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Abstract: For the inspection of structures, particularly bridges, it is becoming common to replace
humans with autonomous systems that use unmanned aerial vehicles (UAV). In this paper, a frame-
work for autonomous bridge inspection using a UAV is proposed with a four-step workflow: (a) data
acquisition with an efficient UAV flight path, (b) computer vision comprising training, testing and
validation of convolutional neural networks (ConvNets), (c) point cloud generation using intelligent
hierarchical dense structure from motion (DSfM), and (d) damage quantification. This workflow
starts with planning the most efficient flight path that allows for capturing of the minimum number
of images required to achieve the maximum accuracy for the desired defect size, then followed
by bridge and damage recognition. Three types of autonomous detection are used: masking the
background of the images, detecting areas of potential damage, and pixel-wise damage segmentation.
Detection of bridge components by masking extraneous parts of the image, such as vegetation, sky,
roads or rivers, can improve the 3D reconstruction in the feature detection and matching stages. In
addition, detecting damaged areas involves the UAV capturing close-range images of these critical
regions, and damage segmentation facilitates damage quantification using 2D images. By application
of DSfM, a denser and more accurate point cloud can be generated for these detected areas, and
aligned to the overall point cloud to create a digital model of the bridge. Then, this generated
point cloud is evaluated in terms of outlier noise, and surface deviation. Finally, damage that has
been detected is quantified and verified, based on the point cloud generated using the Terrestrial
Laser Scanning (TLS) method. The results indicate this workflow for autonomous bridge inspection
has potential.

Keywords: bridge inspection; computer vision; intelligent hierarchical DSfM; bridge 3D modeling;
damage detection; damage segmentation; damage assessment; unmanned inspections; UAV

1. Introduction
1.1. Autonomous Bridge Inspection Approaches

Bridges are an essential part of transportation infrastructure, and it is necessary to
monitor their operation during their service life. To ensure the safety of a bridge, regular
inspections are required to detect areas that may have become damaged. A measurement
regime can be implemented to provide a proactive approach to maintenance services.
All the information collected during regular inspections can be used as input data to
a Bridge Management Systems (BMSs), such as BaTMan in Sweden, which reports the
condition of structural members of a bridge. The process of regular inspection, coupled with
performance analysis strategies, for engineering structures is defined as Structural Health
Monitoring (SHM) [1], which can be carried out by visual inspection, using instrumentation
or utilization of more advanced technology.

Typically, a routine inspection consists of field measurements and visual observations
carried out by a bridge inspector. In Sweden, the main inspection is carried out every

Remote Sens. 2021, 13, 2665. https://doi.org/10.3390/rs13142665 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-1375-3322
https://orcid.org/0000-0001-9423-7436
https://doi.org/10.3390/rs13142665
https://doi.org/10.3390/rs13142665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13142665
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13142665?type=check_update&version=1


Remote Sens. 2021, 13, 2665 2 of 22

6 years, which has many challenges including high cost, total inspection time, subjective
standards of quantification and documentation, and the risk to inspectors when examining
potentially hazardous parts of the structure. For example, inspectors cannot access critical
parts of a bridge without costly equipment such as snooper trucks or scaffolding. A
study by Graybeal et al. [2] showed that 81% of visual inspections were usually evaluated
correctly. Phares et al. [3] studied the accuracy of visual inspections and found that at least
48% of individual condition ratings were incorrect. Thus, there is a need to develop simple,
inexpensive, and yet practical methods for routine bridge inspection as an alternative to
traditional visual inspections.

1.2. Sensors and Vehicles

Modern techniques usually involve non-contact methods and are able to collect a large
amount of data extremely quickly with high accuracy. Therefore, to overcome inspection
challenges, there is increasing interest in modern techniques for off-site bridge inspection
in addition to in-person visual assessment. Recently, Popescu et al. [4] compared modern
techniques and found close-range photogrammetry (CRP) to be more efficient and cost-
effective for bridge inspection. A summary of the obtained accuracy from modern and
traditional methods over the last twenty years is presented in Figure 1 [5–17].

Figure 1. Review of the obtained accuracy from optical and traditional methods over the last twenty years.

Off-site bridge inspection can be carried out using unmanned aerial vehicles (UAVs)
equipped with sensors such as laser scanners, and infrared, ultrasonic, or digital single-lens
reflex (DSLR) cameras. The latter were reviewed by Duque et al. [18] who also highlighted
how UAVs have successfully been used to detect damage such as cracks and corrosion.
In addition to carrying a wide range of task-specific sensors, UAV-based inspection can
offer the combined advantages of robot inspection and remote sensor inspection including
better site visibility and optimized views of hard-to-reach areas, coupled with significant
financial benefits.

Laser scanners are able to provide high-quality 3D point clouds but, due to their high
cost and weight, it is problematic to install them on fixed-wing UAVs. Therefore, standard
digital images have been more widely used for UAV-based data acquisition.
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1.3. Damage Recognition

After data acquisition, processing the data to recognize damage is another significant
challenge in autonomous bridge inspection. There are two methods of processing an
image-based dataset: image processing and computer vision techniques. Previously, image-
processing technology (IPT) was used to detect and evaluate the distribution of damage.
However, the results were susceptible to noise, which was mainly caused by light, image
blur and distortion. IPT works only with certain images and, due to the effects of noise from
sources such as illumination, shadows, and the combination of several different surface
imperfections, the detection results may be inaccurate [19]. Image processing algorithms
are designed to aid the inspector in finding damage and still rely on human judgment for
final decisions [19]. However, with computer vision, it is possible to differentiate objects,
then classify and localize them, much like the process of visual recognition in human
vision. Therefore, some researchers have tried to improve the efficiency and robustness of
autonomous detection in real-world conditions using computer vision techniques.

Computer vision techniques, such as autonomous classification, localization and
segmentation methods do not require manually assigned threshold values or rules. To
generate an intelligent machine requires selection of a suitable network structure, a func-
tion to evaluate the model output, and a reasonable optimization algorithm. The main
advantage of such a machine is its automatic feature extraction once the Convolutional
Neural Network (ConvNet or CNN) has been trained. Object detection algorithms have
evolved from simple image classification into multiple object detection and localization
including Region-Based Convolutional Neural Networks (R-CNN) [20], Fast R-CNN [21],
Faster R-CNN [22], You only look once (YOLO) [23], SSD [24], and Mask R-CNN [25]. It is
only recently that neural networks have been used for damage detection. In recent years,
research has mainly been focused on damage detection based on ConvNets and remarkable
progress has been made in areas such as classifying individual cracks from images and
locating them [26–28] using a bounding box. However, the segmentation [29–33] and
quantification [34–37] of defects has been little researched because the lack of labeled data
makes it difficult to generalize training models across a wide range of defect shapes.

In order to quantify defects from images, it is necessary to carry out semantic segmen-
tation on those images. Semantic segmentation is an important task in computer vision
where its goal is pixel-wise classification. To achieve this, End-to-End networks that consist
of two cooperative sub-networks (encoding and decoding) are usually used to classify
each pixel and thus segment the whole image. For instance, U-Net [38] and SegNet [39]
were tested in the International Society of Photogrammetry and Remote Sensing (ISPRS)
semantic segmentation challenge and achieved outstanding performance.

For concrete defect assessment, it is also important to work in three dimensions for
more accurate quantification, localization and documentation. Both the perspective and the
geometry distortion of structural surfaces in the images can be corrected after projecting
and stitching images from different point of views into the single 3D model. Therefore, for
the aim of damage assessment in 3D models [40,41], the photogrammetric technique of
converting sets of 2D images into 3D point cloud models has become increasingly popular.

1.4. Hierarchical 3D Model Generation

Such models must have sufficient accuracy and resolution to represent all kinds of
small-scale visual details, often less than a millimeter in size. Khaloo et al. [42] described
the use of UAVs to produce 3D models with enough accuracy to detect defects on an
85 m-long timber truss bridge. They proposed a hierarchical algorithm for dense structure
from motion and compared the output against that from laser scanning with respect to the
quality of the captured point clouds, the local noise level, and the ability to render damaged
connections. There are many variables which affect the accuracy of the resulting 3D models,
including interior characteristics of the camera sensor, camera imaging parameters, camera
placement, scene complexity, surface texture, environmental conditions, and targeted object
size, all of which will be discussed more in this paper. However, there are two issues that
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need to be addressed in their proposed hierarchical dense structure from motion (DSfM)
algorithm. The first is the requirement for an on-site inspection to find areas that are
most-likely damaged so that closer images of these regions can be taken. The second is
outlier noise and surface deviation caused by errors in the triangulation procedure and
inaccuracy in matching tie points.

1.5. Research Significance

The aim of the paper is to improve the hierarchical DSfM method described in [42], by
using it for autonomous damage detection, and explore how to improve the quality of 3D
reconstructions of defects on structural elements, by generating more detail with less noise.
The case study is of a single-span simple supported concrete bridge, that was scanned
twice in a year. During the first scan, images were captured in two series of datasets. The
first dataset was collected with the aim of identifying bridge components and areas of
damage. The second dataset was used for pixel-wise damage segmentation in the areas
of potential damage, using fine-scale details. To develop the method of hierarchical 3D
model generation proposed by Khaloo et al. [42], a ConvNet was trained to detect regions
that were potentially damaged. To achieve this, a computer vision method based on an
Inception v3 [43] network was used to detect areas of damage with autonomous detection
of critical regions. This method generated denser point clouds. In terms of semantic
segmentation for bridge component detection, SegNet was used to detect background and
unnecessary parts of the raw UAV images to reduce outlier noise. Then, U-Net was used for
pixel-wise defect segmentation to quantify joint opening in the generated 3D model. All the
trained ConvNets were utilized in the autonomous inspections. Thus, it is only necessary
to update the datasets when new damage appears on the structure over its service life.
The usefulness and importance of this proposed workflow is discussed with reference to a
case study of the Pahtajokk Bridge, in terms of data acquisition, model reconstruction, and
damage quantification. In order to assess the accuracy of the proposed method regarding
point cloud generation and defect quantification, a 3D model was compared with laser
scanning data.

2. Field Deployment and Methodology
2.1. Case Study

Pahtajokk Bridge was used as a case study, Figure 2. It is a simply supported bridge
with a 6.9 m span and 3.9 m width. This bridge was scanned twice in just under a year. The
first scan was carried out on a cloudy day, and the second scan carried out in almost the
same lighting conditions after a heavy snowfall.

Figure 2. The same part of the Pahtajokk Bridge (a) first scan, (b) second scan. One year between photos.
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2.2. Workflow

The workflow starts with a pre-check of the site, determining the strength of GPS
coverage, testing suitable UAVs for flying in narrow/irregular spaces, planning the flight
routes, and data collection. It is a good idea to walk around the bridge and nearby terrain
a few times to check the access to designated spaces before data collection begins, to
understand issues such as clearing shady vegetation and control of lighting conditions, and
to carry out dust removal from enclosed spaces. Then, the flight path, work distance and
camera angle need to be optimized to minimize the ground sampling distance (GSD) and
maximize the field of view (FOV). After data collection for the first scan using a suitable
flight path, a dataset is generated for training of the damage and bridge component
recognition models and is utilized in the autonomous routine inspections. Input data for
training CNN models to mask the background, detect areas of potential damage, and
pixel-wise joint opening segmentation, were prepared while taking into account lighting
conditions and blurriness of images to achieve greater accuracy.

Based on the hierarchical DSfM workflow [44], damaged areas are detected by on-site
inspection while, in this proposed method, areas that are potentially damaged are detected
autonomously by a ConvNet model. A drone can be used to capture high-resolution
images from nearer to detected areas of damage, with that distance dependent on the
intended scale of joints to be monitored. The final 3D model can be achieved by merging all
dense point clouds with an overall 3D model of the bridge. Figure 3 shows the proposed
workflow for four main tasks to achieve a systematic and reliable bridge inspection. It
should be noted that dataset preparation for training ConvNets only requires data from
the first scan. If new damage occurs, that dataset will need updating.

Figure 3. The schematic workflow of the proposed intelligent hierarchical structure from motion.

2.3. Data Acquisition

The Structure-from-Motion process (SfM) starts with image acquisition. These images
are fed into a commercial SfM software package, Agisoft PhotoScan Pro (LLC, 2017), which
simultaneously determines the interior orientation and defines parameters relating to the
exterior orientation of the camera, such as camera angle and work distance, relative to the
scanned object.

The generated point cloud must have sufficient accuracy and resolution to represent
the types of small-scale visual details that inspectors look for during an inspection, details
that are often less than a millimeter in size. For scanning the structure using CRP, images
of the bridge were captured from several points of view, corresponding to the standoff
distance of the camera from the bridge. The flight path plan arguably has the greatest
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impact on data quality since it affects light conditions, camera angle, offset distances, flight
pattern, and degree of overlap between images.

Images were taken using a 3DR Site Scan drone equipped with a Sony R10C cam-
era with a 16–50 mm zoom lens, see Figure 4. The Sony camera has a resolution of
20.1 megapixels, using an APS-C size sensor, and has an interior orientation as shown in
Table 1. This information was used to calculate GSD and FOV versus work distance, as
shown in Figure 5. The GSD equals the distance between the center of two consecutive
pixels on the target surface. Ideally, a smaller GSD value is better, but the FOV value should
be considered as well, because a larger FOV minimizes the number of images required for
data collection (refer to Chen et al. [45] for further details).

Figure 4. Data acquisition equipment: unmanned aerial vehicle 3DR Site scan.

Table 1. Interior orientation of the sensor installed on the UAV.

Horizontal Sensor Size Camera View Angle Focal Length Horizontal Pixel Number Shutter Speed

6.16 mm 66.24 degrees 3.61 mm 4000 1/13

Figure 5. Correlation of (a) GSD and (b) FOV versus work distance.

2.4. Data Preparation

There are three steps to apply computer vision, before point cloud generation and
damage quantification. The first is bridge component detection using background masking.
For this, the dataset contained 419 outdoor scene images (6240 × 4160 pixels) of the bridge
captured by the authors and an amateur photographer. Some examples of these images
and their corresponding binary labels are shown in Figure 6. Images tend to show the
bridge as the main object and were labeled manually by the authors into the two classes.
The pixel-wise labels of the dataset were converted into high-level scene classes (bridge
and background) as binary images, using Agisoft PhotoScan Pro (LLC, 2017). The prepared
dataset was resized to 448 × 448 pixels, which was the acceptable input size for the
considered ConvNets architecture.
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Figure 6. Examples of the prepared dataset for bridge component detection and their corresponding labels.

The second step is damaged area recognition. To generate a dataset containing damage
information, 140 images (5634 × 3753 pixels) were captured with different perspectives and
lighting conditions during the first scan, from a distance of 2.0–4.0 m from the surface. The
aim was to collect images of both damaged and undamaged parts of the bridge which had
different surface appearances, to increase the diversity of the dataset. Images were then
sliced into 227 × 227 pixels, and 8344 cropped images were collected from them to generate
the dataset. These prepared images were divided into two categories, damaged and
undamaged surfaces, and used for training ConvNet. Overall, the classification datasets
used 3612 images of damaged and 4732 images of undamaged surfaces. Some examples of
these images are shown in Figure 7.

Figure 7. Examples of the prepared dataset for detection of potentially damaged areas.

The third step is joint segmentation to facilitate the quantification of joint length and
width. To generate a dataset containing damage information, 283 close-range images
(448 × 448 pixels) were captured. Then, they were labeled with their corresponding binary
version. Some examples are shown in Figure 8.

Figure 8. Examples of the prepared dataset used for pixel-wise damage segmentation.
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3. Experiments and Results
3.1. ConvNets Training, Validation, and Testing

All the models were trained using image data and their corresponding labels, but
before the training phase, generated datasets were divided into training and validation
groups at an 80/20 ratio, to validate and assess the CNNs during training. The learning
rate was set to 0.001; the mini-batch size was set to 128 and 1 images for image classification
and segmentation, respectively, with the verification frequency set to 20 iterations. The
training was carried out using an Intel® Core™ i9-9880H CPU running at 2.30 GHz.

3.1.1. Bridge Component Detection

Figure 9 shows the changes in training accuracy and training loss for both studied
models, with SegNet having a better performance compared to U-Net. Both SegNet and
U-Net use encoder–decoder architecture, but some differences meant SegNet performed
better in terms of bridge component detection. In the decoding part (upsampling layers) of
SegNet, the “max pooling indices” computed in the encoding part (downsampling layers)
were recalled [39]. This made the training process easier since the network did not need to
relearn the upsampling weights and explains why SegNet is more memory efficient than
U-Net. In addition, all fully connected layers were replaced in SegNet by Softmax [39].
Thus, the number of trainable parameters reduced significantly (from 134 M to 17.4 M)
making it computationally faster and more memory efficient. This scenario is beneficial for
semantic segmentation when the object being analyzed is considered to be the main object
in the images. Otherwise, for small-scale objects such as joints or cracks, U-Net performs
better; its tests are described in Section 3.1.3 Pixel-wise damage detection.

Figure 9. (a) Accuracy and (b) loss training curves for both studied CNNs.

In machine learning, different metrics are usually used to compare semantic segmen-
tation accuracy with ground truth. In terms of accuracy, global accuracy is the ratio of
correctly classified pixels, regardless of class, to total number of pixels in all test datasets.
Mean accuracy is the metric that represents the average percentage of pixels that are classi-
fied correctly for all classes. By comparing these metrics in SegNet and U-Net, as shown in
Table 2, it is clear that SegNet outperforms U-Net.

Table 2. Accuracy metrics for both trained models.

Architecture Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

SegNet 0.97649 0.97299 0.94965 0.95411 0.87261
U-Net 0.79775 0.84144 0.66091 0.66985 0.4248

Mean intersection over union (IoU) shows the average overlap between predicted
segmentation and ground truth. The Weighted IoU represents weighted accuracy by
number of pixels in each class to reduce the effect of errors in small-scale objects, as is seen
in joint segmentation. The Mean BF Score represents the correlation and similarity of the
predicted boundary with that of ground truth, on average. Figure 10 shows the masked
raw images produced by both ConvNets. The Mean IoU in SegNet is 0.95, while that of
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U-Net is 0.66, which is why there is less overlapped segmentation in the detected bridge
component and background in the images from SegNet compared to U-Net.

Figure 10. Detected bridge component by the studied CNNs.

3.1.2. Areas of Potential Damage Detection

To detect and localize damage, two ConvNets (Inception v3 [35], and GoogleNet [38])
were used to classify images, damaged or undamaged. As shown in Figure 11, the ex-
perimental results show that Inception v3 performed better compared with GoogleNet in
terms of accuracy and precision, based on generated confusion matrix for 1668 images as
test dataset.

Figure 11. Cont.
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Figure 11. (a,c,e) Accuracy and (b,d,f) loss curves for training and validation process of the studied
CNNs, together with their corresponding confusion matrix of test dataset.

This method draws a bounding box around the potentially damaged regions. It slides
a 227 × 227-pixel window across the whole image to detect damaged regions. There is
a trade-off for selecting a suitable size for this window. A smaller size will increase the
precision of localization. However, if the region is more finely divided, the information
contained therein may not be sufficiently precise enough to judge whether damage exists
or not.

To test the performance of the trained ConvNets utilized for removing background
and detecting potential damage, a new image (6240 × 4160 pixels) was chosen, as shown
in Figure 12. One interesting thing about the image chosen for verification was the graffiti
drawn on the target wall, see Figure 12. It made a complex pattern that posed a real
challenge to the trained network when detecting areas of potential damage. Figure 12
shows areas of the image that were removed and areas of potential damage, which are
enclosed by green bounding boxes, while blue highlighted strips are joint gaps identified
by an expert human inspector. In addition, the blue boxes are damaged areas detected by
CNN which were not detected by human inspector, and orange boxes are the false detected
damaged areas.

Figure 12. Damage detected by studied CNNs (green bounding boxes) compared to on-site inspection
(highlighted blue strips), together with damaged areas detected by CNN which were not detected by
human inspector (blue bounding boxes) and false detected damaged areas (orange bounding boxes).
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3.1.3. Pixel-Wise Damage Detection

Two ConvNets (U-Net [38], and SegNet [39]) were used to detect joint openings on
the surface of the structure. As shown in Figure 13, the experimental results show that
U-Net performed better than SegNet in terms of joint gap segmentation.

Figure 13. (a) Accuracy and (b) loss training curves for both studied CNNs.

Figure 13 shows the changes in training accuracy and training loss for both SegNet
and U-Net models. U-Net is the better model for small-scale object segmentation compared
to SegNet, which performed bridge component segmentation better, which was the main
object in the images. Table 3 shows the metric used to evaluate defect segmentation by
both studied models. Figure 14 shows the pixel-wise joint opening segmentation results
from U-Net, in both correct and false detected potentially damaged areas.

Figure 14. The performance of the trained semantic segmentation model in both correct and false detected potentially
damaged areas, based on U-Net architecture; red pixels are detected segments of the joint opening.

Table 3. Accuracy metrics of both trained models.

Architecture Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

SegNet 0.9996 0.50001 0.4998 0.9992 0.99383
U-Net 0.93785 0.79507 0.47102 0.93746 0.50397
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3.2. Analyzing the Effect of Brightness and Blurring on Computer Vision Detection and Point
Cloud Generation

Collecting a sufficient number of high-quality images of the bridge is essential for
successful damage identification and measurement. An image histogram is a chart that
shows the distribution of intensities in an image for each of its red, green and blue (RGB)
components. This information can aid the choice of an appropriate image status. A sensi-
tivity analysis was used to test the accuracy of bridge component and defect recognition by
changing the visibility of the image with two adjusted image properties, brightness and
blurriness. Figure 15 shows the brightness of the captured images and their corresponding
image histogram.

Figure 15. How the image histogram changes with changing brightness of the images.

Figure 16 shows the effect of brightness on the accuracy of bridge component and joint
recognition models trained by the datasets generated in normal light conditions, where
brightness is considered to be 0%. However, the benefit of using deep learning techniques
compared to image processing for optical component/damage detection is that there is no
need to optimize for brightness, unless the dataset has been generated with different light
conditions [46]. Such optimization could also be achieved by data augmentation. During
training, image normalization and augmentation were carried out enabling the network
to extract features with different intensity values. Thus, it is important to capture images
which are as unblurred as possible.
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Figure 16. The effect of brightness on the accuracy of bridge component detection (a) and damage segmentation (b).

To analyze the effect of camera movement on object detection and point cloud gen-
eration, the blurring operator, which is also known as the point spread function (PSF),
was used to simulate blurriness. It represents the degree of convolution required to blur a
point of light and returns a filter that approximates the linear motion of a camera when
convolved with the image (refer to Tiwari et al. [47] for further details).

The electronic shutter speed of the camera installed on the 3DR Site Scan drone can be
set up in the range 8–1/8000 s (texposure in Equation (1)). Therefore, it is necessary to set the
speed of the UAV, V(u, v)

[ m
sec
]
, based on the shutter speed and the GSD, to minimize the

length of linear motion in pixels (L) caused by camera movement, based on Equation (1):

1000 × V(u, v)× texposure

GSD(x, y)
= L (pixels), (1)

The image quality issues associated with blurring affect the semantic segmentation
utilized for pixel-wise bridge component and damage segmentation, due to mixing of each
pixel’s RGB values caused by the fast movement of the drone. Figure 17 shows the effect of
camera movement on bridge component and damage detection.

Figure 17. Cont.
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Figure 17. The effect of the UAV’s speed (logarithmic axis) on image acquisition and the accuracy of computer vision-based
bridge component (a) and joint (b) segmentation.

Figure 17 shows that the camera movements, which result in motion blurring of more
than three pixels, reduced the accuracy of semantic segmentation in both bridge component
and defect recognition. Thus, using Equation (1), the maximum speed of the drone, in both
u and v directions, during data acquisition can be evaluated with Equation (2):

V(u, v)
[mm

sec

]
=

3 × GSD(x, y)
1000 × texposure

, (2)

In addition to the computer vision effects, point cloud generation is also affected
by changes in the brightness and blurring. The basic steps of photogrammetry involve
(1) detecting features within each image, (2) matching these features in multiple images,
and (3) reconstructing their relative 3D position in the observed scene. Local features and
their descriptors are the building blocks of the SfM algorithm. There are many algorithms,
such as FAST [48] or Harris [49] corner detectors, and the SURF [50] or KAZE [51] blob
detectors, which can be applied depending on the requirements of the feature detection
used. In the case of SfM by Agisoft PhotoScan Pro (LLC, 2017), the SURF algorithm is used
to detect features (tie points) that are used for matching and stitching images together, see
Figure 18. Table 4 shows the change in numbers of detected features (tie points) versus
changes in brightness, and the blurriness of the images. Error (pix) is the root mean square
projection error calculated over all valid tie points detected in the middle image. In order
to compare the performance of feature detection and matching, an index is defined, shown
in the last column of Table 4. This index is equal to the mean percentage of detected tie
points multiplied by the mean percentage of matched tie points, in both the side images,
divided by the error in the middle image.

Masking extraneous parts of the image can boost/improve the SfM’s operation as
this means that more extracted features belong to the structure being examined and not
the background. Therefore, matching more features on the structure results in more
accurate stitching across the surface of the structure. Figure 19 shows all the matched tie
points across the 2D masked and unmasked images. Table 5 shows the status of detected
and matched features (tie points) in both masked and unmasked images. Based on the
calculated indexes, masked images perform better at feature detection and matching using
the structure-from-motion method.
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Figure 18. Matching the detected feature through structure from motion.

Table 4. Effect of changing the brightness and the blurriness of the images on detected and matched features (tie points).

Images 1, 2 Images 2, 3

Brightness
Detected

Tie
Points

Matches
Tie

Points

Detected
Tie

Points %

Matched
Tie

Points %

Error
(Pix) 1

Matched
Tie

Points %

Detected
Tie

Points %

Matches
Tie

Points

Detected
Tie

Points
Index

+90% 1801 1772 44.4% 43.7% 1.612 40.7% 41.4% 1642 1670 0.11
+80% 3044 2829 75.1% 69.8% 2.131 64.7% 69.1% 2606 2784 0.23
+60% 3734 3678 92.2% 90.8% 3.267 84.7% 85.1% 3414 3427 0.24
+40% 4011 3838 99.0% 94.7% 4.569 87.0% 92.8% 3505 3740 0.19
+20% 4027 3860 99.4% 95.3% 0.637 94.1% 98.1% 3791 3952 1.47

Normal 4050 3634 100% 89.7% 0.550 91.7% 100% 3695 4027 1.65
−20% 4028 3821 99.4% 94.3% 1.180 90.1% 97.2% 3630 3915 0.77
−40% 4008 3958 98.9% 97.7% 2.238 94.1% 94.3% 3790 3800 0.41
−60% 3802 3678 93.8% 90.8% 1.928 81.8% 85.0% 3295 3424 0.40
−80% 3048 2811 75.2% 69.4% 1.746 65.5% 70.7% 2638 2847 0.28
−90% 1842 1706 45.4% 42.1% 0.845 38.6% 41.4% 1558 1669 0.21

Speed
mm/s

0 4050 3634 100% 89.7% 0.550 91.7% 100% 3695 4027 1.65
52 4049 3882 99.9% 95.8% 0.653 99.2% 98.9% 3997 3983 1.48

208 2651 2476 65.4% 61.1% 0.752 53.9% 57.6% 2174 2320 0.47
364 1445 1328 35.6% 32.7% 0.797 27.6% 30.5% 1113 1229 0.13
520 976 874 24.1% 21.5% 0.932 18.4% 20.4% 734 823 0.05

1 Each pixel ~2–4 mm in relation to the position of the tie points.
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Figure 19. Detected features on the images defined by the software and matched features (Blue
points) in both unmasked (a) and masked (b) images.

Table 5. Effect of masking background on detecting and matching features (tie points).

Images 1, 2 Images 2, 3

Detected
Tie

Points

Matches
Tie

Points

Detected
Tie

Points %

Matched
Tie

Points %

Error
(Pix)

Matched
Tie

Points %

Detected
Tie

Points %

Matches
Tie

Points

Detected
Tie

Points
Index

Unmasked 4050 3634 100% 89.7% 0.550 91.7% 100% 3695 4027 1.65
Masked 4072 3517 101% 86.3% 0.426 73.6% 101% 2982 4047 1.90

Utilization of semantic segmentation showed a potentially important part of point
cloud generation as it improves computation time and accuracy. There are also potential
advancements in autonomous navigation of UAV that will improve image collection when
detecting bridge components, although these are not discussed further here.

3.3. Intelligent Hierarchical DSfM

The generated point cloud is not intended to represent high-resolution information for
the whole bridge but is instead designed to capture the overall geometry of the structure.
High-resolution point clouds are then generated for each region of potential damage using
close-range photogrammetry of the autonomously detected areas. The optimum work
distance to monitor areas and provide corresponding joint widths depends on the required
resolution of monitoring (see Figure 5).

3.4. Evaluation Framework

Three versions of 3D point clouds were successfully generated from the second scan
data. Two models were generated from the CRP scan data using both regular and proposed
methods, and one model was generated using laser scanning data for verification (see
Figure 20). The differences between point clouds generated by the regular and proposed
workflows are the local density and accuracy of the point clouds generated for the damage
regions. The TLS dataset is considered as the reference to discuss the degree of differences
in the generated point clouds.

Generally, generated point clouds include missing data or noise. This is caused by
inaccurate geometric positioning (Sargent et al. 2007 [52]), surface deviation (Koutsoudis
et al. 2014 [53]), and outlier-based noise (Cheng and Lau [54]). Each type of noise or defect
listed has been described in detail by Chen et al. [45].

Outlier noise usually appears around the boundary of the structure due to shadows,
light reflection or the background, and tends to confuse the triangulation procedure in SfM
methods. Those outlier points will affect subsequent steps including mesh generation and
surface reconstruction. For this reason, part of the point clouds generated by both SfM
and the proposed method were aligned to the TLS data and then the offset distance was
assessed, see Table 6.



Remote Sens. 2021, 13, 2665 17 of 22

Figure 20. 3D point clouds generated by CRP (a) and laser scanning (b) which is considered as a reference model, together
with detected regions of damage in both.

Table 6. Deviation in point clouds generated by both regular SfM and the proposed method, corresponding to the point
cloud generated from laser scanning data.

Method Area of Potential Damage Close-Up View Distribution of the Point Cloud Deviation from
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It is difficult to notice differences in the quality of the two generated models with
the naked eye, so other comparison methods have to be considered. Table 7 shows a
comparison of point cloud density and deviation for the different scanning methods. It
has been produced using the open-source software program CloudCompare Version 2.6.1
(developed by Girardeau-Montaut et al. [55], this is a 3D point cloud editing and processing
software) and commercial software Agisoft PhotoScan Pro (LLC, 2017).

Table 7. Resolution level of CRP generated using both methods compared to TLS data.

Reconstruction Method Intended Area (m2) Number of Points Local Point Density
(points/m2)

Standard Deviation (mm)

TLS
1.42

34,506 24,300 Reference
CRP, 3 m (Hierarchical

DSfM) 46,611 32,824 2.4

CRP, 3–10 m (regular) 15,386 20,018 6.2

A higher point cloud density and a lower standard deviation corresponds to a greater
number of details with higher resolution. As shown in Table 7, the proposed method
with close-range images (3 m) produces a higher density and lower deviation compared
to regular SfM using 3–10 m as the work distance, showing the importance of having
high-quality data for potentially damaged areas.

3.5. Damage Quantification

Compared with image-based 2D inspection, reconstructed 3D point clouds provide
depth information for detected damage regardless of perspective and distortion effects,
which is important for structural health evaluation. Thus, the global coordinates of the
detected joints were determined, and the relative positions of the detected joints were
marked on the 3D model of the bridge. Then, the damaged area extracted from the
generated point cloud and its dimensions were compared with that generated from laser
scanner data. Figures 21 and 22 show the measurements from the point clouds generated
from laser scanning data and the proposed method, respectively.

Figure 21. Damage measurement from TLS point cloud.
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Figure 22. Damage measurement of detected damage by intelligent hierarchical DSfM.

All the measurements are summarized in Table 8. The proposed method has shown
an acceptable performance, since it can detect damage autonomously with a maximum
deviation of about 3 mm. At this point in its development, continuous feedback with
corrections from expert inspectors to supplement the training dataset, and smoothing
filters on the 3D point cloud data to increase the precision of the generated point cloud, are
both needed to improve the results.

Table 8. Measurement carried out on both point clouds generated by TLS and the proposed method.

AB (cm) BC (cm) B (Degrees) 1 (cm) 2 (cm) 3 (cm)

TLS 66.9 32.4 93.33 2.13 2.04 3.21
Proposed method 66.91 32.01 93.53 2.32 2.16 3.09

Deviation 0.01 −0.29 0.2 0.2 0.12 −0.12
Error % 0 −1.2 0.2 8.9 5.8 −3.7

4. Discussion

The proposed method uses automatic per-pixel segmentation of joint gap measure-
ments, it could also be used to quantify other types of damage such as concrete section loss,
efflorescence, spalling, or delamination using the geometry information from the generated
point cloud and the visual information from the 2D images. This might be achieved by
developing a hierarchical DSfM method coupled with computer vision techniques to map
this information onto a 3D model of the structure for easy visualization, but this is still in
an early stage of development.

Using the proposed hierarchical DSfM method with computer vision for damage
detection, localization and quantification allows the inspection of areas that might prove
impossible for a human to reach, as well as removing much of the uncertainty associated
with an inspector’s personal judgment. This framework can provide important structural
condition information that is essential for accurate structural health assessment.

In this regard, the proposed workflow used for the Pahtajokk Bridge case study also
included damage quantification. The 2D imagery data can be quickly used to establish
a basic understanding of the bridge condition, or even used for autonomous damage
detection by application of computer vision techniques. Computer vision was used with
the images taken from the first scan as a training dataset. However, it makes the workflow
more efficient if the training dataset is updated when new data becomes available from
subsequent scans, thereby gradually replacing the developed ConvNets. However, some
issues may affect data processing and the decisions implemented about the bridge’s condi-
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tion. These issues include GSD, brightness and blurriness of the images. Therefore, the
effects of these parameters on feature detection and matching have been studied from both
computer vision and SfM perspectives.

5. Conclusions

Based on the knowledge obtained from our experiences, from both computer vision
and point cloud generation work, we conclude:

1. Comparisons of semantic segmentation for both pixel-wise bridge components and
damage detection show that U-Net performs better for joint gap segmentation (small
objects), while SegNet is more efficient with large-scale objects, and so is better at
bridge component detection;

2. Image normalization and augmentation expand the diversity of the generated dataset
by involving random rescaling, horizontal flips, changes to brightness, contrast, and
color, as well as random cropping. Thus, the network learnt to extract features in
different conditions, although it is important to capture images with the least blurring.
The maximum allowed camera movement to achieve the best performance in pixel-
wise bridge component and joint gap segmentation is suggested by Equation (2);

3. Application of semantic segmentation in the SfM workflow, to mask background and
other unnecessary parts of raw UAV images, showed potential improvement in point
cloud generation in both computation time and accuracy;

4. As a part of verification and error estimation, the point cloud generated using the
proposed method was compared to that generated using regular SfM for a region
of damage. It was found that the proposed method produced higher point cloud
density and lower deviation compared with results from regular SfM. This shows the
importance of image distance for accurate detection of damaged areas.

The proposed intelligent hierarchical DSfM workflow provides a simple proof-of-
concept visualization and processing tool for automated damage segmentation and analysis.
However, some outlier noise may reduce the performance of this method when used for
damage quantification. Therefore, additional development is needed in the future to
improve the performance of this method. These include eliminating the shadow and
light reflections on the structural surface by using End-to-End ConvNets and applying a
Savitzky–Golay [56] smoothing filter to the 3D point cloud data in order to increase the
precision of the generated point cloud without distorting the final 3D model.
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