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Abstract—Passivity is a fundamental requirement for rational 
models to guarantee stable behavior when included in general time 
domain simulations. This paper introduces a new variant of one 
passivity enforcement scheme that is based on residue matrix 
perturbation. The constrained least squares problem associated 
with the passivity condition is transformed into a least distance 
problem which is solved as a non-negative least squares problem 
while utilizing the sparsity pattern that arises with multi-terminal 
problems. The resulting method is very fast and requires only a 
small amount of computer memory, thereby being applicable to 
models with many terminals and high orders. The method is 
demonstrated to be suitable for frequency-dependent modeling of 
subnetworks, transformer winding branch impedances, and 
measured transformer admittance data. 
 

Index Terms—Passivity enforcement, residue perturbation, 
non-negative least squares, FDNE, transformer modeling. 

I.  INTRODUCTION 
REQUENCY dependent modeling has over the years 
become widely applied in electromagnetic transient (EMT) 

programs. The most common usage is in traveling wave models 
for representation of the propagation characteristics [1],[2],[3]. 
Another emerging application is the representation of 
subnetworks by a frequency dependent network equivalent 
(FDNE) to save computation time [4]-[9]. In the latter 
application, the typical modeling procedure is to generate 
frequency samples representing the terminal (port) admittance, 
followed by model extraction via rational function 
approximation. Finally, the model is subjected to passivity 
enforcement by perturbation of the model's parameters, thereby 
ensuring stable time domain simulation results with any 
terminal condition. While the initial model can be reliably 
calculated using methods such as vector fitting [10] or Löwner 
tangential interpolation [11], [12], the passivity enforcement is 
much more difficult and has hampered the widespread use of 
FDNEs in electromagnetic transient simulations. The lack of a 
good passivity enforcement method is also a major obstacle in 
some other modeling applications, e.g. transformer black-box 
modeling from frequency sweep measurements [13], white-box 
transformer modeling with inclusion of frequency-dependent 
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branch impedance effects [14], and grounding mat frequency-
dependent modeling [15].   

The passivity enforcement of a model requires the ability to 
1) detect and quantify passivity violations, and 2) remove the 
passivity violations. While the assessment of passivity 
violations can be achieved by frequency sweeping [16] or by 
checking eigenvalues of test matrices [17],[18] the passivity 
enforcement itself is more difficult. A general procedure for 
passivity enforcement was introduced in [19] where the model's 
residue matrices are perturbed such that the passivity violations 
are removed. The mathematical formulation involves a 
constrained linear least squares problem that can be solved as a 
quadratic programming (QP) problem. This residue 
perturbation method (RP) requires iterations because the 
relation between residue perturbation and the passivity 
condition is non-linear. The experience with RP is that it can be 
prohibitively slow in the case of problems with many terminals 
and/or high model orders.  

Several modifications to the RP method have been proposed 
to improve its performance. The calculation time is reduced 
when perturbing only a limited number of residue matrices 
[20],[9] or a limited number of elements in each residue matrix 
[20], but such approach is heuristic and can involve loss of 
accuracy in the final model. The lack of a sparse solver for the 
quadratic problem solver in early Matlab versions inspired the 
development of the "Fast RP" method (FRP) where the 
eigenvalues of the residue matrices are perturbed [21]. This 
reduces the number of free variables, but the resulting method 
remains slow in the case of models with many terminals. Other 
improvements have been proposed that reduce large passivity 
violations via local perturbations [22], but such approach is not 
general and must often be followed by a final refinement using 
a general passivity method. Other methods are based on 
enforcing the passivity by perturbing eigenvalues of a passivity 
test matrix, [17],[23] but those methods are limited to medium 
size problems because the calculation of these eigenvalues is 
prohibitively slow for large models.  

In this paper, an alternative way of solving the residue 
perturbation (RP) problem is introduced that is computationally 
more efficient than usage of QP. The original RP problem is via 
QR-decomposition transformed into a least distance problem 
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(LDP) that is solved as a non-negative least squares (NNLS) 
problem [24]. The computational effort of the QR-
decomposition is with multi-terminal problems reduced by 
utilizing the sparsity pattern of the least squares (LS) system 
matrix. To further enhance the computational speed, the 
implemented method also permits to perturb subsets of residue 
matrices, and/or a subset of residue matrix elements. The 
performance of the resulting method (RP-NNLS) is 
demonstrated for FDNE modeling, FEM-based white-box 
transformer branch impedance modeling, and measurement-
based transformer black-box modeling.  

II.  PROBLEM STATEMENT  
The model to be passivated is a pole-residue model (1) that 

represents a terminal admittance matrix Y. The admittance 
matrix defines the relation between n terminal voltages v and 
ditto terminal currents i (2). Y is symmetrical and the poles ai 
are stable. The poles and residue matrices Ri are real or complex 
conjugate. The (real) matrices 0R  and 1−R  are possibly not 
included in the model.  
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The objective is to calculate a minimal perturbation (3a) to 
the residue matrices Ri such that the passivity condition (3b) is 
satisfied [16] i.e. the eigenvalues of G=Re{Y} are positive for 
all frequencies. (Positive eigenvalues of a general matrix A is 
written "A>0").  

 ( ) 0Y    (3a) 

 ( ) ( ) 0G G      (3b) 

Introducing (1) in (3a) and (3b) gives (4a) and (4b). Positive 
eigenvalues are also required for 0R  (4c) and 1−R  (4d). 
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The same passivity condition also applies when the model (1) 
represents an impedance matrix Z. In that case, Z substitutes Y.  

To simplify the presentation, it is assumed that the model 
includes 0R  but not 1−R . (The actual implementation also 
allows to include none or both terms). 

III.  PASSIVITY ASSESSMENT AND ENFORCEMENT  
The passivity enforcement is combined with a passivity 

assessment step as shown in Fig. 1. The passivity assessment 
identifies frequencies with maximum passivity violations using 

frequency sweeping [19],[25] or test matrices, [17],[18]. The 
frequency points are passed to the passivity enforcement step 
which calculates a model perturbation that attempts to remove 
the violations at these frequencies. The process of assessment 
and enforcement is repeated until all passivity violations have 
been removed. The developments in this paper and presented 
efficiency metrics refer only to the passivity enforcement step.  

 

 
Fig. 1. Passivity assessment and enforcement. 

IV.  RESIDUE PERTURBATION 
This section briefly reviews the passivity enforcement 

scheme known as residue perturbation (RP) [19]. This scheme 
seeks to enforce the passivity condition (4b)-(4d) such that the 
change to the original model (4a) is minimized in the LS sense.  

A.  Passivity Conforming Constraint 
The relation between a matrix perturbation and the change to 

matrix eigenvalues is non-linear. By utilizing the eigenvalue 
perturbation lemma [26] one obtains a first-order linear 
approximation (5a) between a perturbation of the symmetrical 
G and its jth eigenvalue, where v and w denote right (column) 
and left (row) eigenvector, respectively. This expression 
simplifies to (5b) when considering the symmetry of G and 
assuming the eigenvectors vj have been normalized to unit 
length. 
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 After writing (5b) for all eigenpairs and reordering the 
expression, one arrives [19] at the matrix-vector equation (6a) 
where matrix operator vec(:) places all elements of ∆G in a 
column vector. Matrix P is a sensitivity matrix of dimension  

2n n× that defines how the eigenvalues of G change due to a 
(small) change in the elements of G. One further introduces the 
(linear) relation (6b) between a perturbation of the residue 
matrices and the change to the elements of G. S is a sparse 
matrix with 2 ( 1)n N +  non-zero entries and vec( )∆R  is a 
vector holding all 2 ( 1)n N + elements of the residue matrices. 

     vec( )λ P G     (6a) 
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 vec( ) vec( )G S R     (6b) 

Eqs. (6a) and (6b) are combined to give the (linearized) 
relation (7) between ∆R  and eigenvalues, ∆λ . 

 vec( ) ,λ T R T PS      (7) 

B.  Constrained Linear Least Squares Problem 
Eq. (4a) is expressed as a matrix-vector product (8) between 

∆R  and ∆Y , where M is a sparse matrix with 2 ( 1)n N +  non-
zero entries. 

 vec( ) vec( )M R Y 0      (8) 

A minimal perturbation vec( )∆Y  is obtained as the least 
squares solution of (9a) where vec( )= ∆x R . The system matrix 
A is established by writing (8) for many frequency samples with 
M constituting block rows of A. Eq. (9a) is combined with the 
linear constraint equation (9b) where C is built by writing (7) 
for frequency points with passivity violations, with matrix T 
constituting block rows of C and with the required eigenvalue 
shift ∆λ constituting block rows of vector d. Equations  (9a) and 
(9b) are solved simultaneously as a constrained linear LS 
problem. It is remarked that a change of variable is used [10] 
such that x and all matrices in (9) become real-valued. 

 min || ||
x

Ax  (9a) 

 Cx d  (9b)  

V.  SOLVING VIA NON-NEGATIVE LEAST SQUARES (RP-NNLS) 
The solving of (9) was in the original implementations of RP 

and FRP achieved using Quadratic Programming (QP). The 
calculation time can however become prohibitive for problems 
with many terminals and high orders. In order to overcome this 
problem, an alternative solving procedure [24] is introduced 
that is based on non-negative least squares (NNLS).  

A.  Conversion to Least Distance Problem (LDP) 
The system matrix A in (9a) is subjected to QR 

decomposition  

 A QR  (10) 

where Q  is orthonormal and R  is an upper triangular matrix. 
This gives for (9a) 

 min || || . .s t
x

QRx Cx d  (11) 

Pre-multiplying with TQ  gives 
 

 min || || . .s t
x

Rx Cx d  (12) 

Introducing a change of variable, =y Rx , leads to a least 
distance problem (LDP), 

 1min || || . .s t
y

y CR y d   (13) 

B.  Non-Negative Least Squares (NNLS) 
One further introduces the additional constraint that the 

elements of the solution vector are positive,  

 1min || || . . ,s t
y

y CR y d y 0    (14) 

It is proved in [24] that by introducing matrices (15), the non-
negative least squares (NNLS) problem (14) can be solved as 
(16), where y and x are afterwards recovered by (17) and (18) 
from the solution residual (19), with colE being the number of 
columns of E. The dimension of E is 2 ( 1) ( 1)n N L+ × + where 
L is the number of constraints (rows in C).   
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VI.  IMPLEMENTATION 

A.  Block-Wise QR-Decomposition 
The computation time of the RP-NNLS method is often 

dominated by the time needed for the QR decomposition in 
(10). However, this problem is overcome by building A as a 
block-diagonal matrix where each block corresponds to one 
element of Y,  
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Each matrix block has dimension 2 ( 1)K N⋅ +  where K is the 
number of frequency samples. (The factor 2 results when 
formulating the system matrices using real-only numbers). For 
such matrix (with n2 blocks), the QR-decomposition can be 
applied to its individual blocks (21) since any two columns 
coming from different blocks are mutually orthogonal.   
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Equation (21) can be written  
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and therefore 
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From this observation it follows that the QR decomposition 
(10) can be applied to the individual blocks Aj of A 
independently, and that the back-transformation by (18) can be 
achieved by applying individual matrices 1

j
−R  to the 

corresponding partitions of the solution vector y,   

 1
j j jx R y  (24) 

In the actual implementation, the matrix inverse in (24) is not 
performed as jx  is calculated by solving j j j=y R x  by a 
triangular solver via back substitution. Similarly, the matrix 
inverse is not used when calculating E in (15) which involves 
the term 1CR . Instead, blocks 1

j jC R are calculated from jC  

and jR using Matlab's "slash" operator, again invoking solving 
by a triangular solver using back substitution. 

The symmetry of Y is utilized by including only the upper 
triangle of Y, thereby reducing the number of blocks from n2 to 

( )tri 1 / 2n n n= + . A further improvement is achieved in the 
case that the LS frequency-dependent weighting is identical for 
all elements (e.g. unitary weighting). In that case, all blocks Aj 
are identical and QR factorization needs only be performed for 
a single block.  

B.  Solving the NNLS-problem 
The actual solving of the NNLS problem (16) is achieved by 

an algorithm described in [24], available in Matlab routine 
lsqnonneg. This is an active set method that solves (16) in a 
finite number of steps. The following outlines the algorithm, see 
[24] for full details. 

The elements of the solution vector are split between an 
active set Z and an inactive set P. Elements in Z are kept at zero 
(uZ=0) while the elements of P (uP) are free to vary. The 
calculation is initialized by setting u=uZ, P=∅. This is a feasible 
solution since it satisfies u≥0. An outer loop is entered where 
elements from Z are brought to P, one-by-one. In each iteration, 
the gradient vector (25) is calculated. The element in Z 
corresponding to the largest positive element of w is moved 
from Z to P.  

 ( )T
Zw E f Eu   (25) 

A sub-vector uP of u is calculated as the (unconstrained) LS 
solution of  

 P PE u f  (26) 

where EP contains the corresponding columns of E. (The 
remaining elements in u are are kept at zero value in sub-vector 
uZ). The solving of (26) may result in that some elements of uP 
become negative. In that case, an inner loop is entered which 

refines the elements of uP such that the constraints are satisfied, 
followed by an update of sets P and Z. The main loop involving 
(25) and (26) is repeated until the set Z is empty or all elements 
in w are non-positive.  

VII.  COMPUTATIONAL ANALYSIS 
The scalability of the method is studied next. Consider a 

single passivity enforcement step of a pole-residue model with 
n terminals and N pole-residue terms by solving the constrained 
LS problem (9) with K frequency samples and L passivity 
violations. To simplify the analysis, it is assumed that symmetry 
of Y is not exploited, i.e. all n2 elements are included in the 
system equations. Also, it is assumed that 0R  and 1−R are not 
present in the model. The number of floating-point operations 
(flops) for basic matrix operations are listed in Table I, with m 
and n being general matrix dimensions. 
 

TABLE I 
APPROXIMATE FLOP COUNTS FOR BASIC MATRIX OPERATIONS.  

Operation Flops 
Eigenvalue decomposition of n×n matrix [27] 

~ 34
3

n   

QR decomposition of m×n matrix [27] 2~ 2mn   
Multiplying m×n matrix with n×n matrix 2~ 2mn  
Solving y=Rx with R upper triangular [27] 2~ n  

A.  Forming LS Equation 
 Each of the n2 blocks Aj is of dimension 2K N× . The 

building of each block requires 1k KN  flops while the QR 
decomposition of each Aj requires 24KN flops, giving the 
total count in (27a). In the case of common weighting, only a 
single block needs to be built and subjected to QR 
decomposition, giving the reduced flop count in (27b). 

 
 2 2 2

1 1 4C k Kn N Kn N
 (27a) 

  2
1 1 4C k KN KN

 (27b) 

B.  Forming Constraint Equation 
The constraint matrix C in (9b) is built via matrix P (6a) and 

the sparse S (6b).  
The forming of P requires to perform the eigenvalue 

decomposition of matrix ( )jωG  of dimension n n×  for all violK
frequency points with violation(s), and to calculate sensitivities 
for violating eigenvalues via (5). The flop count is about 

 3 2
2 viol

4 2
3

C K n Ln  (28) 

The forming of T in (7) requires to multiply each element of 
P of dimension  2L n×  with N elements from the sparse matrix 
S, requiring 2Ln N  multiplications. The flop count is   

 2
3 2C L n N

 (29) 

C.  Forming NNLS Problem 
The constraint equation C is converted into matrix E from n2 
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partitions jC  of dimension L×N and submatrices 1
j
−R  of 

dimension N×N  by calculating terms 1
j j

−C R . The calculation 
time is about  

 2 2
4C Ln N

 (30) 

D.  Solving NNLS problem 
The computation time of NNLS is dominated by the solving 

of (26). The computational efficiency of Matlab routine 
lsqnonneg was improved by solving (26) using Normal 
Equations (31), i.e. 

 1: ( )T T
P P P Pu E E E f  (31) 

It is observed that the matrix to be inverted in (31) is equal to 
the number of elements in set P, i.e. the number of inactive 
constraints. The solving is performed repeatedly with the 
number of columns increasing by one in each iteration. In the 
actual implementation, the calculation time is reduced as 
follows. At the initialization, E is calculated with all columns 
included, 

 TF E E  (32) 

In the iterations, the matrix T
P PE E  in (27) is extracted as a 

subset of F. The computational complexity of forming F is  

 2
5 2C Ln N

 (33) 

During the repeated solving within NNLS, the matrix to be 
inverted in (31) grows from unity (p=1) up to the value pmax 
where all constraints are satisfied. The computational cost is 
given as a finite sum of powers (34) whose total is analytical 
[28]. 

 
max

3 4 3 2
6 5 5 max max max

1

1 ( 2 )
4

p

p

C k p k p p p


  
 (34) 

In a worst case scenario, one could end up with a single active 
constraint and one needs to invert a matrix which increases in 
dimension, max1, 2p p L= = . In the implemented code, the 
number of constraints L (columns of E) is made small or 
moderate by selecting only violating eigenvalues when building 
C and d. As a result, most constraints in NNLS will be active, 
thus limiting the number of inactive constraints, i.e. the 
maximum value of p. 

An additional cost results from the repeated calculation of the 
gradient by the two matrix-vector multiplications in (25). The 
cost of a single matrix-vector multiplication involving E is  

 2
7 2C Ln N

 (35) 

VIII.  IMPROVING COMPUTATIONAL EFFICIENCY 
The block-wise RP-NNLS method has been implemented 

with two options that can further reduce computation time.  

A.  Matrix Bandwidth Reduction 
Following the procedure in [20], the user can limit the 

number of elements in Y to be perturbed by specifying the 

matrix bandwidth via parameter bw, defined by (36). For 
instance, specifying bw=0 will only use diagonal elements 
while specifying 1bw n= −  will use all elements. As a result, 
the number of columns in A and C and thus rows in E is reduced 
accordingly. This approach is useful for problems with a high 
number of terminals as will be demonstrated in Section X.B.  
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
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 (36) 

B.  Pole-Residue Term Reduction 
The user can in addition specify an array of indices to pole 

residue terms that are to be perturbed [20]. This approach is 
useful for problems with a high number of pole-residue terms. 
The pole-residue terms can for instance be selected in frequency 
areas where passivity violations occur, e.g. by an automated 
selection scheme as in [9]. Again, the number of columns in A 
and C, and thus rows in E, becomes reduced. 

C.  Adjusted Step Length 
The constraint equation is based on linearized eigenvalue 

perturbation by (5b). Therefore, the solving of the passivity 
enforcement step will in general not bring a violating 
eigenvalue exactly to the zero line, often requiring additional 
iterations. The problem is mitigated by slightly increasing the 
correction step length, i.e. by replacing (9) with (37) where 

1α ≥ . A threshold value β is also available, see Section XI.D 
for details.  

 min || ||
x

Ax  s.t. Cx d     (37) 

D.  Single Building of Objective Function 
The LS part (9a) is kept unchanged during the iterations, 

similarly as in the previous works [19],[21]. Therefore, the 
block(s) Aj and its associated QR-decomposition is calculated a 
single time, giving a further reduction of the total computation 
time.  

IX.  MEMORY REQUIREMENTS 
The blocks Aj of A of (20) are built one at a time and 

subjected to QR-decomposition. Since only a single block 
needs to exist on the computer, the storage requirements are that 
of a single matrix Aj of dimension 2K×N. The QR 
decomposition gives ( )tri 1 / 2n n n= +  jR  matrices that need 
to be stored for later  use in (24), requiring a total memory of 

2
trin N . In the case that the LS weighting is identical for all 

elements of Y (e.g. unitary weighting), all blocks Aj are 
identical and so a single (small) QR-decomposition needs to be 
calculated and only a single jR  matrix of dimension N×N  
needs to be stored. The largest matrix that needs to be built is E 
in (15) which has dimension tri )1)( ( 1n N L× ++ . That matrix is 
built sequentially from partitions of P and S, and those matrices 
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need therefore not be built in full size. The number of 
constraints L is kept small by establishing frequency bands of 
passivity violations. In each band, only the maximum violation 
(of each violating eigenvalue) is included as constraint [21]. 

X.  EXAMPLES  
Three examples are presented which demonstrate the 

performance of the RP-NNLS passivity enforcement scheme in 
Matlab version R2018a. The acceleration factor α in (37) is 
1.05, similarly as in [9]. The listed CPU times are for the 
passivity enforcement steps, excluding passivity assessment 
(see Fig. 1). All calculations start with a "clear all" statement in 
Matlab, except for the CPU timing plots in Figs 4 and 9. All 
calculations are performed on a 64-bit Windows 10 laptop with 
16 GB RAM and an Intel i7-76000U @2.8 GHz CPU.  

A.  FDNE Modeling 
This example considers the passivity enforcement of a 

frequency-dependent network equivalent (FDNE) with K=751 
frequency samples and unitary LS weighting. The example data 
set is the same as used in [9]. The useful frequency band is from 
1 Hz to 1500 Hz, making the model suitable for simulation of 
low-frequency transients. The initial model to be passivated has 
five three-phase terminals (n=15) and five alternative model 
orders (N) are considered. The passivity enforcement considers 
all matrix elements (bw=14) and all pole-residue terms are 
included. Passivity is enforced in two alternative ways: using 
RP-NNLS and using the original RP formulation [19] with QP 
as solver. The QP solution algorithm is an interior-point-convex 
method implemented in Matlab routine quadprog. 

Table II shows that the resulting RMS-error by the two 
methods is practically the same. Both methods enforce passivity 
in a single iteration, except for the last case (N=150) where 
RP-NNLS and RP-QP need three iterations. 

Table III shows the resulting CPU times. With RP-NNLS, 
the total time (building matrices and solving NNLS) is listed, as 
well as the time for solving NNLS.  With RP-QP, only the time 
used for solving the QP problem is listed ("QP alone"). It is 
clearly seen that solving the NNLS problem is much faster than 
solving the QP problem.  

Fig. 2 shows the impact of the passivity enforcement on the 
eigenvalues of ( )ωG  with N=150, with usage of RP-NNLS. It 
is observed that the passivity violations have been successfully 
removed, i.e. all eigenvalues are positive. Fig. 3 shows the 
impact on the model's admittance elements. The perturbation is 
seen to be very small inside the fitting band, relative to the 
magnitude of the admittance elements. 

 
TABLE II 

COMPARISON OF PASSIVITY ENFORCEMENT TECHNIQUES FOR DIFFERENT 
FDNE MODEL ORDERS. RMS-ERROR.  
  RMS-error 

n N RP-
NNLS 

RP-QP 

15 90 2.8 × 10−6  2.8 × 10−6 
15 95 2.8 × 10−7 3.4 × 10−7 
15 100 3.3 × 10−6 3.3 × 10−6 
15 105 7.9 × 10−6 8.0 × 10−6 

15 150 2.5 × 10−5 2.4 × 10−5 
 

TABLE III 
COMPARISON OF PASSIVITY ENFORCEMENT TECHNIQUES FOR DIFFERENT 

FDNE MODEL ORDERS. CPU TIME.  
  CPU [sec] 

n N RP-NNLS RP-QP 
  Total NNLS alone QP alone 

15 90 0.10 0.014 1.08 
15 95 0.11 0.014 1.23 
15 100 0.10 0.016 1.26 
15 105 0.11 0.015 1.27 
15 150 0.27 0.050 9.27 

 

 
Fig. 2. Perturbed eigenvalues of G (n=15, N=150).  

 
Fig. 3. Perturbed elements of Y (n=15, N=150).  

 
Fig. 4. shows the CPU time as function of the number of 

pole-residue (PR) terms (Nsub) included in the passivity 
enforcement step (Section VIII.B), for the case with N=150. 
The CPU time is for the first iteration (out of 3), calculated as 
the average of 50 runs. With a low number of PR terms, the total 
calculation time is dominated by the calculation of the 
constraint matrix C. That matrix has a substantial 
computational effort that is independent on Nsub: calculation of 
sample values for G, eigenvalue decomposition of G, and 
calculation of eigenvalue sensitivities (5b). In addition comes 
one term (29) which is linear in Nsub. 

The CPU cost for forming A is superlinear as can be expected 
from (27b) which includes linear and quadratic terms in N. 
(Only a single block Aj is calculated and subjected to QR 
decomposition since unitary weighting is used).  
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The CPU cost for forming E and solving NNLS is weakly 
superlinear in Nsub while a more quadratic growth was expected. 
This discrepancy can in part be attributed to the time needed for 
accessing and writing data to arrays, as well as overhead in the 
computations.  

 

 
Fig. 4. CPU time vs. number of pole-residue terms used in passivity 

enforcement. First iteration result. 

B.  White-Box Transformer Branch Impedance Modeling 
This example considers frequency-dependent branch 

impedance modeling as part of white-box (detailed) transformer 
modeling [14]. The transformer is a single-phase 50 MVA 
three-winding transformer with rated voltage 230/69/13.8 kV at 
60 Hz. The branch impedance matrix Zb has been calculated as 
function of frequency using FEM. The data set is a matrix of 
dimension 213×213, given as 14 logarithmically spaced 
frequency samples between 60 Hz and 1.08 MHz. The matrix 
Zb is fitted with a pole-residue model of order N=10, with 
inclusion of R0. The resulting model has passivity violations at 
out-of-band frequencies, at both low and high frequencies.  

  Passivity is enforced using RP-NNLS with K=14 frequency 
samples and perturbation of all residue matrices and all matrix 
elements, and with individual LS weighting for all impedance 
elements ( , )i j ,  

 ,
1weight ( )

( , )( )i j
bZ i j




  (38) 

Figs. 5 and 6 (zoomed view) show the impact of passivity 
enforcement on the eigenvalues of Re{ ( )}b ωZ  while 
Fig. 7 shows the impact on the last column of bZ  within the 
fitting band. It is observed that passivity is successfully 
enforced as all eigenvalues are positive. The traces of the 
perturbed model in Fig. 7 are virtually overlapping those of the 
original model, implying a very small perturbation. 

 
Fig. 5. Perturbed eigenvalues of Re{Zb} (n=213, N=10). 

 

 
Fig. 6.  Zoomed view of Fig. 5.  

 
Fig. 7. Last column of perturbed Zb of case #1 (n=213, N=10). 

 
Table IV lists the weighted RMS-error and CPU time for the 

calculation (average of 5 runs). Case 1 is for the above 
calculation which uses all elements and all residue matrices as 
free variables. Passivity is enforced in 16.0 sec with 3 iterations. 
The next rows (Cases 2-4) show the result when reducing the 
number of free variables. The reduction is achieved in two 
ways: 1) using only the diagonal elements in each residue 
matrix (bw=0, see Section VIII.A), and 2) including only the 
first and last pole-residue term (Section VIII.B). The 
calculation time is reduced to 0.9 with bw=0. Usage of fewer 
pole-residue terms gives in this example a substantial increase 
of the fitting error. One test was also performed where the 
number of samples K was increased from 14 to 201. With 
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Case 1, four iterations were needed, and the total CPU time 
increased from 16.0 sec to 32 sec.  

Fig. 8 shows the (weighted) RMS-error and CPU time as 
function of the parameter bw, when including all pole-residue 
terms. It is seen that usage of any low value of bw above zero 
achieves a fast calculation with only a small increase of the 
perturbation error. 

TABLE IV 
PASSIVITY ENFORCEMENT OF TRANSFORMER BRANCH IMPEDANCE MATRIX.  
Case  n bw PR terms Iterations RMS-error 

(weighted) 
CPU 

[s] 
1 213 213 10 3 4.9 × 10−5 16.0 
2 213 213 2 3 1.7 × 10−3 3.1 
3 213 0 10 3 8.7 × 10−5 0.9 
4 213 0 2 3 3.1 × 10−3 0.7 
 

 
Fig. 8. Weighted RMS-error and CPU time vs. parameter bw. 

 
Fig. 9 shows the individual contributions to the total CPU 

time when increasing bw from 0 to 1 212n − =  with use of all 
pole-residue terms, plotted as function of the total number of 
residue matrix elements that are perturbed. The contributions 
are seen to increase about linearly with the number of free 
variables. This result is as expected since most of the theoretical 
CPU time contributions in Section VII are proportional to 2n , 
i.e. proportional to the number of elements. The CPU time for 
building of the constraint matrix C is however seen to be nearly 
constant. That matrix has a substantial computational effort that 
is independent of bw: calculation of G, its eigenvalue 
decomposition, and the eigenvalue sensitivities (5b). The 
number of iterations in Fig. 9 varied between 3 and 6, staying 
constant at 3 above 11315 elements (bw>61).  

 
Fig. 9. CPU time vs. number of perturbed elements in Y.  

 
With usage of RP-QP, the calculation time is excessive with 

the usage of the inverse weighting scheme (38). To see this, 
passivity is enforced for a sub-part of the model, 

  sub, sub sub(1: ,1: ), 0,1,...,j j n n j NR R   (39) 

Passivity is enforced using all elements sub( 1)bw n= −  and 
all N=10 pole-residue terms. Table V lists the CPU time for 
enforcing passivity, with alternative of values nsub. It is 
observed that RP-NNLS offers superior computational 
performance.   

 
TABLE V 

COMPARISON OF PASSIVITY ENFORCEMENT TECHNIQUES FOR ALTERNATIVE 
SUB-PARTS OF MODEL. CPU TIME.  

 CPU [sec] 
 RP-NNLS RP-QP 

nsub Total NNLS alone QP alone 
10 0.22 0.03 0.30 
20 0.24 0.04 2.24 
30 0.37 0.05 13.3 
40 0.42 0.08 62.2 

C.  Black-box Transformer Modeling 
This example considers the modeling of a DFIG wind turbine 

transformer from frequency sweep admittance measurements. 
The transformer is a 33/6/0.66 kV Dynyn unit with both neutral 
points grounded. The admittance matrix has n=9 terminals and 
has been measured at K=401 logarithmically spaced frequency 
samples between 5 Hz and 10 MHz. The resulting model 
extracted by vector fitting (N=120) has several in-band and 
out-of-band passivity violations.  

Table VI lists the RMS-error and CPU time for the passivity 
enforcement, using RP-NNLS with K=401 frequency samples 
and unitary weighting. Passivity is enforced in 0.28 sec. Fig. 10 
shows the impact of the passivity enforcement on the 
eigenvalues of G. All passivity violations are removed, 
resulting in positive eigenvalues at all frequencies.  

TABLE VI 
COMPARISON OF PASSIVITY ENFORCEMENT TECHNIQUES FOR BLACK-BOX 

TRANSFORMER MODELING.  
  RP-NNLS 

n N Niter RMS-error CPU [s] 
9 120 4 1.5 × 10−5 0.28 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.3026385, IEEE
Transactions on Power Delivery

 9 

 

 
Fig. 10. Perturbed eigenvalues of G (n=9, N=120)  

XI.  DISCUSSION 

A.  Frequency Samples Selection 
Although the frequency samples for the LS part (9a) can be 

freely chosen, one will normally use the same samples as was 
used in the original model extraction by vector fitting (VF). 
This sample selection permits to correct quite large out-of-band 
passivity violations without corrupting the in-band model 
behavior since the out-of band frequencies are associated with 
zero weight. A few additional frequency samples are added at 
out-of band frequencies (with a low LS weight) to improve the 
conditioning of (9a)-(9b) [21].  

B.  LS Weighting And Accuracy 
It is practical to use the same LS weighting strategy as was 

used in VF when extracting the original model. That way, one 
seeks to retain the accuracy at the same frequencies and 
elements. Typical examples are unitary weighting and inverse 
magnitude weighting for relative error control.  

One must however be aware that accuracy in the frequency 
domain does not translate into accuracy in the time domain. In 
particular, the errors of an admittance model can be largely 
magnified when the model is applied in a simulation with high-
impedance terminations. In the extreme case with currents 
applied to all terminals, the terminal voltages become the 
response to the current excitation. In this impedance case, the 
small eigenvalues of ( )ωY  become the large eigenvalues of 

( )ωZ  [29]. Therefore, if the fitting of the original Y and the 
subsequent passivity enforcement of the model gives a 
substantial relative error in the small eigenvalues of Y, very 
large errors will result in the elements of Z and therefore also 
in a time domain simulation. Special versions of VF (modal VF 
[29]) and RP (modal RP) [30] were introduced to mitigate such 
situations, as well as the use of similarity transformations [31]. 

C.  Passivity Enforcement Tolerance  
The constraint equation (37) makes use of an adjusted step 

length by a factor 1α ≥  and a threshold value 0β ≥ . A 
nonzero threshold value implies that the passivity enforcement 
makes the model slightly non-passive at frequencies with 
passivity violations. The intention is the possibility of giving 

damping to undamped oscillations.  
The implemented code also includes a tolerance parameter 

0
0β ≥R  which acts on R0 in (4c). In the case of an R0 having 

one or more negative eigenvalues, this parameter prevents the 
passivity enforcement to give a matrix R0 with one or more zero 
eigenvalues (singular matrix). Non-singularity of R0 is a 
requirement when calculating bands of passivity violations 
using test matrices [18].  

D.  Inner Loop Iterations 
In some situations, with usage of strong weighting schemes 

(e.g. inverse magnitude weighting), the passivity enforcement 
can cause new passivity violations to arise. In such situation, 
the passivity scheme in Fig. 1 can be complemented with an 
inner loop that adds additional constraints, e.g. as shown in 
[21]. That approach has been included in the RP-NNLS 
implementation but was not necessary to use in the presented 
examples.  

E.  Passivity Checking Using Z 
The passivity checking and enforcement based on Y implies 

that the final model behaves as a passive component under any 
terminal condition. To verify this, consider the extreme case 
with current excitation on all terminals such that the voltage 
response is given by the model's impedance behavior. Recall 
from Section II that passivity of an impedance matrix Z implies 
that the real part of Z has positive eigenvalues for all 
frequencies. Fig. 11 shows the eigenvalues of Re{Z} for the 
FDNE example in Section X.A, where Z has been calculated 
from the model's admittance matrix, 1( ) ( )ω ω−=Z Y , before 
and after passivity enforcement. It is observed that the passivity 
enforcement of the model's Y results in that Re{Z} gets positive 
eigenvalues, as expected. Comparison with Fig. 2 further shows 
that the band with passivity violations of Z is identical to that 
of Y, ranging from 1590 Hz to 1838 Hz.   

 
Fig. 11.  Eigenvalues of Re{Z} for FDNE example in Section X.A. 

F.  Final Remarks 
Further work in this area is still needed, for instance to reduce 

the linearization errors associated with the passivity constraint 
equation. Also, the possibility of inaccurate or unstable time 
domain simulation results should be subjected to more research.   
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XII.  CONCLUSION 
A new implementation of the residue perturbation (RP) 

method is presented. It is based on a conversion of the 
constrained least squares problem to a least distance problem 
(LDP) that is solved as a non-negative least square (NNLS) 
problem. With multi-terminal models, the inherent sparsity of 
the system matrix is fully exploited, allowing the required QR-
decomposition to be calculated independently for many small 
sub-matrices rather than for a single large matrix. This feature 
makes the method suitable for problems with many terminals. 
The resulting NNLS problem to be solved is characterized by a 
system matrix having few columns and is efficiently solved 
using an active set algorithm.    

The method was successfully applied for passivity 
enforcement to challenging examples: FDNE modeling with 
many terminals (n=15) and high orders (N=90-150), 
transformer white-box impedance branch modeling with a high 
number of terminals (n=213) but low order (N=10), and 
measurement-based black-box transformer modeling (n=9, 
N=120).  

The use of this efficient passivity enforcement scheme opens 
for more widespread application of rational modeling 
techniques in power systems. 
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