improve how to represent fault-event in
the power grid, while leveraging insights from experts in the
field and state of the art statistical representation of complex

data. This work would give a robust statistical foundation as
to the variations that should be regarded as noise in normal
operations. Having established this, feature engineering can be
performed, where parameters holding these normal variations
can be given less significance and the parameters with less
such variations can be given more significance. Furthermore,
the authors acknowledge the rapid expansion the state of the
art in machine learning, and recommend investigating other
in-depth unsupervised learning algorithms.

Another possible route for increasing the predictive capa-
bilities of the data-driven models is the inclusion of data from
other sources than the PQA instruments used in this paper.
It is plausible that the inclusion of weather data, data on
electric consumption and system configuration could increase
the predictive capabilities of these methods.
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