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Traditionally, models pooling flexible demand and generation units into Virtual Power Plants have been
solved via separated approaches, decomposing the problem into parts dedicated to market clearing and
separate parts dedicated to managing the state-constraints. The reason for this is the high computational
complexity of solving dynamic, i.e. multi-stage, problems under competition. Such approaches have the
downside of not adequately modeling the direct competition between these agents over the entire
considered time period. This paper approximates the decisions of the players via ‘actor networks’ and the
assumptions on future realizations of the uncertainties as ‘critic networks’, approaching the tractability
issues of multi-period optimization and market clearing at the same time. Mathematical proof of this
solution converging to a Nash equilibrium is provided and supported by case studies on the IEEE 30 and
118 bus systems. Utilizing this approach, the framework is able to cope with high uncertainty spaces
extending beyond traditional approximations such as scenario trees. In addition, the paper suggests
various possibilities of parallelization of the framework in order to increase computational efficiency.
Applying this process allows for parallel solution of all time periods and training the approximations in
parallel, a problem previously only solved in succession.
© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Credit author statement

Markus L€oschenbrand is the single author of the paper and
developer of the methods.
1. Introduction

Uncertainty is becoming an essential characteristic of modern
power systems. Increasing renewable generation will impose
further challenges as well as increase the future need for flexibility
in power systems under liberalized markets, such as the European
mainland [1].

Provision of flexible capacity from the consumer side imposes
further questions on the regulatory design side [2]. As a result of
non-standardized regulations in addition to vast geographical dif-
ferences in topology of such flexibility providers, analysis of market
power impacts of flexible demand is gaining in its importance as a
research topic.

In addition to the complications of regular electricity market
competition models (i.e. the high computational complexity of the
interactions between several players under consideration of grid
ier Ltd. This is an open access arti
constraints) such problems also encounter high dimensions of
uncertainty (i.e. stochastic load and consumption patterns). This
comes in addition to the computational complexity of the dynamic
nature of such Bellman problems.

To cope with this complexity, bi-(or higher)level problems are
applied to solve problems for competition with demand aggre-
gators. For the sake of clarification it has to be mentioned that the
two levels referred to here are the problem of market clearing
(the competitive aspect) and the problem of solving the state
constraints (the temporal, or: dynamic, aspect) as illustrated in
Fig. 1. This might be in contrast to traditional literature on market
games that usually solely refer to problems such as Stackelberg
competition when utilizing the term “bi-level”.

Dealing with such a problem of implementing strategic bidding
in problems under multiple periods (i.e. dynamic or sequential
games) specifically for operation of storage and flexible demand
has been attempted in previous literature for problems of small size
[3].

Another example for profit-making demand aggregators oper-
ating storage units and flexible demand is presented in Ref. [4]
which uses discrete dynamic programming and a power trajectory
baseline to obtain a tractable problem. Ref. [5] models a strategic
aggregator of flexible demand as a bi-level problem, where the
aggregator acts a single Stackleberg-price maker in a day-ahead
cle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Index
S;D Supply, Demand indicators
t2T time periods [h]
i; i22I generation units/consumers
j2J players
n2N bus node
x uncertainty indicator
nslack slack bus
* optimal/clearing value

Variable
qS2R generated quantity [MWh]
qD2Rþ purchased quantity [MWh]
d2R voltage angle [+]
p*2R market clearing price [V/MWh]
DqSi;t2R generation rescheduling [MWh]
DqDi;t2R load shedding [MWh]

Stochastic Parameters

qSi;t ;q
S
i;t generation capacity [MW]

si;t storage capacity [MW]

li;t load shift capacity [MW]
d consumption [MWh]

Deterministic Parameters
hs;hl storage, load shift efficiencies [%]
b number of minibatches in a batch
B transmission line susceptance [siemens]
F line flow capacity [MW]
VLL value of lost load [V/MWh]
VCC value of corrective control [V/MWh]

Functions
P profit [V]
c generation cost [V/MWh]
p market price [V/MWh]
O feasible space
p policy function
4 value function
f generic function denominator

Others
r2R replay memory batch

Fig. 1. Bi-Level vs. Single-Level Model.
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market. The paper shows that a risk-taking aggregator is able to bid
under a profit.

Another paper analyzing strategic aggregators of demand
response as a Stackelberg model is presented in Ref. [6]. In this
paper, the first level is the equilibrium amongst generators and the
second level the decision of the demand aggregator.

Ref. [7] introduces another bi-level problem to approach to
reach an equilibrium between operational decisions in the first
level and the market clearing in the second level. In specific, this
paper focuses on the analysis of long-term effects such as in-
vestments in generation capacity and demand response. In similar
manner, Ref. [8] formulates a transmission expansion planning and
combines the bi-level problem of Ref. [7] with the transmission
problem to formulate a tri-level problem. However, both of those
papers also simplify the dynamic aspect of shifting demand from
one period to a later period and instead focus on the investment
decision problem.

As shown, the literature suggests separation of the problems of
aggregation of demand/flexibility and generation, only focusing on
the effects of one form on the other instead of the bidirectional
effects that single-level competition models offer. In real world
systems, both parties participate in the same market. To underline
this, the publication will hereon refer to flexible demand and
storage aggregatedwith generation as ‘Virtual Power Plants’ (VPPs).
Building on this literature, this paper intends to address the
following question: assumed VPPs stand in direct competition to
2

each other and to generation - how can the impact on markets and
grid be modeled efficiently? In specific, the model below will focus
on large uncertainty spaces as found in e.g. systems with high
shares of renewables.

Utilizing such uncertainty spaces in problems under storage is of
high computational complexity. This is even the case for single-
player problems [9]. Thus, problems generally attempt to reduce
the decision space, e.g. by considering only two stages such as in
classical stochastic programming [10]. However, considering tem-
poral decisions such as storage or demand shifts connects all future
time periods and thus does not allow for such a two-stage
decomposition. In practical applications, this problem can be
solved via ignoring this connection over time [11]. However, as
shown in e.g. Ref. [3] or Ref. [12], this temporal shift can itself
provide a strategic asset, that would be therefore also ignored.

For dynamic problems without competition, approximations
from the field of machine learning have already been established as
state-of-the-art [13]. In power systems, these methods have also
been introduced to non-competitive electricity storage and flexible
demand [14].

Unrelated to power systems, similar approximations have been
shown to efficiently solve agent-based games of competition [15].

Such approximation schemes to solve dynamic competition
have also been introduced into power system literature. Ref. [16]
deals with high uncertainty space by applying linear approxima-
tions in form of Benders cuts. Ref. [17] utilizes reinforcement
learning to solve a dynamic game in power system security and
assesses the systems robustness to attacks. Ref. [18] applies poly-
nomial approximations in order to generate supply function ap-
proximations and yield a Nash game amongst approximated
agents. Even though the model allows yielding multiple Nash
equilibria, scalability to practical sizes is only able via problem
decomposition, and thus only allowing for nodal and not system-
wide competition.

In order to efficiently model the market effects of problems
under demand aggregators, or VPPs in general, modeling such



Fig. 2. Tri-Level vs. Bi-Level Model.
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large-area coordination is, however, at the core of the problem. To
approach this topic, the here proposed model framework builds on
work from the intersection of reinforcement learning and game
theory, most notably Ref. [19]. Even though proposals using deep-
learning techniques to achieve agent-games of competition exist
for smaller examples of dynamic games in electricity systems [20],
scalability still requires the attention of researchers. This is sup-
ported by the bulk of current day literature in power markets [21],
which show a clear focus on single-agent optimization problems
and approximations on the decision space (e.g. Q-Learning
requiring discretized decisions from agents in a problem that is
continuous). Nonetheless, recent publications have approached
continuous decisions. As such, Ref. [22] applied an actor-critic ar-
chitecture on a single-period electricity market game and found
superior convergence compared to traditional market clearing
methods. Focusing only on a single entity, Ref. [23] showed actor-
critic methods to be able to optimize bidding decisions of an
electricity generator under consideration of non-linear constraints
and showed such methods to outperform the traditional machine
learning methods. In the here presented paper, agents using such
actor-critic algorithms are utilized in a multi-period market
clearing problem, a necessity to implement the storage and de-
mand shift constraints that are at the core of VPPs.

In summary it can be said that a scalable algorithm to solve
multi-market clearing under demand shift, storage and associated
uncertainty is needed for accurately modeling the competition
between VPPs. This is what this paper presents, based on an agent-
critic formulation for agent based market modeling. In addition to
solving this problem of scalable continuous dynamic competition,
the model presented here also extends to grid problems via a
transformation of area based market clearing to physical trans-
mission. A case study based on standardized test data demonstrates
how this allows showing the grid impact of coordination of supply
and demand resources distributed within the grid. The study is
aimed specifically to be a representation of the Northern European
power system, which has area-localized market clearing nested
within a centralized transmission problem. The resulting model
principle is shown in Fig. 2.1

In summary, this paper offers four novel insights:

I A single-level model for competition between aggregators of
flexible demand, generators and hybrids combining both.

II A versatile and computationally efficient framework to
derive Nash equilibria for stochastic multistage models.

III A decomposition concept to parallelize training of agents and
time periods.

IV A bi-level model to transform area based market clearing
results into physical transmission grid results.
1 dotted lines represent that this connection might not exist.

3

The structure of this paper is the following: Section 2 ap-
proaches the question of what deep learning contributes to the
problem. Section 3 illustrates the model and thus present contri-
bution I. Section 4 shows the solution framework used to solve this
problem. It thus provides contribution II. Further, the section shows
how to decompose the problem and increase computational effi-
ciency, thus also providing contribution III. To extend the yielded
solution to the grid, Section 5 introduces contribution IV. Sections 6
and 7 present and solve case studies of respectively small and
practical size with high uncertainty space, outperforming previ-
ously presented small-scale problems from literature. Finally, Sec-
tion 8 concludes the paper.

The implementation of the proposed model and solution
framework requires a multitude of tools and techniques to work in
unison. For the sake of transparency, the utilized tools andmethods
in the case study presented in this paper are listed here:

Training the Actor/Critic Networks: Pytorch [24].
Solving the Market Clearing Problem (5f): COBYLA (‘Con-

strained Optimization BY Linear Approximations’) introduced in
Ref. [25] and extended on in Pagmo [26].

Solving the Transmission Problem (7): Linear Programming in
Pyomo [27].

2. Why deep learning?

The first main reason for applying deep learning in the given
context of competition amongst virtual power plants can be found
in the model of the competition and the related approximations of
the agents involved.

Within machine learning, deep learning refers to the utilization
of layered functions (networks) that are used to approximate given
problems by adjusting weights and biases via a training process.
These then trained networks can then be utilized to supply ap-
proximations of (expected) outputs for a given unknown input.
Such approximations have been utilized within energy markets
before the recent surge of deep learning, which came as a result of
specialized hardware based on GPUs which allowed for more effi-
cient training. In the context provided in this paper the approxi-
mation is that of agent decisions to supply functions that allow for
finding market equilibria amongst them. Based on traditional
economics, in power system this topic has historically been dis-
cussed mainly in regards to linear approximations which allow for
convex games and therefore simplify the search for equilibria [28].
Nonetheless, non-linear approximations have been proposed.
However, most of these approximations require convexity, an
example is provided by Ref. [29] which proposes quadratic supply
functions. A non-linear approximation that does not require con-
vexity is presented in Ref. [18] that uses a non-deep machine
learning approach. Instead of neural networks polynomials are here
utilized for the supply functions. Albeit promising in large-scale
applications, this method still has significant downsides
compared to deep learning approaches. The main issue is that for



Fig. 3. Comparison of supply function approximations.
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non-univariate approximations (i.e. any agent that has more than a
single decision to make, e.g. a vector of decisions) such a poly-
nomial may become intractable for the equilibrium problem very
rapidly. The solution might be to adjust the polynomial (the
referenced paper uses a heuristic to set certain coefficients of the
polynomial to 0) in order to simplify it, which can help to reduce
the scale of the problem. However, this simplification is also not
scalable to a large degree, as it is still constrained by the compu-
tationally demanding market clearing algorithm. In the referenced
paper this issue is approached by slicing the problem into smaller
pieces, which allows scalability but only is able to implement local
(i.e. nodal) competition and not direct competition of all units over
the entire network. The reason for this is that the mechanism uti-
lized to conduct the non-linear market clearing, the Gr€obner basis,
is not able to tractably cope with large polynomials. As a result, the
mechanism is not able to scale well to problems with large decision
spaces (such as a large number of flexible demand, storage and
generation units that make up VPPs).

Providing amechanism that is able to do so is the aim of the here
presented paper. As discussed above, this is made possible by the
non-linear but yet hardware efficient approximation capabilities of
neural networks. A graphical representation of this can be found in
Fig. 3.

In addition to additional advantages such as using replay
memory for training, use various data points in parallel via batch
gradient descent and the use of dropout to robustly train the
weights and biases, the reason of using deep learning related to the
competition is the high non-convexity that approximations can be
efficiently trained on. This is ensured via activation functions,
which are non-linear layers that are wrapped around the linear
layers.2 These activation functions represent non-convexity in the
output approximation, but are convexified in order to allow for
gradients and thus training of the network. With these non-linear
layers, the agents are able to adjust their expectations via non-
linear supply functions. Using a learning approach and specif-
ically learning the reactions of the other agents, the agents manage
to converge to an equilibrium state. This can be done via self-play,
i.e. letting the agents adjust themselves based on other agents
continuously until an equilibrium is reached. However, the pro-
posed non-linear approximations are not without downside.
Traditional machine learning approaches require large amounts of
data to train large networks. As in the here proposed example a
data point is the result of a players optimization problem, yielding
sufficient data might not be possible. As a result, the here proposed
application might require a lesser amount of layers in the neural
network (e.g. a low two-digit number instead of a high three digit-
number as in traditional machine learning applications).

The secondmain reason for applying deep learning in the given
2 layers meaning approximations that are stacked on each other.
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context of competition amongst virtual power plants can be found
in the model of future outcomes. This is because virtual power
plants have to make scheduling decisions on their storage and
flexible load shifts that carry on into the future. Such dynamic
programming problems, i.e. optimization problems with state
constraints, fulfill the Bellman equation. In other words, the current
values are connected to all potential values of the next period, of
which in turn all are connected to all of the second-next and so
forth. Problems like this can rapidly become intractable with small
numbers of periods, even for discrete distributions of future un-
certainties with low amounts of scenarios. Solutions for this
problem of tractability are, again, approximations. And, similar to
the modeling of competition, in dynamic optimization a popular
approach of approximations is linear [30]. Also, and as described in
Ref. [31] similar approaches such as described above exist. How-
ever, as described in Ref. [31] and expanded on in Ref. [13,32], again,
neural networks show the best performance of approximation due
to their highly non-linear characteristics.

Thus, and as shown in Fig. 2, the here proposed approach
combines a single framework to apply the strength of deep learning
on both the multi-period aspect as well as the complexity of the
approximated supply functions in order to model competition
amongst virtual power plants.

3. The Market Model.
In commodity markets, Cournot competition provides a popular

model for interactions between generators [33]. The optimization
problem for a single market participant j, below also referred to as
‘players’, in such a model can be described as:

P*
j ðxÞ ¼ max

qS;qD;s;l

X
t2T

2
64X
i2ISj

h
p*t q

S
i;t � ci

�
qSi;t

� i
�

X
i2IDj

p*t q
D
i;t

3
75 (1a)

s.t.

qS
i;t
ðxÞ� qSi;t � qSi;tðxÞ ci2IS; t2T (1b)

qDi;t þ si;t � hsi si;t�1 � li;t þ hlili;t�1 ¼ di;tðxÞ
ci2IDj ;

t2T
(1c)

0� si;t � si;tðxÞ ci2IDj ; t2T (1d)

0� li;t � li;tðxÞ ci2IDj ; t2T (1e)

The objective function (1a) maximizes the profits of the gener-
ation units whilst minimizing the payments for the purchased
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energy.3 Capacity constraint (1b) describes the ranges in which the
generation units operate. The state constraint (1c) describes that a
player can utilize storage and demand shift in order to fulfill the
uncertain demand given. Capacity constraints (1d) and (1e)
describe the operational ranges for storage units and demand shift.

Here it can be observed that the VPP formulation provides a
generalization of traditional power plants, aggregators and
wholesale consumers (i.e. ‘non-flexible’ demand aggregators). For
example could a traditional thermal power plant be modeled as the
single plant of a single player without any (flexible) demand or
storage capacities. This allows modeling the direct competition of
traditional plants to virtual power and (flexible) demand
aggregators.

In the here provided example, a market clearing for energy
prices in every period t is assumed:

p*t ¼ pt
�
x;
X
i2IS

qSi;t
�

ct2T (2)

The uncertainties presented in this model are:

- Generation provided by e.g. wind power plants subject to
weather effects.

- Flexible demand provided by e.g. automatic heating subject to
outside temperatures.

- Available storage capacity provided by e.g. electric vehicles
subject to usage and thus disconnection from the grid.

- Energy prices provided by e.g. spot markets subject to price
fluctuations.

As the subsequent sections will illustrate, having such a large
uncertainty space presents the main hurdle in finding the equi-
librium solutions.

Further, the competition is Cournot, i.e. a competition in quan-
tity, which means the players will exercise their market power via
strategically reducing or increasing the quantities bid and deviate
from the social welfare optimal quantities. In traditional Cournot
games this decision space is limited by the generation capacities
(1b) of the generators. In the here presented model, however, there
are also decisions on stored and shifted loads, i.e. decisions over
several time periods. As the later presented case study shows, the
agents also utilize those ‘temporal’ decisions strategically.
4. Solving the market model

Despite the problems’ notational simplicity and disregarding
issues with efficient scaling of the problem size via additional
players,4 the core problem itself has two issues: on one hand are
time periods connected via state constraint (1c) and will for longer
periods thus lead to combinatorial explosion (also referred to as the
“curse of dimensionality”), on the other hand will uncertainties
negatively affect the convergence to an equilibrium state.

Dealing with such uncertainty efficiently is already an issue in
single player (and thus price-taker) optimization problems,
resulting in stochastic [35,36] or robust optimization problems [37].
In games under uncertainty, solutions are thus often obtained via
linearizations [38]. This paper will instead circumvent the
requirement for dependence on (manual) linearizations and
3 For sake of simplicity, this model considers the decision maker to be unaffected
by additional technical details such as degradation of storage or cost of load shifting
and instead make price decisions purely based on operational profits. Nonetheless
implementing this would be possible by adding an adequate cost component as a
function of storage to this objective.

4 An issue common in equilibrium problems [34].
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instead use (automatic) non-linear function approximators in form
of neural networks.

Considering uncertainty in a game representing the previous
market would lead to the following Nash equilibrium that would
have to hold for all players j:

Pj
�
x
��q*i ci2 Ij

��Pjðxjqici2 Ij
� cqi2OiðxÞ;

i2Ij
(3)

However, neither stability nor existence of such an equilibrium
would be provided, as both the profit as well as the feasible space
defined by the constraints of problem (1) are subject to uncertainty.

In order to address this, policy function approximations have
been utilized in literature [39]. This means that it is assumed that
instead of an optimal decision, an optimal policy p*

i ðxÞ is decided
upon. This leads to the following reformulation of the Nash equi-
librium (3):

Pj

�
x
���p*

j ðxÞ
�
�Pj

�
xjpjðxÞ

�
(4)

This policy Nash equilibrium can be considered converged, if no
change in policy pjðxÞ leads to a change in profits for any player j.
This is a generalization of the previous Nash equilibrium (3), which
considers fixed policies, i.e. players not reacting to uncertainty. A
proof of convergence for a stochastic game is provided in Refs. [39].

In the real world, such Nash equilibrium approximations have
successfully been used in real-time decision making in games with
large decision spaces [40].

The advantage of using such a policy approximation, in litera-
ture also often referred to as an actor, is not only limited to that it
allows to deal with finding the equilibrium under uncertainty for a
static system. In addition to that, it also allows to solve the dynamic
problem nested in the equilibrium model. Extending the problem
by a value function approximation, also referred to as a critic, of the
future states allows for an actor-critic model. Doing this allows the
dynamic equilibrium problem to be solved similar to other
approximate dynamic problems [13].

Establishing this value function approximation requires defining
a reformulation of the objective function (1a) of the player problem
as a Markov Decision Process.5 This is done by assuming uncer-
tainty becomes known in a given period t:

P*
j;t
�
xt ; si;t�1; li;t�1ci2Ij

� ¼ max
qS;qD;s;l

2
64X
i2ISj

h
p*t q

S
i;t � ci

�
qSi;t

� i

�
X
i2IDj

p*t q
D
i;t

3
75þ 4j;tþ1

�
si;t ; li;tci2Ij

�

(5a)

s.t.

qS
i;t
ðxtÞ� qSi;t � qSi;tðxtÞ ci2IS (5b)

qDi;t þ si;t � hsi si;t�1 � li;t þhlili;t�1 ¼di;tðxtÞ ci2 IDj (5c)
5 It has to be noted that in the here presented case, the uncertainties xt and xt þ 1
are considered stage-wise independent. In case the uncertainties are dependent
(e.g. in decision trees), the value function approximation for the next stage would
have to consider the uncertainty of the current stage: 4j;tþ1ðxt

��si;t ; li;tci2IjÞ. For the
sake of simplification, this is however omitted here.
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0� si;t � si;tðxtÞ ci2IDj (5d)

0� li;t � li;tðxtÞ ci2IDj (5e)

p*t ¼ pt

�
x;
X
i2ISj

qSi;t þ
X

j22Jnj
pj2;tðxtÞ

�
ct2T (5f)

This formulation shows a difference to traditional actor-critic
models [32] and to techniques intended to map the model envi-
ronment [19,41]: the characteristic of the optimizationmodel being
known allows for traditional solution techniques instead of utiliz-
ing the policy gradient to solve the problem for a specific player j.
Instead the actor function is used to model the reactions to un-
certainty of the other players j2, reducing the algorithms search
space. This does not only allow a faster convergence for fitting the
actor (as there are techniques to efficiently solve such deterministic
single-stage problems), but also decreases the size of the actor, as
only the variables interacting with other players have to be
considered. In the here presented example, only generation in-
fluences the prices and thus demand, storage and load shedding do
not have to be included in the actor but instead are only used in the
critic.

The model also demonstrates another difference to dynamic
competition models from literature: in the given formulation, the
problem incorporates assumptions on time periods tþ 1; T .
Compared to traditional problems under storage [42], the here
provided formulation thus not require assumptions on parameters
such as end-inventory levels or monetary value of such storage6

and instead choses these values based on the assumptions for the
future values provided by the function approximators, i.e. the
neural networks. This removes another, traditionally manual,
approximation task.

Due to the dynamic problem being influenced by the (policy)
decisions on storage and load shift and the future uncertainties
being unknown, the approximated value (i.e. the approximated
profit) of period t thus can only consider the approximated values
for the future outcome. As those values themselves consider the
subsequent periods, the approximation is the classical Bellman
function for dynamic programming. Convergence of such an
approximation problem of the value function, i.e. to find 4j;tðsi;t�1;

li;t�1ci2IjÞzPj;tðxt ; si;t�1; li;t�1ci2IjÞ, can be achieved via boot-
strapping of (enough) samples for the uncertainty.

(6)

After introducing a replay memory R and considering the profits
within a single specific period t as P0t , the algorithm achieving this
convergence can be formulated as shown in Eq. (6). Information on
convergence can be found in A.

Solving problem (5) in a specific period t for all players yields a
6 In hydropower optimization this value is also known as ‘water value’.

6

minibatch ½lt ; st ; xt ;Pt
t ; q

*
t � that is stored in this replay memory. In

the same manner, a batch consisting of a number of b minibatches
can be sampled via random draw from this replay memory R. It
takes the form of:

r¼

2
664

h
t1; l1t ; s

1
t ; x

1
t ;P01t ; q*1t

i
½ / �h

tb; lbt ; s
b
t ; x

b
t ; q

*b
t

i

3
775 (7)

Compared to traditional power market clearing models such as
Ref. [43], here, similar to Ref. [4], the player decisions can be solved
in parallel of each other. This is due to a decoupling as a player does
not utilize other players value functions or its own policy to find an
optimal solution in a single period.

The schematic presented in Fig. 4 outlines the dynamic process
of a single such episode from the algorithm.

(8)

Alternatively, and in case the uncertainties in a time period are
stage-wise independent, all player and periodical decisions can be
solved in parallel. This is shown in Eq. (8).

The schematic presented in Fig. 5 outlines a single episode of
this parallel algorithm.

Compared to previous problems in literature [12] this problem
converges based on drawn samples and thus not require approxi-
mations of the uncertainty space such as scenario trees or lattices
but instead can receive real data or samples taken from distribu-
tions as input.

An analysis of the given problem is presented in A, which shows
that for the given problem approximation, the stage-wise game is
in fact deterministic, albeit non-convex, and the quality of the
policy function approximation is not affected by the quality of the
future value function approximation.

Actor-critic methods have been utilized in literature in agent
Fig. 4. Serial algorithm.
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based models and shown to converge towards a Nash equilibrium
[19,41]. However, similar to traditional machine learning tech-
niques, those techniques have mostly been utilized with either
discrete or discretized decision spaces. By using non-linear opti-
mization to find the equilibrium from a perspective from each in-
dividual player j (i.e. solving problem (5)) instead of relying on the
actor-critic model itself to find the optimal point, the here pre-
sented algorithm is thus able to use continuous decisions (as it does
not solve for them but instead only approximates them).

(9)

Applying Mean Squared Error as a loss function, the critic
function can be trained as in Eq. (9). The utilized optimizer and
structure of the neural network applied in this paper can be found
in Appendix B.

(10)

In similar manner, the actor network can be trained as shown in
Fig. 5. Parallel algorithm.
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Eq. (10).
The training process of the critic and actor approximation net-

works is also displayed in Figs. 6 and 7 respectively. Fig. 7 displays
both games under perfect and imperfect information. For games
under perfect information, knowledge on the outcome of param-
eters of all players is used, whereas in incomplete information
knowledge on uncertain parameters can be withheld. In the here
presented example, this could e.g. mean that an actor is trained
only on the outcomes of available storage and load shift capacities

si;tðxtÞ; li;tðxtÞ for the specific player, i.e. for IDj;t, instead of also

including other players’ flexible capacities, i.e. training on IDt . In the
case study presented within this paper, a game under complete
information was assumed.
5. The transmission system problem

As area pricing does not adequately represent the physical re-
ality of the grid, the transmission system operator has to make
adjustments to the market clearing results in order to ensure
transmission line limits are accounted for. The corrective actions
considered in the here applied model are those of load shedding
and generation rescheduling as e.g. presented in Ref. [44].

To formulate this, a single-period DC-Optimal Power Flow (DC-
OPF) is chosen as a representation of the adjustments the Trans-
mission System Operator (TSO) has to conduct every period. The
model utilizes the assumption presented in Ref. [45]: adjustments
are made after realization of the uncertain variables. However, and
as an accurate representation of the reality of many electricity
markets such as found in the Scandinavian power system, the
transmission system operator is considered to hold a reactive role
disconnected from the market decisions, having the mission of
ensuring adequate transmission under consideration of the
clearing result presented by the power market. This leads to the
following deterministic DC-OPF for every period t:

min
DqD;DqS;d

VCC
X
i2IS

���DqSi;t
���þ VLL

X
i2ID

DqDi;t (11a)

s.t.
Fig. 6. Critic network.



Fig. 7. Actor network.

Fig. 8. Case I: 30 bus with 4 players.
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qS
i;t
� qSi;t þ DqSi;t � qSi;t ci2IS (11b)

0�DqDi;t � qDi;t ci2ID (11c)

X
i2ISn

h
qSi;t þ DqSi;t

i
�

X
i2IDn

h
qDi;t � DqDi;tþ

si;t � hsi si;t�1 � li;t þ hlili;t�1

i
¼

X
n22N

Bn;n2

�
dn;t � dn2;t

�
cn2N (11d)

�Fn;n2 �Bn;n2

�
dn;t � dn2;t

� � Fn;n2

cn2N;
n22N

(11e)

dnslack;t ¼0 (11f)

The objective (11a) is the minimization of cost accrued by load
shedding and corrective generation rescheduling. As strategic
bidding on those would be considered a break of laws and against
the interest of the power system operators, these costs are not
considered in the market optimization problem of the players as
presented in Eq. (1). Constraints (11b) and (11c) formulate the
limits of the adjustment variables. The physical constraints given by
Kirchhoff’s laws are introduced via the nodal balance condition
(11d). The physical line capacities are enforced via constraint (11e).
The slack bus is defined via condition (11f). By replacing the
adjustment of supply with two bidirectional variables, one of up-

and one for downwards regulation, allows replacement of
���DqSi;t

��� ¼
DqS;upi;t þ DqS;down

i;t . This transforms the transmission system prob-

lem into a Linear Problem.
6. Case study I - IEEE 30 bus & 3 days

The first chosen case study is that of an IEEE 30 bus test system
extended to three periods. As mentioned in the model description,
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the units were considered to show uncertainty in price slope and
elasticity, minimum and maximum generation limits, consumption
and available storage and demand shift capacities.

Regarding performance, the convergence speed per episodewas
100 s for the Nash game on an Intel i7-8850H CPU (all players in
parallel) and training the networks took between 5 s per episode on
a Nvidia Quadro P2000 GPU (all networks trained in parallel).
Further information on the topology of the chosen networks used
for both case studies can be found in Appendix B.

Fig. 8 shows the convergences of the actors and critics of the
model, whereas 100% is the initial starting error.

Table 1 describes the setup of the four considered players. Player
1 is a pure generator that also holds the largest units (with ca-
pacities of around 200, 90 and 40 MW) and the other three players
hold units with around 30, 25 and 40MWrespectively. The demand
nodes are partioned equally amongst player 2, 3 and 4, with the
players owning total storage capacities of 65, 18 and 5 MW
respectively. Flexible demands where 72, 47 and 19 MW respec-
tively. As the demand side players aim to fulfill this demand, their
results can be expected to be negative (as the transaction between
the end consumers to these aggregators is not considered in this
model and instead their goal is cost minimization of the demand
fulfillment). Nonetheless, one of the virtual power plants, namely
the aggregator that is player 4, manages to succeed in making a
profit over the duration of the three episodes.

Considering the demand results in Fig. 10 and comparing them
to the supply results in Fig. 11 shows that the total demand of this
player is outweighted by their available generation capacity. Solv-
ing the problem single-period would result in a negative result of�
26:8V for player 4 in period 1. Instead they not only manage to
make a positive result in period 1 but also stay positive over the
total time frame of three periods.

The reason for this can be identified in the potential of multi-
period shifts via flexible demand and storage. As shown in Fig. 12
player 4 utilizes the storage and flexible demand capacities more
than other players. Even though the other players had higher ca-
pacities in storage and flexibility, player 4 had the highest available



Fig. 9. Case II.1: 118 bus with 10 players.

Table 1
Case I - player description and profit results.

Player Generation Busses Demand Busses Profit period 1 Profit period 2 Profit period 3

j ¼ 1 IS1 ¼ f1;2;5g ID1 ¼ f0 =g 13738 V 11853 V 11995 V

j ¼ 2 IS2 ¼ f8g ID2 ¼ f1;2;…;10g �5264 V �5954 V �5258 V

j ¼ 3 IS3 ¼ f11g ID3 ¼ f11;12;…;20g �368 V �490 V �315 V

j ¼ 4 IS4 ¼ f13g ID4 ¼ f21;22;…;30g 428 V �6 V �329 V

Fig. 11. Case I - supply results.
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generation capacity. This balance of generation and consumption
allows the player to influence the prices via capacitating generation
and benefit on the resulting price changes optimally via demand
and supply shift. Due to the single-period result being negative, this
effect would not have shown. This highlights the necessity for
multi-period models as the one proposed in this paper.

However, this profit-maximizing utilization of storage by the
player not only affects the profit results of the supply and demand
side. As Fig. 13 illustrates, allowing the players to operate over
multiple periods changes the transmission line utilization. This can
also be expected, as due to multi-period operation, the players will
Fig. 10. Case I - demand results.
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now aim to purchase less energy in periods of high prices and buy
more in periods of low prices. In the given example, this increases
the line utilization from an average of 23% in the single-period case
to 28% in the three-period case. Albeit higher utilization of the lines
(and thus potentially having an effect on required long-term in-
vestments into line capacities), the result of the grid operator de-
creases by 13% from the single-to the three-period case. This means
that such coordination on the demand and supply side can also
have a positive impact on the underlying grid.
Fig. 12. Case I: Store and demand shift results.



Fig. 13. Case I: Transmission results 3- and 1-period case.
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7. Case study II - IEEE 118 bus & 7 days

The second analyzed case is an adjusted version of the IEEE 118
bus test system solved over a period of 7 days. As Fig. 14 illustrates,
connecting these problems via storage and demand shift makes the
problem equivalent to a 118 � 7 ¼ 826 bus problem. The uncer-
tainty space for the problem is a number greater than 1091 different
possible outcomes an average standard deviation of 50% of the
mean. Two cases were analyzed, the first case consisting of 5
generation companies owning the 19 generation units and 5
additional players managing the flexible demand that covers the
entire demand side. Comparison case twomerges the units of these
5 demand side players in a single entity. The convergence for the
case is shown in Fig. 9. The graphs show a convergence to an
equilibrium on the decisions (i.e. the actors) with continuing un-
certainty on the stochastic future outcomes (i.e. persistent errors on
the critic). In other words, even though the agents’ assumptions on
the future outcome is not correct, the actors still manage to
converge and thus, by definition, find a equilibrium for this case
with a high number of busses and large uncertainty The definition
of this single equilibrium due to the decoupling of future and cur-
rent states is shown in Appendix A.

Solution speed for a single episode of all decision problems was
180 s and training of the networks took between 10 and 15 s per
episode.

To compare the market clearing results, a Monte Carlo analysis
of 1000 different scenarios was conducted, whereas the average
results are shown here.

Thesemarket clearing results for period 1 are displayed in Fig.15
for case 1 (‘separated’) and in Fig. 16 for case 2 (‘single’). The de-
mand shown is adjusted for storage and shift of flexible loads to
subsequent periods and the generation decisions are the (deter-
ministic) choices made by the agents for this period, considering
the future uncertainties.

The difference between the demand provided in case 1 to the
demand provided in case 2 is�7.53%, where the supplies are nearly
identical with a difference of �0.09%. As the clearing results show,
the main difference in demand is clustered in the first 20 buses of
the 118 bus network, as shown by the bottom left side of Figs. 15
and 16.

At first glance, this result seems paradox, considering aggre-
gating the five separate demand side players to a single demand
side player causes demand in the first period to decrease dispro-
portionately over supply.
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However, this difference in changes on demand and supply side
be explained by storage and load shift changes. The case study il-
lustrates how an aggregated player utilizes storage and demand
shift differently over the separated players. This is shown in Figs. 17
and 18 for separated and single demand side players respectively.
Even though 35 of the busses were supplied with storage capacity
and 45 busses with flexible load capacity, the results show only a
few selected of the busses having these capacities being utilized to
a greater extend. Compared to the market clearing results, these
changes in storage and load shift are less subtle between case 1 and
case 2. It can be seen clearly that the single player chooses to utilize
less of the available storage capacity in period 1, leading to more
available loads in period 1 that, due to Kirchhoff’s law have to be
consumed then.

In single-period Cournot markets it can be shown that players
with market power tend to withhold available supply in order to
increase their personal profits [34]. In the here provided multi-
period example, storage and demand shifts are used by the de-
mand aggregator of case II.2, i.e. the entity that holds all the flexible
demand and storage, to increase their demand surplus over the
more competitive case II.1.

This is shown by the shrinking supply side surpluses in Fig. 19.
Especially period 2 yields higher returns to the agents in the
competitive case II.1, with most of the total results still lying above
20000 Euro per period. In the case of the demand aggregator
(player 1 of Case II.2), this particular agent reduces the returns of
the other agents that are now not able to exercise demand shifts
and storage in order to minimize the cost for the flexible demand it
is responsible for catering to. This shows that an agent that holds a
monopoly on demand-side inter-temporal decisions uses market
power to minimize the cost of catering to this demand.

The larger extend of the exercise of these demand shifts and
storage is also shown in the flattening effect that temporal arbitrage
causes (as e.g. discussed in Ref. [12]) - the surpluses are more even
between the periods where a single entity controls all inter-
temporal decisions.

Fig. 20 shows that an effect of aggregating the demand side into
a single player seems to level the competition, leading to lower
welfares of the involved players. The negativewelfare outcomes are
a result of not taking into account that the demand aggregators will
be reimbursed for their fulfilled demand, thus, adjusting for this the
real welfare result will be positive. Nonetheless, it shows that
aggregating of the demand side resources resulted in lower supply
side profits, as this is the side that gains the benefits of lower prices.
In addition, and as discussed, the results are in line with outcomes
of Cournot models from literature with monopolies on demand.
The difference here is that the given model also considers uncer-
tainty and inter-temporal decisions, with similar results as tradi-
tional Cournot models.

The comparison of the transmission line results for period 1 is
displayed in Fig. 21, which illustrates case II.1 as black dots and case
II.2 as gray stars. Merging the supply side players into a single entity
increased the transmission system utilization by 0.4% but also
decreased the system operators cost of adjusting demand and
supply by 0.66%. This shows that a different constellation of players
can have significant effects on the utilization of the transmission
network. Even though in the here presented case studies the
highest utilized transmission lines (left quadrant of Fig. 20) were
left nearly identical in their utilization, the average utilization was



Fig. 14. Case study II problem.

Fig. 15. Case II.1: demand and supply.

Fig. 16. Case II.2: demand and supply.

Fig. 17. Case II.1: storage and load shift.

Fig. 18. Case II.2: storage and load shift.

Fig. 19. Case II - supply surplus.
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Fig. 20. Case II - welfare results.

Fig. 21. Case II - System clearing: transmitted capacity in period 1.
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higher for case 2. The reason for this can be attested to the aggre-
gated player spanning a larger area of (i.e. the entire) transmission
network, whereas the five separated players were localized in
specific parts of the IEEE 118 bus network. Due to this distribution
of units over the network, the actions of the single player would
thus also affect the network to a greater extend.

The resulting case study thus displays intuitive results that are
aligned with previous literature on the topic, whilst being capable
to cover a medium-sized case study with a large-sized uncertainty
set. In summary, the case study suggests that monopolization on
the demand side in a system under distributed storage and flexible
loads can lead to lower market clearing prices in Cournot compe-
tition. In this case, the winners of this monopolizationwould be the
agents holding this inter-temporal capacity and subsequently the
consumers profiting from a more efficient utilization of such. The
losers in such an monopolization would however be the grid op-
erators as such a monopolization could affect required balancing
capacities.

Nonetheless, it has to be noted that the given case study was
intended to provide an intuitive example of application of the
proposed framework and should not be utilized for supporting real-
world policy changes.
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8. Conclusion

This paper presents a novel, multi-period framework to solve
dynamic competition problems amongst Virtual Power Plants
consisting of aggregate flexible demand, distributed generation
and/or generation units. Neural networks are utilized as approxi-
mations for players on the demand and supply side. An iterative
game is played between those approximations in order to converge
towards an equilibrium under a vast uncertainty space. In addition,
a DC-Optimal Power Flow transformation is proposed in order to
yield network results from an area/zonal market clearing. The
presented framework is aimed to represent liberalized electricity
markets found in Europe that traditionally show a separation be-
tween market clearing and system operations planning.

Further, a proof of the model finding a Nash equilibrium even
under high uncertainty (and thus unreliable approximations of
future periods) is provided. The presented case studies on an
extended version of the IEEE 30 and 118 bus test systems with an
uncertainty space of over 1091 different possible scenarios dem-
onstrates the capabilities of themodel converging to an equilibrium
solution.

The case studies also show the need for similar multi-period
market clearing models. An example is given by a Virtual Power
Plant consisting of generation capacity, demand shift capacity and
storage capacities. In the single-period 30 bus case, this aggregator
does not manage to yield a profit, as the demand of the units it
manages exceed its generation capacity. Utilizing its storage and
demand shift, however, this Virtual Power Plant manages to yield a
profit over the periods.

A similar mechanism is suggested by the larger case-study,
which shows that Virtual Power Plants holding monopolies on
demand capacities utilize this market power in order to decrease
the system prices, thus decreasing their cost of fulfilling the
demand.

The proposed model framework is shown to be versatile, as an
example it is pointed out that games on symmetric as well as
asymmetric information are similarly implementable. In addition,
the computational efficiency is highlighted: respective players’
decision problems can be solved for in parallel, with the approxi-
mations being able to be trained in parallel as well.

In case of stage-wise independence, the periodical problems can
be parallelized as well. This is also shown in the second case study,
which shows the problems converging for 10 players competing
over 7 time periods, i.e. solving 70 problems in parallel.

In addition to this computational aspect, the provided example
also reduces the requirements of user assumptions such as end
inventory levels of storage or approximations of the distributions,
as the framework is trained iteratively on samples and thus can also
cope with distributions directly, where traditional models instead
required approximations of uncertainty in form of e.g. scenario
trees.

One downside of the model, however, is the inaccessibility of
results for visual presentation due to high dimensionality. In the
provided paper the results for period 1 were presented as Monte
Carlo analysis of the networks, which however show higher
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dimensions than the 1000 scenarios bootstrapped this way. This
problem is an inherent issue of utilizing neural networks and could
increase the difficulty of trouble-shooting models and also have an
effect on acceptance of advice to decision makers that is based on
such a framework. This issue of data visualization, however, is an
active topic of research and future developments in this field would
thus positively affect the importance of the here proposed model
framework.
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Appendix A. Policy Nash Equilibrium

Theorem 1 (Policy Nash Equilibrium). The deterministic policy
Nash equilibrium (4) is equal to the stochastic Nash Equilibrium (3) if
every policy yields decisions pi;t2p*

j ðxtÞ representing the optimal

player decisions, i.e. qS*i;t ¼ pi;t

� without requiring a perfect fit of the policy approximation, i.e. qSi;tz

pi;t .
� regardless of the future profit expectation, i.e. the quality of the
critic function approximation 4.

Proof.For the single period case, state equation (5c) can be
reformulated as a function f stateðs; lÞ ¼ 0 and market clearing con-
dition (5f) as a function fmarketðqSÞ ¼ 0. Denoting the profits in a
single period as P0 allows for a reformulation of the periodic de-
cision problem (5):

P0j;t
�
q*i;tci2I

�
þ 4j;tþ1

�
s*i;t ; l

*
i;tci2Ij

�

fmarket
�
qS
�
¼ 0; f state

�
s; l; qD

�
¼ 0

cqi2O
q
i ðxtÞ ci2Ij

csi2Os
i ðxtÞ ci2Ij

cli2Os
i ðxtÞ ci2Ij

(A.1)

As the feasible space of market clearing decisions and state
decisions is only influenced by uncertainties and not any other
decisions, the state problem can be decoupled from the market
clearing problem.

This means that the following reformulation of the objective
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function (5a) holds for any state decisions:

P0*j;tðxtÞ¼Pt
j;t

�
xt ; q

*
i;tci2 I

�
(A.2)

Thus follows, regardless of the outcome of the uncertainty in the
following periods and the quality of the future profit approximation
4j;tþ1, the optimal market clearing decisions are dependent only on
the uncertainty in period t. As per definition, this uncertainty xt
becomes known in the current period. This makes the market
clearing problem deterministic.

Assuming the critic is trained sufficiently to allow yielding
policy decisions pi;t2p*

j ðxtÞ that adequately represent qS*i;t ¼ pi;t

results in the formulation of:

P0j;t
�
xt ; q

*
i;tci2 I

�
¼Pt

j;t
�
xt ;pi;tci2 I

�
(A.3)

This is valid even in cases where the approximation only fits the
optimal decisions, i.e.:

qi;t spi;t where qi;t s q*i;tci2 I; t2 T (A.4)

Thus it can be stated that finding the Policy Nash equilibrium (4)
not only is a deterministic problem but also an accurate represen-
tation even for an imperfect approximation of the actor.

Compared to traditional implementations of actor-critic
methods such as Ref. [46], the here presented problem fully
knows the model(/environment). This disconnection and the
disconnection of state andmarket clearing variables allows training
the actor and critic individually without requiring reliance on the
policy gradient theorem in Refs. [47] and thus increasing compu-
tation speed by being able to train critic and actor in parallel instead
of in succession.

In addition and similar to Ref. [39] this proof shows that the
actor can be trained from results obtained by the market clearing
problem (5f) and will converge towards a Nash Equilibrium in case
the fit of the decisions yielded by the actor network converge to-
wards the market clearing decisions that they are being trained on,
a problem that designs such as ‘deep Q networks’ have proven
themselves capable of [48]. This is supported by the decision
problem for a single period and player being known, replacing
exploration in space with unknown boundaries (such as epsilon-
greedy approaches) or policy gradient techniques (based on the
so-called ‘reinforcement trick’) through a non-linear optimization
problem over the space defined by Eq. (A.1) [32].
Appendix B. Neural Network Topology



Fig. B.22. Neural Network Architecture
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The chosen topology for the function approximations used in
the presented case study is shown in Fig.B21. Each critic and actor
was a neural network consisting of 15 layers consisting of linear
layers with a size of 250 wrapped in hyperbolic tangent activation
functions, a dense layer to merge the networks and a 5% dropout
layer before the first layer. The utilized optimizer was ‘Adam’ [49].
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