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Abstract: In this paper we introduce an approach to accelerate many-scenario (i.e., hundreds to
thousands) power system simulations which is based on a highly scalable and flexible open-source
software environment. In this approach, the parallel execution of simulations follows the single
program, multiple data (SPMD) paradigm, where the dynamic simulation program is executed in
parallel and takes different inputs to generate different scenarios. The power system is modeled
using an existing Modelica library and compiled to a simulation executable using the OpenModelica
Compiler. Furthermore, the parallel simulation is performed with the aid of a message-passing
interface (MPI) and the approach includes dynamic workload balancing. Finally, benchmarks with
the simulation environment are performed on high-performance computing (HPC) clusters with four
test cases. The results show high scalability and a considerable parallel speedup of the proposed
approach in the simulation of all scenarios.

Keywords: parallel simulation; distributed simulation; object-oriented modeling; equation-based
modeling; high-performance computing; message-passing interface; Modelica; power system simulation;
common information model

1. Introduction

Power systems are experiencing rapid transitions lead by the increasing level of
renewable power generation and by their progressive digitalization. The classical power
system architecture centered around large generation units with very controllable power
production is progressively evolving towards a model with more distributed generation
based on renewable sources that are inherently less controllable. Moreover, renewable
sources such as wind and solar are interfaced to the grid via power converters. Thus,
the decommissioning of thermal power plants with synchronous machines and their
replacement with converter interfaced generation leads to a gradual reduction of system
inertia. Both the lower level of rotating inertia in the power systems and the higher
variability of the power generation are expected to render future power systems more
difficult to operate because the margins to counteract contingency events will be tighter.
These trends challenge the role of transmission system operators that would need to
introduce innovative technologies in their control rooms to ensure sufficient levels of
power system security.

1.1. Motivation

The present digitalization trend is affecting power systems, especially in terms of wide
area monitoring. A growing number of phasor measurement units (PMUs) are deployed
in the power systems offering the possibility to collect synchronized measurements over a
geographically extended area with a refresh rate that is one or two orders of magnitudes
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higher than with traditional supervisory control and data acquisition (SCADA) solutions.
This is accompanied by a stronger communication infrastructure and more affordable
computation capabilities that have the potential to improve the control capabilities.

The transmission system operators (TSOs) continuously monitor the power systems
and should rapidly react to contingencies in order to mitigate their consequences. These
mitigation actions are classically implemented as protective functions based on precalcu-
lated scenarios or as manual actions based on the experience of the operators. A better
decision support could be provided by processing the available information with real-time
simulation of the power systems. However, the number of cases to be evaluated to offer a
comprehensive evaluation can be easily very large and exceeding what can be computed
sequentially in a practically reasonable time-frame: A total number of system configura-
tions required for an n-2 contingency analysis in [1] is 81,003, considering the different
operation status of the power system per 15 min in a day, 7.7× 106 scenarios are generated.
Suppose each simulation takes 10 s, simulating all these scenarios sequentially would need
2.5 years. In addition to the needs of the TSOs, studies in distribution grid need dynamic
simulation of a large number of scenarios as well [2,3]. This justifies the value of being
able to perform and simulate a large set of scenarios in parallel. Moreover, to accelerate
power system research, there is a need for open and fast tools. As an example, artificial
intelligence (AI)-related power system studies have received increased attention lately. For
the AI methods to be applicable, however, large data sets of high quality are needed [4].

1.2. Related Works

With the rising need of computing power, high-performance computing (HPC) tech-
niques have been exploited for many years to accelerate power system studies. The sur-
vey [5] reviewed a variety of HPC applications in power system studies like contingency
analysis, reliability analysis, transient stability simulation, state estimation, power flow
simulation, etc. Other techniques such as e.g., cloud computing have gain grounds in wide
area monitoring [6] to facilitate data acquisition, sharing, and processing.

In the power system community, tools that allow parallel dynamic simulation of
multiple scenarios have existed for a while. Among these, available commercial tools [7,8]
are made for TSOs for dynamic security assessment (DSA) that provides parallel simulation
of different scenarios but they can be less flexible for other purposes. For instance, the
parallel simulation part cannot be reprogrammed or extended by users freely. Tools
as presented in [9,10] provide parallel simulation of multiple scenarios through several
instantiations of simulation software on the same machine. These approaches are limited
mainly because the simulations can only be performed on a single computer and, in case of
commercial simulation software, the availability of licenses, e.g., licenses are needed for
each simulation process [10]. In [11], the tool in [10] is updated to support execution on
HPC clusters. However, since the simulation backend is in fact a commercial simulator,
some limitations still remain.

In [12], the authors developed an approach that is capable of performing parallel
dynamic simulations on computer clusters, offering dynamic workload balancing as well.
However, this approach might not be general enough for the power system community to
facilitate a large-scale parallel simulation of different scenarios. This is because the approach
is implemented on a customized power system simulator that has not been published.

1.3. Contribution of This Work

The many-scenario approach introduced in this paper is based on the single program,
multiple data (SPMD) paradigm to parallelize power system dynamic simulations. Instead
of multiple instantiations of the whole simulation suite, only the computing task, i.e., the
compiled simulation executable, is instantiated multiple times. In this way, a compilation
of the simulation executables for different scenarios is avoided. With the aid of message-
passing interface (MPI), simulation tasks can be distributed on a HPC computer cluster,
enabling the parallel simulation of hundreds to thousands of scenarios. Furthermore,
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to balance computational workload among simulation processes, a dynamic workload
balancing strategy is provided based on the classic manager-worker paradigm [13].

Another highlight of the proposed approach lies in the modeling of the power system
which takes advantage of the object-oriented equation-based programming language
Modelica. Models can be implemented using existing Modelica libraries, yielding a high
degree of freedom in terms of modeling. As a result, not only are the models implemented
with different libraries reused, but also the simulation capabilities are extended through
different Modelica libraries, e.g., dynamic simulations with the electro-magnetic transient
(EMT), static phasor (SP), and even the dynamic phasor (DP) domain.

To further increase the flexibility in modeling, the open-source project CIMverter [14]
has been integrated which allows conversion from the widely-used Common Information
Model (CIM) respectively, Common Grid Model Exchange Standard (CGMES) documents
to Modelica system models based on different Modelica libraries. We have provided a
flexible way based on a well-known programming language instead of a domain specific
language (DSL) to define different scenarios, for which we chose Python.

Based on these approaches and tools, the parallel power system simulation module
htcsim (high-throughput computing SIMulation) was implemented. In addition, although
the proposed approach was realized through multiple open-source projects, it can be
applied also for commercial simulation software that is not open source. The requirements
are that the used computer system has an MPI implementation which is the case for all
modern HPC clusters and supercomputers. Moreover, the simulation software needs
to support batch execution, e.g., from a command line. Moreover, it needs to provide
a functionality (e.g., through input files or an API like OMPython) to run a simulation
for different parameters depending on the scenario to be simulated. Examples for such
commercial software are Dymola, PSS/E, and PowerFactory. In the end, as always in the
case of commercial software, a proper license that allows the parallel simulation on many
nodes is needed for these tools.

2. The Many-Scenario Approach for Parallel Dynamic Simulations
2.1. Fundamentals

Before introducing the concept of our approach and its implementation, details of
the utilized tools, OpenModelica, and MPI, as well as fundamentals of power system
simulation are reviewed in the following subsections.

2.1.1. Modelica

Modelica is an equation-based language which enables modeling in a declarative way
through mathematical equations instead of an imperative way with variable assignments.
Equations allow engineers to focus on the formulation of the physical model [15]. Therefore,
the flexibility and reusability of the Modelica models is increased. The existing Modelica
environments, such as OpenModelica, also provide various solvers that relieve engineers
from numerical implementations.

There already exist several Modelica libraries that support the modeling and simu-
lation of power systems, such as ModPowerSystems [16], PowerGrids [17], and Power-
Systems [18] etc. These libraries provide electrical component models as Modelica classes,
where necessary equations are encapsulated. In order to build a power grid, instances
of different components can be connected to a system model, such that their equations
are combined.

When a Modelica model is built, the process of translation consists of several steps
as sketched in Figure 1: First, the source code is translated into an internal representation,
e.g., an abstract syntax tree (AST). This representation is then analyzed and converted
into a set of equations, constants, variables, and function definitions. This process is called
flattening in Modelica.

The resulting equations of the flattening process are then sorted and optimized to
obtain a minimum set of equations that will eventually be solved by the numerical solver.
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Afterwards, the explicit equation set is converted into C code and finally compiled to
an executable. In the meantime, a configuration file based on the extensible markup
language (XML) is generated, containing simulation configurations and initial value of the
simulation variables. The generated executable is linked to numerical libraries (provided
by the Modelica environment such as OpenModelica). During its runtime, the program
reads in the configuration file to determine the chosen numerical solver, simulation time
step, etc. as well as the initial values for the variables to perform the simulation.

Modelica
Source Code Translator

Analyzer

C Compiler

Code
Generator Optimizer

Simulation

Modelica
model

Optimized
equations

Flat
model

Sorted
equations

C
Code Executable

Figure 1. Simulation generation by OpenModelica.

2.1.2. Message-Passing Interface (MPI)

MPI is a portable standard designed to function on a wide variety of parallel comput-
ers, especially for distributed-memory architectures. The implementation of MPI follows
the message-passing model [13], where the same program is executed by different processes
simultaneously (according to the SPMD paradim). However, since each of the process
has a unique ID number, referred to as rank, different processes may perform different
operations (depending on the rank) during the program’s runtime. Each process performs
local computations with its own variables and exchange data with I/O devices or other
processes using MPI calls.

For this purpose, MPI defines the syntax and semantics for library routines and
allows users to write parallel programs with the message-passing model in the chosen
programming languages (i.e., often C, C++, or Fortran). In this work, the Python package
mpi4py is used as the MPI implementation. It provides an object-oriented approach to
message passing which grounds on the standard MPI-2 C++ bindings. The interface was
designed with focus on translating MPI syntax and semantics of standard MPI-2 bindings
for C++ to Python [19].

2.1.3. Power System Simulation

We would like to give here a brief review of the static and dynamic simulation of
power system. For static simulation of the power system, one typically uses a power
flow simulation, where the system is assumed to be at a certain steady state. Therefore,
a set of non-linear algebraic equations is solved. The result of power flow simulation
yields the value of all system states, i.e., nodal voltage amplitudes and phase angles,
based on the given generation, consumption, and of course the topology of the system. A
dynamic simulation of power systems solves differential-algebraic systems of equations
(DAEs) where the equations are solved at every chosen point in time. In general, dynamic
simulations can be initialized with the results of a power flow simulation, so that the
system is initialized at a given steady state that fulfills algebraic constraints.

2.2. Concept

The concept of the proposed many-scenario approach is depicted in Figure 2, in which
the overall workflow can be categorized into three procedures: Preprocessing, parallel
simulation, and postprocessing.
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Figure 2. Overall concept of the htcsim-based environment for parallel scenario simulation.

2.2.1. Preprocessing

The preprocessing is illustrated in the upper and bottom left part, which contains
the creation of the Modelica models of the power system, the compilation of associated
simulation executables, and the generation of scenario inputs and scripts. This procedure is
performed only once before the simulations. As a result, all necessary files for the parallel
simulation are prepared.

In Figure 2, the workflow starts by assuming that CIM documents of a power system
model are provided. At the beginning, two Modelica models are created by the CIMverter
tool using the CIM documents; namely the Modelica power flow model and the Modelica
dynamic model. The latter is used for dynamic simulation and will be executed by multi-
ple so-called worker processes to perform parallel simulation analogously to the SPMD
paradigm. Certainly, the conversion step of CIM documents to Modelica models can be
skipped if the two Modelica models already exist.

The Modelica power flow model is used to initialize the dynamic simulation as
explained in Section 2.1.3. It conducts an AC type power flow. These two Modelica models
are then compiled by OpenModelica Compiler (OMC) to generate simulation executables
with their associated configuration files as introduced in Section 2.1.1, which contain initial
values of all variables. After that, the compiled Modelica power flow model is executed,
whose results are then read by htcsim to replace the chosen variables, e.g., nodal voltage
amplitudes and phase angles, in the generated configuration file by compiling the Modelica
dynamic model. As a result, when the simulation executable generated by compiling the
Modelica dynamic model is executed, it will read the configuration file with updated initial
values. In this way, the dynamic simulation has been initialized to a certain steady state.

In addition, the initialization of a dynamic simulation with power flow results would
not affect the overall simulation time since it takes place prior to the parallel simulation.
Moreover, the power flow simulation does not have to be repeatedly performed for each sce-
nario’s steady-state initialization even if the operating points are changed. As in Modelica
libraries, like PowerGrids, the implemented initial equations [17] in dynamic components,
with the use of the homotopy method [20], ensures a steady-state initialization for dynamic
simulation. The pre-calculated power flow results can be taken by the initial equations as a
starting point to calculate the steady-state. Therefore, it has a limited contribution to the
preprocessing time too.

The bottom left part shows the generation of scenario inputs and scripts. Scenario
inputs are the various inputs to the simulation executable analogously to the data in the
SPMD paradigm. The simulation executable is able to read these inputs as instructions
to make certain the power system component performs different behaviors. For example,
a time series of ones and zeros can be read by a circuit breaker component to determine
whether it is closed or open at any point in time.
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By providing different scenario inputs, various events can be created. In general,
states and topologies of power systems are affected or directly described by simulation
variables such as controller parameters, breaker states, system frequencies, etc. This
allows the creation of a wide variety of events by manipulating simulation variables, for
instance, common events such as switching, load changes, etc. Furthermore, by utilizing
Modelica’s algorithm sections, complex control algorithms can be realized within the
models (i.e., eventually in the simulation executables) in an imperative way.

At this stage, parallel simulation can already be performed based on the dynamic
simulation executable and scenario inputs. Scenario scripts are introduced to provide
higher flexibility. To this end, a script, referred to as scenario script, is generated for each
scenario which contains a necessary code to run the simulation executable with specific
inputs. Therefore, each scenario can be simulated individually if needed without initiating
the whole parallel simulation framework. Furthermore, with a specific script per scenario,
complex operations can be performed on the simulation results during parallel simulation
or after, where the latter is introduced in our concept as postprocessing.

Finally, as common with MPI, all the generated files are placed on a distributed file
system that can be accessed by any node (i.e., computer) in the computer cluster.

2.2.2. Parallel Simulation

The parallel simulation can be performed based on the files and code generated from
preprocessing. It follows an SPMD paradigm, where the dynamic simulation executable is
executed by multiple processes in parallel with the aid of MPI, and different scenarios are
created by reading different scenario inputs. It can be noticed that since the parallelized
part equals the simulation of separate scenarios, the obtained simulation results are the
same as if these scenarios were simulated sequentially.

2.2.3. Postprocessing

The postprocessing is intended to give preliminary data processing with the simulation
results. This is performed through scenario scripts. Therefore, computationally intensive
simulation result processing can be carried out subsequently to a simulation in parallel
as well. A postprocessing can be added to the scenario scripts as well which decides if
additional scenarios need to be simulated. If so, further scenario scripts can be generated
and executed after the execution of all original scenarios.

2.3. Implementation

To implement the proposed approach, the parallel simulation module htcsim has been
developed. The motivation of choosing Python as the programming language comes from
the fact that the most time-critical part is the dynamic simulation itself, which is already
translated to efficient C code, while the rest of the tasks are related to scenario generation,
compilation, task distribution to the parallel processes, input/output, user interaction,
etc. These tasks are non-time critical as they are performed prior to simulation or require
comparatively very little time. Therefore, they can be managed by a Python program.

The interpreted high-level language Python provides high flexibility, is well-established,
and requires lower learning efforts. Therefore, it is advantageous for the abovementioned
management tasks, i.e., defined in the scenario scripts.

2.3.1. Scenario Script and Input

As introduced in Section 2.2, scenario inputs are the input data to the simulation
executable for simulating different scenarios, whereas the scenario scripts handle the exe-
cutions. Regardless of the postprocessing, scenario scripts shares high similarity. Therefore,
techniques such as templating can be applied to generate those scripts.

The current implementation of a scenario script contains three parts. In the first part,
several assignment statements are defined: The scenario name, model name, and paths of
the simulation configuration file, etc. In the second part, the configuration file is copied into



Electronics 2021, 10, 1330 7 of 17

the scenario directory and parsed by an XML parser. The absolute path to each scenario
input is added to the components in the Modelica model that requires an external input.
Alternatively, this procedure can be freed by designing a certain naming convention for
the input files and use their relative paths in the Modelica components. Subsequently, the
simulation executable is executed by the script with the modified configuration. The last
part reads the simulation results and performs certain processing that can be modified by
the user, e.g., plotting a diagram regarding the evolution of selected variables over time
and saving it to the appropriate scenario directory.

Scenario inputs can be, e.g., text files storing time tables using a format readable by the
Modelica.Blocks.Sources.CombiTimeTable component, which converts the input time
table into time series that can be used by other Modelica components. To automatize the
generation of this data, a Python script is implemented that generates time tables following
specific patterns according to the type and occurrence of the event specified by the user. The
selection of events can be automatized by more generic methods such as event trees [21]
that could consider uncertainty as well.

2.3.2. Executable Generation

The generation of simulation executables is realized with the OMC. In practice, this
procedure is automatized via a Python package OMPython, which is the Python interface
of OpenModelica. With this package, an interaction between the Python script and OMC
can be established. Moreover, commands following the OpenModelica scripting syntax are
generated in the script and sent to the OMC to build the executable.

2.3.3. Computational Workload Balancing

To balance the computational workload among simulation processes, a dynamic
balancing strategy based on the manager-worker paradigm is applied. It is implemented
using the Python MPI package mpi4py to support run-time allocation of tasks to processes.
In the htcsim implementation, the task is the index of the scenario that needs to be simulated.
During the parallel simulation, the so-called manager process is responsible for keeping
track of tasks. It assigns tasks to the available worker processes which execute tasks
(i.e., the dynamic simulation executable on the appropriate scenario inputs) and return
feedback regarding the tasks’ completion to the manager. This interaction between the
manager and the workers is depicted in Figure 3. When a worker receives a task message
from the manager, in our case the scenario index, it changes its working directory to the
corresponding scenario directory and executes the scenario script. After completion, it
sends a message to the manager, which can assign a new task to the worker and so forth.

Manager

Worker i Worker j

Assign
task

Assign
task Report

task 
comple-

tion

Single simulation
executable
for multiple

worker & manager
processes,

possibly running on
different computers
in parallel using MPI

Scenario
directory

m

Scenario
directory

n

Report
task 

comple-
tion

Figure 3. Manager-worker paradigm.
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This strategy ensures a certain workload balance among processes which minimizes
the idle time of each processor without an a priori knowledge of the scenario execution
times. A worker process exits when it completes a task and the manager has no more tasks
to assign. At this point, no worker has more than one task left to complete. Although
only a single manager process exists, it is merely passing scenario indices to the worker
processes to start relatively long simulations. Therefore, it is in practice not a bottleneck for
the execution time of the parallel simulation. Furthermore, this balancing strategy requires
no communication among worker processes which reduces communication overhead thus
beneficial to the parallel speedup.

3. Experiment and Discussion

The benchmarks were performed on two HPC clusters. For test cases 1 to 3, the CLAIX-
2018 cluster of RWTH Aachen University (Aachen, Germany) with around 1250 computer
nodes was used, where each node has two Intel Xeon Platinum 8160 Processors (2.1 GHz)
installed, providing 48 physical cores per node. Hyper-Threading is disabled by default
on every node. Each node has at least 4 GB of main memory per core. The nodes have a
CentOS 7 server Linux installed with kernel 3.10.0-1127.19.1.el7.x86_64.

Test case 4 was executed on the standard compute nodes of the JURECA supercom-
puter at Forschungszentrum Jülich (Jülich, Germany), where 480 nodes with two AMD
EPYC 7742 CPUs (2.25 GHz) are installed, providing 128 cores per node. The nodes have a
CentOS 8 server Linux installed with kernel 4.18.0-240.22.1.el8_3.x86_64.

Four test cases are presented in the following. In test case 1 and 3, scalability bench-
marks of our approach were performed based on different load step scenarios on two
networks with different complexity, i.e., the two-area system [22] and the IEEE 14-bus sys-
tem [23]. In test case 2, a dynamic contingency simulation considering different operating
states was performed with our approach based on the two-area system in test case 1, the
parallel speedup provided by our approach was calculated. In test case 4, the scalability
benchmark is performed on a larger system with 10,000 different scenarios, where islanded
grids are interconnecting with each other during the simulation. The parallel speedup is
calculated as in test case 2.

At this point we would also like to point out that in our approach it is not a matter of
parallelizing the calculations of a single scenario or model. This is already the subject of
other research activities [24]. Therefore, the size of the models does not play a role for the
parallel speedup of our approach.

3.1. Test Case 1

The two-area system model [22] shown in Figure 4 is built in OpenModelica with
the PowerGrids library. In this model, all the synchronous machines are implemented
equivalently to the model described in [22] provided by the PowerGrids library, and are
equipped with the turbine governor IEEE TGOV1, the automatic voltage regulator IEEE
AV4A, and the power system stabilizer IEEE PSS2A. A large disturbance caused by a load
step is performed on load L9. The load step event is set with a magnitude of 56.6% of the
original load and each event consists of an up step and a down step. The load step event is
replicated 10 times during each simulation with the same interval between every events. To
represent a realistic simulation duration, the simulation duration is configured to 10 min.

The simulation is performed with the SUNDIALS IDA solver [25] with a simulation
time step of 1 ms. Scenarios are distinguished by having a different starting time of a series
of 10 load step events. In the end, up to 256 scenarios are generated and simulated. In
addition, the parallel simulation is configured to always use the same number of worker
processes as the number of scenarios and each MPI process is allocated to different nodes.
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Figure 4. Two-area-system model from [22] implemented using PowerGrids in OpenModelica.

In Figure 5 the solid line shows the overall execution times of the parallel simulation
from 4 to 256 scenarios, which are recorded by the execution time of MPI process(es). The
dashed lines show the maximum and mean execution time per scenario, which are recorded
by the execution time of the simulation executable. It can be noticed that the execution
time of the MPI processes remains almost constant regardless of the increasing number of
scenarios. Nevertheless, a slight rise in the overall execution time can be observed from
the case of 2 to 128 scenarios. Considering the increasing communication overhead with
the expanding number of scenarios and the fact that execution time decreases for the case
of 256 scenarios, this should be attributed to the varying performance of the application
executing on the HPC cluster due to interference from external sources. In fact, it is even
expected to have substantial varying execution time for repeated execution of the same
program [26]. The interference could come from multiple factors, e.g., operating system
jitter, different process-to-node mappings, or contention on shared resources [27–29].
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Figure 5. Test case 1 execution time of a parallel simulation with an increasing number of scenarios.

3.2. Test Case 2

To demonstrate the application of the proposed approach on many-scenario simu-
lations, a dynamic contingency simulation is performed on different operating points of
the two-area-system grid. We perform an outage event with associated reclosure on each
branch by a pair of circuit breaker open and close event, with an interval of 0.5 s. The
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operating points are generated as follows: For each load in the network, a set of random
values is generated following normal distribution:[

Pi
l1

]1×200
∼ N (Pi

l0 , 0.2Pi
l0), (1)

where [Pi
l1
]1×200 is the set of new active power consumption of load i containing 200 data

points, and Pi
l0

is the original one. Subsequently, for each data point in [Pi
l1
]1×200, the new

active power injection of the generators is calculated as:

Pi
j1 = Pi

j0 + Ki(∑ Pl0 −∑ Pl1
)

and (2)

P4
j1 = P4

j0 +
(

1−∑ Ki
)(

∑ Pl0 −∑ Pl1
)
, (3)

for 0≤ i ≤ 3, where Pi
j0

and P4
j0

are the original active power injections of the four generators

G1 to G4, and Pi
j1

as well as P4
j1

are the updated values. ∑ Pl0 and ∑ Pl1 are the total loads

in the network before and after the update. Ki is also a random variable which conforms
to a uniform distribution Ki ∼ U (0, 0.3]. As a result, it generates 2400 different scenarios
for the two-area system network with its 12 branches. The simulation configuration is the
same as in test case 1 except the simulation duration is reduced to 300 s.

The generated scenarios are then simulated with our approach on the HPC cluster.
During each execution, eight worker processes are assigned per cluster node. In Figure 6,
frequency transients of the generator G1 output from eight scenarios are shown. These
scenarios have the same disturbance, transmission line L7to8A trip at time t = 5 s and
reclosure at time t = 5.5 s, based on different operating points. The effects of different
operation points to the system transient behavior can be noticed. In these eight scenarios,
the system should still be safe considering the largest frequency variation is less than
0.08 Hz, according to grid codes in ENTSO-E [30] that variations less than 1 Hz is tolerable.
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Figure 6. Frequency transient of generator G1 output for line L7to8A trip and reclosure events based
on eight different operating points generated in test case 2.
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Based on the execution data of the test case 2, the achieved parallel speedup S(p)
of our approach with respect to the number of worker processes p is, similarly to the
definition in [13], calculated using:

S(p) =
T(1)
T(p)

, (4)

where T(p) is the execution time needed for the longest executed worker process of the
test case using p processes.

The speedup is calculated for a different number of worker processes used for parallel
execution. The results are shown in Figure 7, where for low numbers of processes a linear
speedup is established. At this point it must be noted that the simulation execution times for
the different scenarios vary strongly: 0.2 s for the shortest and 45 s for the longest scenario
in case of sequential execution. Hence, for (compared with the number of scenarios)
relatively low processor numbers, it can be stated that the implemented dynamic balancing
of workloads leads to an efficient parallel execution of the simulation scenarios.
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Figure 7. Parallel speedup against sequential simulation of the 2400 scenarios generated in test case
2 with a different number of worker processes.

For relatively high processor numbers in test case 2, a non-linear parallel speedup
can be observed. However, as the execution time of the longest scenario dominates the
total execution time with an increasing number of processors more and more, the parallel
speedup consideration of the approach is distorted. Therefore, an average worker execution
time T̄(p) is defined as:

T̄(p) =
∑

p
i=1 Ti(p)

p
, (5)

where Ti(p) is the measured execution time of the i-th worker in case of p parallel processes.
Based on this, we define the average speedup as follows:

S̄(p) =
T(1)
T̄(p)

. (6)
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Obviously, in case all scenarios, for a given p, have the same execution times, the
parallel speedup would be equal to the average speedup.

In Figure 8, a nearly linear average speedup with respect to the number of worker
processes can be observed. From these results one can deduce that the communication
of the task from the manager to the worker processes does not have a considerable effect
on the speedup of the approach which is why it scales with the number of processes
as expected.
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Figure 8. Average speedup against sequential simulation of the 2400 scenarios generated in test case
2 with a different number of worker processes.

3.3. Test Case 3

To demonstrate the approach with a more standardized and larger electric network
model, similar benchmarks as in Section 3.1 is performed on the IEEE 14-bus system [23].
The Modelica model of the system, as shown in Figure 9, is provided by the PowerGrids
library [17] as an example network, where the static data is obtained from [23] and the
dynamic data is added by Réseau de Transport d’Electricité (RTE) based on a classical set
of values from large French generation units.

Scenarios for the IEEE 14-bus system are generated similarly as in Section 3.1. Few
differences are listed in the following: Firstly, the load steps are added to two loads, Load3
and Load9, instead of only one load as in Section 3.1; secondly, each scenario consists of
only one pair of load step events, an increase step of 25% of active power and a decrease
step that returns to the nominal value, that occurs at a different point of time. In the end,
half of the generated scenarios are load steps on Load3 and the rest are on Load9. The same
benchmark as in Section 3.1 is performed, whose result is shown in Figure 10. It can be
noticed that, despite the varying execution time per scenario, the overall execution time
stays almost constant with the expanding number of scenarios.
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Figure 9. IEEE 14-bus system implemented using PowerGrids in OpenModelica.
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Figure 10. Test case 3 execution time of a parallel simulation with an increasing number of scenarios.

3.4. Test Case 4

For larger scalability tests, the IEEE 14-bus was duplicated to create 16 system copies
in total, with each operating independently in island mode. Furthermore, in one of the
system copies, the line L1to5 is removed to create a different operating point. During the
simulation, these system copies are connected gradually to form a single connected system.
In the end, the resulting 16-copies network consists of 224 buses and 80 generators. Based
on these system copies, 10,000 scenarios are created by specifying different connection
times and sequences of each system copy.

The parallel speed up shown in Figure 11 is calculated by Equation (4), where the
sequential execution time T(1) is calculated by summing up the execution time of each
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scenario. Similarly to test case 2, the average speedup shown in Figure 12 is calculated
with Equations (5) and (6). It can be noticed that the actual average speedup exhibits a
clear linear relationship to the increase of the number of worker processes.

The sequential simulation would require around 366 h to complete, which is around
15 days. However, with the parallel simulation capability provided by our simulation
environment, the execution time can be reduced to 15 min, with 2048 worker processes.
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Figure 11. Parallel speedup against sequential simulation of the 10,000 scenarios generated in test
case 4 with a different number of worker processes.
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Figure 12. Average speedup against sequential simulation of the 10,000 scenarios generated in test
case 4 with a different number of worker processes.
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4. Conclusions and Outlook

This paper introduces our approach to speed up power system studies that need
to simulate a large set of scenarios. The approach relies on describing power system
models with the object-oriented, equation-based Modelica programming language which
is translated to C code and eventually compiled into an executable as well as an MPI- based
implementation to parallelize multiple scenario simulations and balance workload among
parallel processes. With the aid of MPI to parallelize simulations, the approach can be
applied on both inexpensive commodity and highly performance custom clusters. This is
realized through our lightweight htcsim module for Python, further utilizing open-source
software such as OpenModelica, OMPython, and mpi4py. In addition, the CIM-based
power grid data can be used by utilizing CIMverter to translate it to Modelica system
models based on a specific Modelica library.

As the benchmark results in Section 3 show, the implemented approach, as open-
source software, offers highly parallel scalability. In the second test case, the parallel
speedup grows almost linear against the number of processes employed.

Future developments could make use of dynamic scheduling algorithms for parallel
tasks [31] to improve the efficiency. Even though the scenario inputs are generated auto-
matically, to automatize the selection of events, including uncertainty consideration, more
systematic approach such as event trees [21] can be applied as well.

In the end, the presented approach has wide applicability beyond dynamic contin-
gency analysis. For instance, it can be applied to generate and simulate a large amount
of scenarios in order to train artificial intelligence, or be used to compute multiple power
system simulations generated in the middle of an optimization algorithm, e.g., a genetic
algorithm or an optimal power flow algorithm considering dynamics, etc. such that the
overall simulation time can be significantly reduced.

This approach could readily support any non-intrusive uncertainty quantification
approach as well, e.g., Monte Carlo, collocation, non-intrusive polynomial chaos, as long
as the input scenarios are properly defined. As an example, for a given scenario a certain
probability density function (PDF) for some of the components, e.g., load, generation unit,
can be defined. Samples are then generated and a Monte Carlo simulation is executed. It is
clear that the cases, i.e., the power system simulations to be executed for the Monte Carlo
simulation, are very high. That could also be an example of application to be addressed by
our approach.

In case of complex scenario branching that leads to a dramatic expansion of the
scenario space. Our approach could thus be extended in a way that the worker informs the
master about additional scenarios to be executed. The master could then delegate them to
the workers.

Cloud computing has not been mentioned as the presented approach is not a so-called
cloud-native solution. This means that it is restricted to MPI which was not designed
for a dynamic cloud environment. However, since cloud computing, usually at Infras-
tructure as a Service (IaaS) level, can provide the computational resources for HPC with
MPI implementation and all other requirements, our approach can also leverage cloud
computing environments.
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Abbreviations
The following abbreviations are used in this manuscript:

AI artificial intelligence
AST abstract syntax tree
CIM Common Information Model
CGMES Common Grid Model Exchange Standard
DSA dynamic security assessment
DSL domain specific language
DAE differential-algebraic system of equations
DP dynamic phasor
IaaS Infrastructure as a Service
SP static phasor
EMT electro-magnetic transient
HPC high-performance computing
MPI message-passing interface
OMC OpenModelica Compiler
PMU phasor measurement unit
PDF probability density function
RTE Réseau de Transport d’Electricité
SCADA supervisory control and data acquisition
SPMD single program, multiple data
TSO transmission system operator
XML extensible markup language
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