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A B S T R A C T   

This paper studies the electricity price formation in a competitive market when introducing generation from 
variable renewable energy technologies with zero marginal cost and electric energy storage systems. A power 
system is analyzed with a stochastic optimization model combining multi-period optimal power flow with sto
chastic dynamic programming. The results illustrate how variable renewable energy, in this case solar photo- 
voltaic generation, displaces some of the expensive thermal generation and reduces the price. Electric energy 
storage will reduce the price variations caused by the variable renewable generation and demand as the time 
with price cap and zero price is reduced. In systems with only variable renewable generation and energy storage, 
the price will be set by the probability of scarcity similar to the price formation in hydro power dominated 
systems. The price will indicated the future cost of scarcity as a stochastic expectation value. This paper assumes 
that the demand is inflexible. However, the resulting electricity prices will remunerate provision of flexibility, 
which in turn will contribute to securing the supply and reducing the price volatility.   

1. Introduction 

The share of Variable Renewable Energy (VRE) generation world
wide is increasing, and although most electricity markets still are 
dominated by thermal generation, projections show that VRE will be the 
dominant energy source by 2050 both in terms of electricity generation 
and and installed capacity [1]. Until now, the deployment of VRE has to 
a large extent been driven by subsidies, but the cost level of VRE has 
been decreasing rapidly and is now becoming lower than conventional 
generation, even without subsidies [2]. 

VRE has a marginal operating cost close to zero and will therefore 
displace some of the dispatchable generation due to the merit order 
effect, which has been extensively studied [3–8]. This in turn will reduce 
the profit of the conventional generation units, but also make large-scale 
deployment of competitive VRE more difficult due to the energy price 
reduction [9]. However, Helm and Mier [10] shows that VRE can be 
competitive in an energy-only market when the levelized cost of energy 
is sufficiently low. Moreover, Korpås and Botterud [11] show that there 
exists a market equilibrium including VRE in an energy-only market 
where all units recover their costs. The market price at the new equi
librium will be more volatile compared to a system without VRE. The 

new market equilibrium will also have a significant duration of zero 
price, a higher amount of energy not supplied, and there will be rela
tively more power stations with higher variable costs and lower fixed 
costs [12]. 

Electric Energy Storage (EES) can facilitate integration of VRE. The 
deployment of grid scale EES has seen a tremendous growth since 2013 
[13], partly driven by decreasing EES costs [14]. The application of EES 
in combination with VRE has been extensively studied [15,16], either 
from a system optimization perspective [17,18], or from a price taker 
perspective [19,20] regardless of generating source. The EES profit in a 
wholesale market comes from arbitrage, hence accurate price forecasts 
capturing both the volatility as well as the uncertainty are important. 
Ward et al. [21] shows that current market models tend to underesti
mate the volatility, and suggests a more accurate description of the merit 
order to better capture the price volatility and to account for the im
plications on the market equilibrium caused by EES by solving the model 
iteratively. The implications EES have for the market equilibrium are 
studied more in detail in Korpås and Botterud [11] where they show 
how profit maximization for each generation and storage unit in a 
market based on marginal cost pricing and administrative scarcity 
pricing will have the same result as system cost minimization using 
traditional system optimality and cost recovery conditions from Stoft 
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[22]. Since the approach is based on duration curves, the storage size 
limitations are not accounted for. 

The similarities between the hydro power dominated electricity 
markets, such as the Nordic market, and markets with high penetration 
of VRE and EES, are interesting when studying the market equilibrium 
and the corresponding electricity prices. The marginal cost pricing 
principle is also used in these markets [23], and the marginal value for 
hydro power plants has been studied for decades [24]. In contrast to VRE 
and thermal generation, the marginal value for a hydro power plant is 
not given by its operational costs but the future opportunity value of 
saving the stored energy for later rather than using it now [25]. 

The marginal value of EES, hereby referred to as the Storage Mar
ginal Value (SMV), is actually a function of both time, due to variations 
in generation and demand, and EES State-Of-Charge (SOC) as the ca
pacity for avoiding expensive generation or load curtailment in the 
future depends on the current SOC. The SMV will therefore also be a 
function of the SOC of other EES’ in the system [26] since the risk of 
scarcity depends on the total energy stored in the system and potential 
grid congestion associated with the EES locations. Although the pro
posed method supports multiple EES [27], this paper will study a single 
aggregated storage. Moreover, both generation from VRE and demand 
are subject to uncertainty. Seen from a system perspective, the future 
SOC depends on the realizations of the uncertainty and will therefore 
also influence the future electricity price. Since the operation strategy 
may be corrected multiple times as the uncertainty is revealed, the 
problem is tractable to formulate as a multi-stage stochastic model. 
Geske and Green [28] points out that if EES capacity replaces some 
generation capacity, the optimal EES strategy must balance arbitrage 
against the risk of not being able to meet the system demand. The 
electricity price can in this case be seen as an arbitrage against risk of 

extreme prices. 
The implications on electricity prices caused by large-scale integra

tion of VRE and EES have until now been studied for systems where 
dispatchable generation technologies are still the backbone of the 
electricity system. This paper goes one step further and analyses the 
implications on a power system when VRE is the dominating source of 
power generation, and the system relies on EES to secure the supply. 

This paper presents a multi-stage stochastic optimization model of an 
electricity system with VRE and EES seen from a system perspective and 
solves it with Stochastic Dynamic Programming (SDP) [29]. The model 
formulation is based on Multi-Period Optimal Power Flow (MP-OPF) 
[30]. 

The solution of the model yields the SMV for all time steps as a 
function of SOC as a cubic spline function. The SMV indicates the 
operating strategy for that particular EES in a wholesale market. 
Moreover, by simulating several scenarios sampled from the probability 
distribution, a range of possible electricity prices can be generated 
yielding a probabilistic electricity price for all buses in the entire system. 
The resulting electricity price will be studied to illustrate the effect of 
introducing VRE and EES in a power system dominated by thermal 
generation, thus confirming the results from previous studies and the 
correctness of the proposed model. Finally, the electricity price in a 
system with only VRE and EES will be studied where the price is set by 
the risk of extreme prices caused by scarcity. 

The contributions of this paper can be summarized as follows:  

i) A novel SDP model for electricity system optimization including 
EES and uncertainty. The model embeds MP-OPF as stage-wise 
models, and connects them through cubic spline end value 
functions generated from the state variable dual values. 

Nomenclature 

Sets and indices 
b ∈ B Set of buses in network 
(i,k) ∈ L Set of lines in network 
(i,k) ∈ L b Set of lines from bus b 
s ∈ S = [1,S] Set of stages in optimization problem 

t ∈ T s =

[

ts, ts

]

Set of time steps at stage s 

n ∈ N = [1,N] Set of discrete states at each stage 
ωs ∈ Ωs Noise in sample space at stage s 
m ∈ M Set of discrete scenarios from noise probability distribution 
e ∈ E b Set of EES at bus b 
g ∈ G b Set of thermal generation units at bus b 
r ∈ R b Set of VRE generation units at bus b 
d ∈ D b Set of loads at bus b 

Parameters 
Pmax

g Maximum active power for thermal generator g 
Pmax

r,t Theoretical maximum generation solar power system r,
time t 

ϕr,s Clearness index solar power system r, stage s 
ρm Noise probability scenario m 
PDd,t Active power demand forecast load d, time t 
Bik Imaginary component of admittance matrix element ik 
Θmin

b /Θmax
b Minimum/maximum voltage angle at bus b 

Pmax
ik Maximum transmission capacity for line between bus i,k 

Cg Generator g marginal operating cost 
Cd Load d marginal shedding cost 
Xn Discrete state n 
ΔTt Step length at time t 

SOCmin
e /SOCmax

e Minimum/maximum SOC at storage e, time t 
PSc

e,t/PSd
e,t Maximum charge/discharge power at storage e, time t 

βq,s,n Spline coefficient order q, discrete state n at stage s 
ηc/ηd EES charge/discharge efficiency 

Variables and Functions 
xs/x′

s Incoming/outgoing state variables at stage s 
xs Incoming state dummy variable at stage s 
us Control variable at stage s 
Us(xs,ωs) Control variable feasibility set at stage s 
Ts(xs,us,ωs) Stage-transition function between stage s and s+ 1 
Cs(xs,us,ωs) Stage-objective function at stage s 
Vs(xs,ωs) Future cost function at stage s 
πs(xs,ωs) Decision-rule function at stage s 
λs,n State variable dual value at stage s, discrete state n 
pb,t Active power injection at bus b, time t 
pg,t Active power thermal generator g, time t 
pr,t Active power from solar power system r, time t 
pe,t Active power withdrawn by storage e, time t 
pse,t Net power charged to storage e 
psc

e,t/psd
e,t Power charged to/discharge from storage e, time t 

soce,t Energy storage e SOC, time t 
pd,t Active power withdrawn by load d, time t 
plsd,t Shedding of load d, time t 
θb,t Voltage angle at bus b, time t 
SEVs(xs) Storage end value function at stage s 
SMVs(xs) Storage marginal value function at stage s 
sevs Storage end value variable at stage s 
Bq,s,n(xs) Spline order q, discrete state n at stage s 
Πn(xs) Spline activation function discrete state n  
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ii) The storage end value for the final stage is updated iteratively to 
simulate infinite horizon optimization.  

iii) The electricity price is studied first for a traditional power system 
with thermal generation, followed by systems including VRE and 
EES. Finally, the price is studied for a system with only VRE and 
EES.  

iv) The interpretation and usage of the storage marginal value 
function are discussed. 

The remainder of this paper is organized as follows: Section 2 de
scribes the optimization method used to find the SMV and Locational 
Marginal Price (LMP), Section 3 presents numerical data used to illus
trate the energy price in a system dominated by thermal generation 
compared to VRE generation, Section 4 presents the results using the 
described method in combination with the presented numerical data, 
Section 5 discusses the implications of the presented results, and Section 
6 draws the conclusions and presents possible directions for future work. 

2. Method 

This section presents a detailed description of the multi-stage sto
chastic optimization problem used to study the optimal operation and 
the corresponding electricity price in a constrained power system with 
VRE generation and EES under uncertainty, exemplified by the system in 
Fig. 1. The presented solution method combines SDP and MP-OPF. 

2.1. Multi-stage stochastic programming 

The goal with the proposed optimization problem is to find the 
optimal operation of generators, EES and loads, and to study the 
resulting LMP and SMV. The objective is to minimize operation costs. 
The ability to deliver and absorb energy from an EES depends on its SOC, 
and the SOC depends on the operation strategy and the realization of 
uncertain variables. The SOC and other variables coupled in time, 
hereby referred to as state xs, will therefore require additional attention. 
Due to uncertainty in generation and load, the resulting operation 
strategy of a deterministic model formulation will often in practice be 
sub-optimal, and could even be infeasible due to the differences in the 
predicted and the actual generation and load. A more robust and real
istic approach is to assume the uncertainty is revealed stage-wise as time 
elapses, and that the operation strategy also can be corrected stage-wise 
as more uncertainty becomes known. These assumptions makes the 
problem tractable to formulate as a multi-stage stochastic optimization 
problem. 

The following stochastic programming terminology is based on 
Dowson [31]. Instead of solving the stochastic optimization problem as 
one large problem, it is broken down into a sequence of smaller 
stage-wise problems. Each stage s ∈ S represents a discrete moment in 
time where uncertainty is revealed and a decision is made. The stage 
objective represents the operation costs, such as generation and load 
shedding costs. The decision process for each stage is illustrated in Fig. 2, 
where the decision-rule πs(xs,ωs) chooses a control us that respects the 
set of admissible controls such that us ∈ Us(xs,ωs). The overall goal is to 
find a policy, a sequence of decision-rules π = {π1,⋯, πS}, that mini
mizes the sum of all the stage objectives Cs(xs,us,ωs). 

The stages divide the full problem into smaller sub-problems in a 
similar manner as continuous time problems are divided into discrete 
time steps. The time between stages, the stage length, is a compromise 
between accuracy and computational burden but should also reflect how 
the system is operated. Hourly stages could be a good choice when 
operating in an hourly market, but the EES size and the noise variability 
are also important factors. At each stage, the noise ωs ∈ Ωs is observed 
and assumed to be known for that stage. The noise represents the un
certainty in VRE generation, but may also include load uncertainty, and 
describes the possible variability in energy delivered by VRE due to 
uncertainty. The perfect foresight assumption for the current stage can 
be justified through accurate short-term forecasts and that the uncer
tainty has only a relatively small impact on the state for a single stage. 

The noise in the model formulation should be stage-wise indepen
dent, signifying that the observed noise at a stage does not influence the 
noise in the next stage. In other words, if it is more sunny than expected 
at one stage such that the VRE generation is increased, it will not in
fluence the probability of increased generation at the next stage. This 
assumption might be inaccurate and could be compensated for by 
including the VRE generation in the state with, for example, an auto- 
regressive model [32,33]. 

For this particular system, the state is given by the EES SOC. The 
capability of delivering energy from the EES depends on sufficiently 
high SOC, and the capability of absorbing energy depends on sufficiently 
low SOC. In contrast, dispatchable generators can freely change the 
generation independent of generation in the previous stage (unless 
ramping limitations must be accounted for). 

The control variable represents all the decisions made to balance 
generation and load, such as how much the different generators should 
deliver, and how much the EES should deliver or absorb. VRE generation 
curtailment and load shedding are also decisions in the control variable. 
All these decisions must be admissible us ∈ Us(xs,ωs) such that that 
generation minimum and maximum limits, EES charge/discharge limits, 
load shedding limits and generation curtailment limits are respected, 
and the network is not overloaded. 

The transition function Ts(xs, us,ωs) describes how the state evolves 
for a given control and observed noise, in this case how the EES SOC 
changes given the decisions for how to meet the load and the observed 
generation for the current stage. The stage-objective Cs(xs, us,ωs) rep
resents the corresponding operation costs related to generation costs and 
load shedding. 

2.2. Stochastic dynamic programming 

According to Bellman’s principle of optimality [29], the optimal 
policy can be found by solving the optimization problem recursive. By 
assuming the future optimal decisions are known, the optimal decision 
for the current stage can also be found. Moreover, the entire problem can 
then be solved with backward recursion. The resulting recursive opti
mization problem is shown in Eq. 1. 

Vs(xs,ωs) = min
us

{

Cs(xs, us,ωs) + E
ωs+1∈Ωs+1

[
Vs+1

(
x′

s,ωs+1
)]
}

s.t. x′

s = Ts(xs, us,ωs)

us ∈ Us(xs,ωs)

(1) 

Fig. 1. Power system topology.  

Fig. 2. Multi-stage stochastic optimization decision node [31]  
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This problem will be solved with a SDP method called the water 
value method from hydro power optimization [25]. The expectation of 
the future costs is replaced with the Storage End Value (SEV) as shown in 
Eq. 2. 

min
us

{Cs(xs, us,ωs) − sevs+1}

s.t. x′

s = Ts(xs, us,ωs)

sevs+1 ≤ SEVs+1
(
x′

s

)

us ∈ Us(xs,ωs)

(2)  

The objective function of the presented optimization problem in Eq. 2 
has a very interesting structure. The first term represents the operational 
costs of the current stage, often referred to as the immediate costs, while 
the second term represents the SEV and is a function of the outgoing 
state. Just like the generation marginal cost Cg is given by the derivative 
of the cost function with respect to the generation pg Eq. 3, the marginal 
value of the state (here SOC) is given by the derivative of the SEV 
function with respect to the state Eq. 4. Numerical examples in Section 4 
will provide a clearer understanding of the relation between SMV, 
generator marginal cost and their applications. 

Cg =
dC
dpg

(3)  

SMVs(xs) =
dSEVs(xs)

dxs
(4) 

However, the marginal value of the state is a function of both state 
and stage. In other words, the marginal value of the EES depends on its 
SOC and stage due to the variability in future expected generation and 
load. Since it is difficult to solve the optimization problem with respect 
to a continuous state variable x, it is discretized into N discrete states. 
Each stage-wise optimization problem is solved for each discrete state 
n ∈ N and each scenario ωs ∈ Ωs. The solution of the optimization 
problems forms the basis for approximating the SEV function. This 
approximation is described in Section 2.3, and a procedure for finding 
the SEV for the final stage is described in Section 2.3.1. The SEV function 
SEVs(xs) is convex if the sub-problem given by Cs(.),Ts(.),Us(.) is convex 
in xs,ωs and is therefore expressed as a convex relaxation in Eq. 2 
(although SDP also permits non-linear sub-problems). 

2.3. Storage end value function 

The SEV function will be expressed as a cubic spline function yielding 
a smooth function, as illustrated in Fig. 3, demanding fewer discrete 
states than a piece-wise linear approximation [27]. A spline function is a 
piece-wise polynomial function composed of polynomials up to degree q 

with continuous derivatives up to the order q − 1. A cubic spline will 
therefore have piece-wise cubic segments, and continuous derivatives 
up to the order of two. This makes it possible to embed the SEV function 
into a non-linear optimization problem where all the constraints and the 
objective must be twice continuously differentiable in order to solve the 
problem with interior point based methods. 

The SEV function is approximated using the marginal value given by 
the dual value of the state x. The initial value of the SEV function can 
also be chosen arbitrarily and is set to zero such that the SEV of empty 
storage is zero. By adding the dummy variable xs and the constraint Eq. 5 
to the optimization problem in Eq. 2, the corresponding dual variable λs 
will represent the marginal value of SEV function with respect to the 
state x [34]. Let λs,n,ωs denote the dual value at stage s for the discrete 
state n and the noise ωs such that the expected dual value λs,n for stage s 
and discrete state n is given by Eq. 6. 

xs = xs, | λs (5)  

λs,n = E
ωs∈Ωs

[
λs,n,ωs

]
(6) 

The SEV function Eq. 7 is expressed as a sum of polynomials Eq. 8 
multiplied with an activation function Eq. 9 defined such that the correct 
spline segment is activated. 

SEVs(xs) =
∑N− 1

n=1
Bq,s,n(xs) Πn(xs), (7)  

Bq,s,n(xs) =
∑q

η=0
βη,s,n(xs − Xn)

η
, (8)  

Πn(xs) =

{
1, if Xn ≤ xs < Xn+1
0, otherwise

s ∈ S , n ∈ N \{N}

(9) 

Each spline segment Eq. 8 of a cubic spline is uniquely defined by the 
four coefficients βη,s,n | η ∈ [0,q]. If spline segment n is known, then the 
value and derivatives up to order two of segment n + 1 are also given at 
the intersection between segment n and n+ 1. Therefore, segment n + 1 
has only one degree of freedom and can be fitted using the derivative at 
the next intersection. The initial value of the first segment and and the 
initial second order derivative is also assumed to be zero. The spline 
function can therefore be found by solving the set of equations in Eq. 10. 

B3,s,1(0) = 0,
B3,s,1

′′(0) = 0,
B3,s,n

′

(Xn) = λs,n
B3,s,n(Xn+1) = B3,s,n+1(Xn)

B3,s,n
′

(Xn+1) = B3,s,n+1
′

(Xn)

B3,s,n
′′(Xn+1) = B3,s,n+1

′′(Xn)

s ∈ S , n ∈ N \{N}

(10)  

2.3.1. Storage end value boundary conditions 
The presented storage optimization problem has in reality infinite 

horizon. Stage s in the SDP algorithm uses the SEV function generated in 
stage s + 1 as the boundary condition for the stage-wise optimization 
problem. The final stage, which is optimized first due to the backward 
recursion, does not have any SEV function generated by the subsequent 
stage. If the SEV at the end of the final stage is not properly defined, the 
storage will typically be emptied. The end state can also be bounded by a 
fixed value [35–37]. However, this paper proposes an iterative SEV 
update procedure to approximate the SEV at the end of the final stage. 
The SEV function for the final stage is initially estimated by assuming 
that the slope equals the value of lost load for minimum SOC and the 
slope is zero for maximum SOC. The SEV function at the final stage is 
thereafter updated iteratively with the SEV function from the first stage 
until the solution converges. This is equivalent to solving the problem 
repeatedly such that the choice of final end value does not influence the 

Fig. 3. Storage end value function.  
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solution, and could be considered as equivalent with infinite horizon 
[25]. 

2.4. Multi-period optimal power flow 

The stage-wise optimization problem Eq. 2 is given by a MP-OPF 
problem. The incoming state is given by the initial SOC and the out
going state by the end SOC as shown in Eq. 11 and 12. 

xs =
{

soce,ts

}
(11)  

x′

s =
{

soce,ts

}

∀e ∈ E b, b ∈ B
(12) 

All other variables are control variables, either given explicitly such 
as the generation, or implicitly like the bus voltage angle that follows 
from the other decisions as shown in Eq. 13. Moreover, the SOC vari
ables not part of the state are included here and have therefore been 
assigned to a different subset of the time steps denoted ̃t in Eq. 13. 

us =
{

pb,t, pg,t, pr,t , pe,t, psc
e,t, psd

e,t, pd,t, plsd,t, soc
e,̃t
, θb,t

}

∀b ∈ B , g ∈ G b, r ∈ R b, e ∈ E b, d ∈ D b, t ∈ T s, t̃ ∈ T s\

{

ts, ts

}

(13) 

Finally, the noise of this model is the clearness index (CI) as shown in 
Eq. 14. The relation between CI and generation is described in Section 
2.4.1, and a comprehensive introduction to CI is given in Section 2.5.1. 
The CI is sampled from a beta distribution, as described in Section 2.5.2. 

ωs =
{

ϕr,s
}

∀r ∈ R b, b ∈ B (14)  

2.4.1. Power flow 
The power flow equations describe the relation between bus power 

injections and voltages at buses in a power system and form the key 
constraints for the Optimal Power Flow (OPF) optimization problem. All 
the power flow equations are included in the set of admissible control 
Us(xs,ωs). 

There exist many different OPF formulations, both exact models, 
approximations and relaxations, and they can be expressed in terms of 
bus injections or branch flows [38,39] either in rectangular or polar 
form [40]. The AC-OPF [41] provides an exact solution for the OPF 
problem, but due to the non-convex nature of the power flow equations, 
a global optimal solution cannot be guaranteed. The DC-OPF is linear, 
and derived by neglecting the line resistance and reactive power, 
assuming unity voltage magnitude and small voltage angles. The method 
is computationally efficient, easy to implement and widely used, but 
must be used carefully as it can deviate significantly from AC-OPF on 
constrained lines and therefore give inaccurate LMP [42]. 

To also account for the dynamic behavior of energy storage, the OPF 
formulation is repeated for each time step, and energy storage equations 
are included yielding the multi-period OPF. 

This paper will use the DC MP-OPF, but the proposed method will 
work for any convex MP-OPF formulation. The DC power flow neglects 
the line resistance and assumes small voltage angles such that sin(θi −

θk) ≈ θi − θk. The resulting bus power injections are given by Eq. 15, the 
line power is bounded by Eq. 16 and the voltage angle must stay within 
its limits Eq. 17. 

pb,t =
∑

(i,k)∈L b

Bik
(
θi,t − θk,t

)
(15)  

− Pmax
ik ≤ Bik

(
θi,t − θk,t

)
≤ Pmax

ik (16)  

Θmin
b ≤ θb,t ≤ Θmax

b (17)  

To balance generation and load, the bus power injection is given by the 
sum of generation from both thermal and renewable generators minus 
loads and energy storage charging for all the units on the respective bus 
Eq. 18. 

pb,t =
∑

g∈G b

pg,t +
∑

r∈R b

pr,t −
∑

e∈E b

pe,t −
∑

d∈D b

pd,t (18) 

The thermal generation must not exceed its maximum generation 
and can be operated continuously from zero to maximum Eq. 19. The 
VRE generation is shown in Eq. 20. The maximum VRE generation is 
time dependent and is bounded by the theoretical maximum Pmax

r,t 

multiplied by a scale factor sampled from the uncertainty distribution 
and is further described in Section 2.5.1. Note that this representation of 
uncertainty is specific for solar PV generation. The load can be curtailed 
where the cost is given by the scarcity price Eq. 21. 

0 ≤ pg,t ≤ Pmax
g (19)  

0 ≤ pr,t ≤ ϕr,s⋅Pmax
r,t (20)  

pd,t = PDd,t − plsd,t ≥ 0 (21)  

2.4.2. Electric energy storage 
The EES SOC at a time step equals the SOC at the previous step plus 

the power charged psc
e,t minus the power discharged psd

e,t compensated 
for the efficiency losses ηc, ηd that includes both converter and battery 
losses Eq. 22. The power withdrawn from the bus equals the power 
charged minus the power discharged Eq. 23, and the energy storage 
upper and lower bounds are enforced by Eq. 24. The EES maximum 
charge and discharge power due to, for example, converter and battery 
limitations are enforced by Eq. 25 and 26. 

soce,t = soce,t− 1 + ΔTt

(

ηcpsc
e,t −

psd
e,t

ηd

)

,∀t ∈ T s\

{

ts

}

(22)  

pse,t = psc
e,t − psd

e,t (23)  

SOCmin
e ≤ soce,t ≤ SOCmax

e (24)  

0 ≤ psc
e,t ≤ PSc

e,t (25)  

0 ≤ psd
e,t ≤ PSd

e,t (26) 

The state transition function Ts(xs, us,ωs) is given by the energy 
balance equation Eq. 22 when t = ts. The energy balance for other 
values of t and the remaining constraints Eq. 23, 24, 25 and 26 are in the 
set of admissible controls Us(xs,ωs). 

2.4.3. Objective 
A common OPF objective is minimizing the operating costs ac

counting for the constraints and losses in the grid. Recall that under 
perfect competition, the solution of global cost minimization equals 
profit maximization for each individual unit, and the dual values of the 
bus power balance from the OPF solution, also known as LMP, repre
sents the electricity price for that bus. The objective in this case is to 
minimize the sum of generator operating costs and load shedding costs. 
The costs are given by constant marginal costs and must be summed for 
all generators and loads at all buses for all time steps as shown in Eq. 27, 
and define the stage-objective Cs(xs, us,ωs) in the SDP formulation in Eq. 
2. 

Cs(xs, us,ωs) =
∑

b∈B

∑

t∈T s

(
∑

g∈G b

Cg pg,t +
∑

d∈D b

Cd plsd,t

)

ΔTt (27)  
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2.5. Noise 

This paper will study the effect of uncertainty from solar PV gener
ation in combination with energy storage. Demand uncertainty will have 
similar implication on the result, but this has not been analyzed. 

2.5.1. Solar PV forecasting 
Solar PV forecasting can be grouped into statistical and physical 

methods, or a combination of these. The statistical methods exploit the 
properties of historical data, while the physical methods include Nu
merical Weather Prediction (NWP), sky imagery and satellite imaging. 
The forecasting technique for solar PV generation is highly dependent on 
forecasting horizon. Statistical methods are commonly used for short- 
term forecasts up to six hours, while NWP is used for forecasts up to 
15 days ahead [43]. 

The maximum generation from solar PV depends on the PV panel’s 
size, geographical location, direction and angle, and the time of day and 
year. Weather type also has a significant impact on the generation, and is 
commonly classified into different categories, such as clear sky, partly 
clouded and overcast. The weather type influences both the total daily 
generation as well as the generation variability [44]. A sunny day will, 
for example, provide stable high generation with low uncertainty, while 
the generation will fluctuate rapidly on partly clouded days due to the 
rapid changes in cloud cover. 

The CI is the ratio between actual generation and the theoretical 
maximum at that time and location Eq. 28. The CI value is between 0 and 
1 and quantifies how much the solar radiation passes through the clouds. 
It is commonly used for statistical analysis of the solar PV generation. 

ϕr,s =
pr,t

Pmax
r,t

(28) 

A probabilistic model for the CI will be used in this paper, where the 
expected value and variance are assumed to be known ahead. The CI is 
always between 0 and 1, which also applies for the beta distribution that 
is commonly used for solar PV CI [45–47]. The CI Φr,s is undefined for 
the hours where the theoretical maximum generation is zero due to zero 
division, but the resulting generation will of course be zero. 

2.5.2. Beta distribution 
The probability density function (PDF) of the beta distribution on 

standard form is shown in Eq. 29 where B(1; α, β) is a distribution spe
cific constant given by the beta function Eq. 31 that ensures the distri
bution sums up to one. The cumulative distribution function is shown in 
Eq. 30. 

f (x; α, β) = 1
B(1; α, β)x

α− 1(1 − x)β− 1 (29)  

F(x; α, β) = B(x; α, β)
B(1; α, β) (30)  

B(α, β) =
∫ x

0
tα− 1(1 − t)β− 1dt α, β ≥ 0, 0 ≤ x ≤ 1 (31)  

For a known expected value μ and variance σ2, the beta distribution 
coefficients can be found from Eq. 32 and 33 [48]. 

α =
μ2(1 − μ)

σ2 − μ (32)  

β =

(
μ(1 − μ)

σ2 − 1
)

(1 − μ) (33)  

2.5.3. Uncertainty sampling 
The noise in SDP must be stage-wise independent. However, de

pendencies in noise across stages can be respected by modelling the 
noise with state variables, but will also increase the dimensionality of 

the optimization problem and thus have not been accounted for in this 
paper. 

The true continuous probability distribution must be represented 
with a discrete probability distribution with M discrete points ϕm and 
their corresponding probability ρm, where the probabilities sums up to 
one Eq. 34. By selecting initial probabilities ρ̂m, the corresponding 
boundary values δ1,⋯, δM− 1 where 0 = δ0 < δ1 < ⋯ < δM− 1 < δM = 1 
can be found numerically from Eq. 35. Let ϕ̂m represent an initial so
lution given by the expected value in the corresponding interval [δm− 1,

δm] as shown in Eq. 36. 
∑

m∈M

ρm= 1 (34)  

ρm =

∫ δm

δm− 1

f (ϕ) dϕ, m ∈ M (35)  

ϕ̂m =

∫ δm
δm− 1

ϕf (ϕ) dϕ
∫ δm

δm− 1
f (ϕ) dϕ

, m ∈ M (36) 

The discrete distribution given by ρ̂m, ϕ̂m will give the same expected 
value as the true distribution, but the variance will be lower. Let ρm,ϕm 
represent the improved discrete distribution for the boundary values δm. 
The improved discrete distribution can be found by minimizing the 
squared difference between the initial distribution points ϕ̂m and ϕm,

constrained such that expected value and variance from continuous 
distribution are conserved [49]. 

min
ρ,ϕ

∑

m∈M

ρm

(
ϕm − ϕ̂m

)2

subject to
∑

m∈M

ρm = 1
∑

m∈M

ρmϕm = μ
∑

m∈M

ρmϕm
2 = μ2 + σ2

(37)  

2.6. Simulation 

A multi-stage stochastic optimization model provides a strategy for 
how to optimally operate at a given stage and state for a given realiza
tion of the noise. A simulation of multiple scenarios can give a proba
bilistic LMP and SMV. The scenarios are sampled from the noise 
distribution(s) and optimized with the stage-wise MP-OPF models 
beginning at the first stage and using the final state for each stage as the 
initial state for the next state. This procedure is similar to the one 
described in Fosso et al. [23] and is shown in Algorithm 1. 

2.7. Model summary 

The SDP optimization procedure is illustrated in Fig. 4, where stages 
are shown at the x-axis and the discrete states at the y-axis. Each stage- 
wise problem s is solved for each discrete state n and each scenario m,

and a SEV-function is approximated using the expected gradients λs,n for 
each discrete state n. The stage-wise problems are repeated extensively 
in Appendix A. Algorithm 2 summarizes the optimization procedure 
where ϵ is a convergence threshold. 

3. Implementation and numerical values 

This section presents implementation details, system topology and 
the numerical data that will be used to demonstrate the optimal oper
ation and the corresponding prices in a power system with uncertain 
variable renewable generation and energy storage. 

The optimization problem is implemented in the programming lan
guage Julia (1.4) using the JuMP modelling language (0.21.3) [50] with 
the non-linear solver Ipopt (0.6.2) [51]. The power flow equations have 
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been implemented using PowerModels (0.17.1) [52] with the 
multi-period description from [53]. 

3.1. System topology 

Fig. 1 shows the system topology, where bus 1 has an expensive peak 
generator, bus 2 industrial loads and VRE generation in terms of solar 
PV, bus 3 has residential loads and battery storage, and bus 4 has a 
cheaper base generator. The base generator typically represents com
bined cycle gas turbines (CCGT), where the investment cost is high, and 
the marginal operating cost is low. The peak generator typically repre
sents open cycle gas turbines (OCGT) where the investment cost is lower 
and the marginal operating cost is higher. The base generator demands a 
relatively higher duration compared to the peak generator in order to be 
profitable. Thermal plants also have limitations in start-up time, 

ramping rates, minimum generation limits and marginal operating cost 
varying with generation [54], which have not been modelled in this 
paper. Section 3.6 presents the combination of generation capacities 
that will be analyzed in Section 4. 

3.2. Time steps and stages 

The time step length in the MP-OPF problems is one hour, and there 
are three time steps between each stage. That means perfect foresight 
three hours ahead at a stage, and that the uncertainty in the next stage is 
revealed every three hours. The planned operation will also be adjusted 
every three hours. 

3.3. Solar PV clearness index 

The CI expected value and variance are assumed to be known ahead 
based on forecasts. Three different weather types are used: sunny, partly 
clouded and overcast. Both the continuous and discrete probability 
distributions are shown in Fig. 5 as well as the expected value and 
standard deviation, and assumes a similar pattern as described in [44]. 
The discrete probability distribution has been obtained using the 
method described in Section 2.5.3 with probability intervals 5%, 20%, 
50%, 20% and 5%. Table 1 shows the sequence of weather types for the 
respective days used in the simulations. The probability distribution and 
the maximum PV generation are shown in Fig. 6. 

The SDP algorithm does not propose a single solution to the problem, 
but an operation strategy for all state combinations at any time. To 
verify the strategy, different scenarios are sampled using the continuous 
probability distribution, and simulated based on the SDP strategy. 

For real-time operation, the ideal solution is to update the CI fore
cast, and the corresponding operation strategy as often as possible. It is 

Initialize x1
for s ∈ S do
Sample scenario ωs ∈ Ωs
Solve (2) and (5)
Save LMP (dual value of (18))
Save SMV (dual value of (23))
Save EES SOC (soce,t from (23))
Initialize incoming state for the next stage with outgo-
ing state of current stage: xs+1 ← x′s

end for
Algorithm 1. Simulation algorithm.  

Fig. 4. Stochastic dynamic programming solution procedure.  

Initialize S EVS+1(xS+1)
repeat
for s ∈ reverse(S) do
for n ∈ N do
for ωs ∈ Ωs do
Solve (2) and (5) for xs = Xn and ωs

end for
Find λs,n(6)

end for
Approximate S EVs(x), equation (7) to (10)

end for
S EVS+1(x)← S EV1(x)

until Terminate when final end value function has con-
verged:

∣∣∣∣S EVS+1(Xn) − S EV1(Xn)∣∣∣∣ < ε, ∀ n ∈ N
Algorithm 2. SDP algorithm.  
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also possible to use a combination of different forecasting techniques to 
cover the different time horizons as accurately as possible. In this paper, 
the prices and operation are only studied from one point in time. 

3.4. Load forecast time series 

The system load is typically subject to uncertainty, often represented 
as a Gaussian distribution. There is also often a correlation between load 
and VRE generation since they both depend on weather. Neither the load 
uncertainty nor the correlation between load and generation are not 
modelled in this paper such that the impact of generation uncertainty is 
clearer. The system has two loads, as shown in Fig. 1, an industrial and a 
residential load where the profiles for the loads are shown in Fig. 7, 
where the profiles have been generated using the FASIT model devel
oped by SINTEF Energy Research [55]. Note that the weekday profiles 

differ from the weekends. The time series shows the one week profile. 

3.5. Generation and storage capacities and cost 

The base generator has a marginal operating cost of 20 € /MWh and 
the peak generator 30 € /MWh, and start and stop costs are neglected. 
The solar PV generation and storage have zero marginal cost. The 
scarcity price in the system is 100 € /MWh for both loads. The storage 
duration is 4 hours, meaning that it takes 4 hours to empty a full battery 
at maximum discharge. The storage efficiency is 95% for both charging 
and discharging. The maximum charge and discharge power are equal. 

3.6. Test cases 

The price making will be studied for four different cases with 
different combinations of generation and storage capacities as shown in 
Table 2. The first case includes only thermal generation to illustrate how 
the price is set by the marginal unit at the respective nodes. Moreover, 
the next case will show how the introduction of solar PV and storage will 
change the price. Finally, the last case will show a system with no 
thermal generation to set the price. The transmission capacity between 
bus 2 and 3 is limited in all cases, but the maximum capacity is increased 
when introducing VRE. 

4. Results 

This section presents the numerical results of the cases outlined in 
Section 3. Both optimal dispatch, LMP and SMV based on the resulting 
marginal values will be studied. 

For the examples involving stochastic solar PV generation and en
ergy storage, the SMV is presented as a function of time and state of 
charge. The interpretation of the SMV will also be discussed. Optimal 
generation and storage operation, and energy prices are presented as 
percentiles based on multiple simulations using the continuous distri
bution of the uncertain variable. 

Fig. 5. Continuous and discrete probability distributions of clearness index for 
different weather types with 5 samples per distribution. 

Table 1 
Expected value and standard deviation of clearness index beta distribution for 
the simulated days.  

Day Weather type 

1 Partly clouded 
2 Partly clouded 
3 Sunny 
4 Overcast 
5 Overcast 
6 Sunny 
7 Overcast  

Fig. 6. Solar PV one week probabilistic profile.  

Fig. 7. Industrial and residential weekly load profile.  

Table 2 
Test case generation, EES and transmission capacities.  

Case name Base Peak PV Storage Line 2-3 
limit 

Only thermal (Section 4.1) 1.5 0.5 0.0 0.0 0.7 
Thermal & PV (Section 4.2) 1.5 0.5 4.0 0.0 0.7 
Thermal, PV & EES (Section 

4.3) 
1.0 1.0 4.0 0.8 0.8 

PV & EES (Section 4.4) 0.0 0.0 9.5 10.0 5.0  
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4.1. Only thermal generation 

In a system with only thermal power generation and fixed demand, 
the price is set by the marginal producing unit if the capacity is higher 
than the load. For a congested grid, the price will also vary between the 
different nodes, as illustrated in this simple 4-bus system with two 
thermal generators and two loads. 

Fig. 8a shows the two system loads and generators over the first 24 
hours, and Fig. 8b shows the corresponding LMPs. The price is 20 € 
/MWh when the base generator can meet the entire load, and 30 € 
/MWh when the peak generator also must contribute. From hour 12, the 
LMPs are different between the nodes since the transmission line be
tween bus 2 and 3 has reached its limit, hence the peak generation must 
replace some of the base generation to prevent overloading of the line. In 
this situation, the base generator will be the marginal unit for the resi
dential load since it is not able to generate at maximum capacity so the 
two nodes get different prices. 

4.2. Variable renewable generation 

As explained earlier, introduction of variable renewable generation 
with zero marginal cost will reduce the prices when the existing gen
eration capacities are unchanged due to the merit order effect. Solar PV 
generation is installed at bus 2. 

The resulting generation and price are shown in Fig. 9a and b 
respectively. Note that the base generator gets a high ramp rate due to 
the high solar PV generation in the middle of the day, and the shape of 
the curve is often referred to as the ”duck curve” [56]. The solar PV 
generation makes the peak generation redundant and reduces the price 
at both buses compared to the previous case. At the middle of the day, 
the transmission capacity between node 2 and 3 is insufficient to meet 
the demand with solar PV generation, thus the price is set by the base 
generator for the residential load. However, the industrial load can meet 
all its demand with solar PV generation that becomes the marginal 
generation unit at this bus, thus the price becomes zero. 

4.3. Energy storage 

In the previous cases, the optimal generation and energy price were 
only dependent on the present load and PV generation. When energy 
storage is introduced, the optimal strategy and the corresponding energy 
price also depend on the state of charge of the energy storage. Moreover, 
the state depends on previous decisions, which in turn are influenced by 
uncertainty. The stochastic result will therefore be studied for this case 
and the following cases. 

In a competitive market, the VRE will typically displace some of the 
base generation that depends on a high duration to recover its costs. 
Some of the base capacity has therefore been replaced with peak ca
pacity in the case setup. 

Fig. 10a shows the SMV as a function of time and storage SOC. As 
emphasized earlier, the SMV represents the marginal future value by 
storing an additional unit of energy. The SMV has several interesting 
interpretations. Under perfect competition, the individual energy stor
age profit is maximized by bidding the SMV, and the solution of indi
vidual profit maximization for all units equals the system optimal 
solution. The SMV will therefore set the LMP when the storage is the 
marginal unit at that node. Since the marginal value has been found 
using SDP, it also captures uncertainty, hence the value represents a 
weighted probability of the prices of the units in the system at any time 
and SOC taking into account the probabilistic forecast of PV. 

The optimal usage of the storage in this case involves charging from 
the cheap generators such that the storage can discharge later in order to 
avoid using the expensive generators or load shedding. 

The SMV is close to zero for maximum SOC around mid-day all the 
days (hours 12, 36 and 60). This occurs when the solar PV generation is 
high, and it is likely that the battery can be charged to maximum before 
the solar PV generation reduces. It also indicates that the energy from 
the EES should be used rather than the thermal generation since the SMV 
is less than the marginal cost of both thermal units. The SMV is higher in 
the evening (hours 18, 42 and 66), when there is no or very low solar PV 
generation and a relatively high load. For very low SOC, the SMV is close Fig. 8. Simulation of case with only thermal generation.  

Fig. 9. Simulation of case with thermal and solar PV generation.  
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to 50 and higher than the marginal cost of both thermal generators. This 
indicates that the thermal generators should be used rather than the EES 
unless the thermal generators are insufficient to prevent load shedding. 
The scarcity price is 100 € /MWh, and a SMV at 50 indicates a significant 
probability of scarcity price in this situation. Finally, observe that the 
SMV is between 20 and 30 in most situations. That is when the EES is 
used to balance the probability of being able to meet the demand with 
base generation versus peak generation for the different combinations of 
time and SOC taking into account the probabilistic forecast of PV. 

Fig. 10c and d show the price percentiles for 50 simulations sampled 
from the continuous probability distribution of the solar PV generation 
at the bus with industrial loads and residential loads respectively. The 
price will often be zero at the industrial node around mid-day as the 
storage does not have capacity to store the surplus generation. At the 
same time, the residential node will not get zero price as the trans
mission capacity between the nodes is at the maximum limit. Uncer
tainty plays an important role in the price making for the system as the 
spread for both nodes is quite significant. 

The resulting SOC in Fig. 10b shows that almost the entire storage 
capacity is utilized to minimize the generation costs. 

4.4. Only renewable generation and energy storage 

In the final case, the thermal units are removed completely, and the 
solar PV generation and EES capacity are sized up considerably. The EES 
must be large enough to meet all the demand through the evening and 
night when the solar PV is not generating. Moreover, the solar PV must 
be sized such that it provides enough generation for both the current 
demand as well as the evening/night demand - even for a day with 
relatively low generation. An important assumption to avoid imperfect 
competition is that the EES actually represents multiple aggregated EES 
with different operators. Otherwise, the EES operator could maximize its 
profit by bidding the scarcity price. 

The price will now be set solely by the scarcity price, and future 
foresight is even more important for the electricity price. The 

optimization model is therefore using a one-week generation forecast. 
Fig. 11a shows the SMV for all states and the corresponding expected 

solar PV generations are shown in Fig. 6. As observed earlier, the SMV 
follows the pattern from the solar PV generation. High generation re
duces the marginal value of stored energy and vice versa. Another 
interesting observation is that due to expected low generation from hour 
72, the marginal value of the storage increases upfront, indicating it is 
important to increase the SOC before entering the days with expected 
low generation. Likewise, the SMV decreases towards hour 120 as the 
expected generation the next day is high. 

The corresponding LMPs are shown in Fig. 11c and d. The price is on 
average low until the end of day 3 (around hour 66), where the SOC has 
been built up to meet the expected low generation the next two days. 
However, the spread in price is high due to the high variability in gen
eration. Then the price increases instantaneously and the further 
development has a high spread and high expected value. Finally, the 
price reduces at the end as the expected further generation is equal to the 
generation in the beginning. 

Note that the price change is no longer dominated by the solar PV 
generation pattern as in previous cases, but rather the future probability 
of scarcity. This market price will be attractive for suppliers of flexibility 
capable of shifting energy over several days by utilizing the price vari
ations. They will also get paid for reducing the risk of scarcity rather 
than getting paid only if scarcity occurs. 

The differences between the LMP for the industrial and residential 
nodes occur when some of the solar PV generation is curtailed due to 
insufficient load and transmission capacity. The development in SOC in 
Fig. 11b clearly shows how the SOC is built up ahead of the period with 
low generation and emptied towards the period with high generation. 

5. Discussion 

VRE and EES play a key role in the future fully renewable energy 
system, and they will also have significant implications on the market 
equilibrium and electricity prices. As already emphasized in previous 

Fig. 10. Multiple simulations of case with thermal and solar PV generation and energy storage.  
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literature, the short-term consequence of increasing VRE generation is a 
reduction in electricity price due to the merit order effect as shown in 
Section, but also increased volatility. However, the price volatility can 
be reduced by EES. When uncertainty is accounted for, the combination 
of VRE and EES will result in a probabilistic price spanning between the 
price of the most and the least expensive unit. 

While previous studies primarily focus on the electricity price in 
systems combining VRE with thermal generation, this paper also focuses 
on the price formation when most of the generation is supplied by VRE 
sources. If EES replaces some of the dispatchable capacity such that the 
system depends on EES to meet peak demand, scarcity may occur and 
load shedding can be considered as the most expensive unit. The elec
tricity price can then be seen as an arbitrage against the risk of scarcity. 
An interesting consequence of this is that the scarcity price becomes 
effective without scarcity necessarily occurring, and the price can be 
seen as a precaution against scarcity. 

The weighted scarcity price creates possibilities for flexible loads 
with marginal price below the scarcity price to enter the market. A 
flexible load can in its simplest form be modelled as a dispatchable 
negative generator, meaning that the load can be curtailed at a pre
determined cost with no need of delivering the lost load at a later stage. 
A flexible load can also represent shifting of load, and can be modelled as 
an EES where a penalty applies when deviating from the ideal SOC. 

Flexible loads will in general contribute to reducing the high prices 
by reducing the risk of scarcity. The scarcity price has a practical 
implication although the electricity price rarely reaches the full scarcity 
price. With sufficient flexibility in the system to fully eliminate the risk 
of scarcity, the maximum price will be set by the most costly flexible 
unit. Likewise, the flexible loads will also increase the low prices by 
reducing the risk of generation curtailment. 

5.1. Future work 

Possible steps towards a more practical applicable model could 
involve modelling of flexible demand, and also other uncertainties such 

as demand and generation from wind. Uncertainties are often corre
lated, with both auto-correlation and correlation between uncertainties. 
Both handling correlated uncertainty and additional EES will require 
new state variables, which scale poorly with SDP although the scal
ability can be improved using splines [27]. A more common method for 
handling increasing number of state variables is using Stochastic Dual 
Dynamic Programming (SDDP) [57], where the model formulation must 
be convex. The infinite horizon method suggested in this paper is not 
feasible to implement in SDDP, but cyclic graphs and discount factors 
provides an interesting alternative to infinite horizon optimization in 
SDDP [31]. 

Multi-stage stochastic models are in general computationally inten
sive to solve, and scalability often goes hand in hand with convexity and 
linearity such as for SDDP. Real-life power systems are neither linear nor 
convex. Thermal generators as well as hydro power plants have 
discontinuous production functions due to rigorous minimum genera
tion limits, and the power flow equations are both non-linear and non- 
convex. Convexification and linearization must therefore be performed 
cautiously since the result could easily deviate from the true optimal 
solution. However, recent research has proposed methods to handle 
integer variables in the SDDP framework [58]. 

In a competitive market where each individual unit seeks to maxi
mize its profit and where the price is given exogenously, it is important 
to also recall that the price is set by the VRE generation and demand. 
Additionally, there will be a strong correlation between the generation 
and demand uncertainty, and the price uncertainty. Managing uncer
tainty in price yields a non-linear optimization problem that can be 
handled in several ways [59,60]. 

EES is subject to degradation caused by its operational pattern, and 
Aaslid et al. [32] indicate that EES degradation could be an important 
factor in combination with generation uncertainty. 

The proposed model will also provide storage end value functions for 
all stages. The end value function can be used as boundary conditions for 
a more detailed finite horizon storage model [61]. This principle has 
been described for hydro power in [62] and combines detailed storage 

Fig. 11. Multiple simulations of case with only solar PV generation and EES.  
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modelling and stochastic modelling with long foresight while still 
keeping the computational burden modest. 

Flexibility has traditionally been provided by centralized generation 
units, but has to a greater extent been decentralized through flexible 
demand. A preferred approach is to solve operational challenges in the 
electricity system as close as possible to their origin. Until now, power 
markets have been driven by development and limitations on trans
mission level. However, solving problems locally demands local price 
signals reflecting the local challenges. A good starting point for this is to 
study the LMP in these systems as it can give valuable insight into how to 
design and operate future electricity systems with more distributed 
resources. 

6. Conclusions 

The road towards a zero emission electricity system calls for massive 
integration of VRE and flexibility to ensure a secure and efficient supply. 
These major changes will influence the price-making process in 
competitive markets. While capacity inadequacy is the main driver for 
high prices in markets dominated by thermal generation, energy in
adequacy is the main driver for high price in markets dominated by VRE 
and EES. Managing uncertainty is crucial to balance optimal operation 
by reducing generation curtailment while keeping the risk of scarcity 
sufficient low. 

This paper presents a multi-stage stochastic electricity market model 
including grid constraints, EES and VRE. The model uses SDP to solve a 
multi-stage MP-OPF problem under uncertain VRE generation, EES and 
administrative scarcity pricing, both with and without dispatchable 
generation. The stage-wise problems are interconnected with SEV 
functions describing the marginal value of stored energy both in time 

and with respect to SOC represented as cubic spline functions. The re
sults shows how the LMP can be seen as an arbitrage between the 
marginal cost of the units in the system, where load shedding is the most 
expensive unit through the scarcity price. The SMV depends on the state 
of all EES in the system as well as expected future VRE generation and 
can be used to determine the optimal operation of EES, and will set the 
price when EES is the marginal generating unit. 
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Appendix A. Summary of optimization problem 

A1. Stage-wise optimization problem 

min
us

{Cs(xs, us,ωs) − sevs+1}

s.t. x′

s = Ts(xs, us,ωs)

sevs+1 ≤ SEVs+1
(
x′

s

)

us ∈ Us(xs,ωs)

A2. State variables 

Incoming state is given by the initial SOC and outgoing state by the end SOC of the stage-wise problem. 

xs =
{

soce,ts

}

x′

s =
{

soce,ts

}

∀e ∈ E b, b ∈ B  

A3. Control variables 

All variables except the state variables are considered control variables and are set either explicit or implicit. 

us =
{

pb,t, pg,t, pr,t , pe,t, psc
e,t, psd

e,t, pd,t, plsd,t, soc
e,̃t
, θb,t

}

∀b ∈ B , g ∈ G b, r ∈ R b, e ∈ E b, d ∈ D b, t ∈ T s, t̃ ∈ T s\

{

ts, ts

}

P. Aaslid et al.                                                                                                                                                                                                                                   



Electric Power Systems Research 197 (2021) 107169

13

A4. Noise 

ωs =
{

ϕr,s
}

∀r ∈ R b, b ∈ B  

A5. Stage-objective 

Cs(xs, us,ωs) =
∑

b∈B

∑

t∈T s

(
∑

g∈G b

Cg pg,t +
∑

d∈D b

Cd plsd,t

)

ΔTt  

A6. State-transition 

The state transition is given by the energy balance for the final time step in current stage. The incoming state xs is connected implicitly with the 
outgoing state x′

s through the admissible controls us ∈ Us(xs,ωs). 

soce,ts = soce,ts − 1 + ΔTt

⎛

⎝ηcpsc
e,ts −

psd
e,ts

ηd

⎞

⎠

A7. Admissible controls 

The admissible controls include all constraints except the state transition: 

Us(xs, us,ωs) = us :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pb,t =
∑

(i,k)∈L b

Bik
(
θi,t − θk,t

)
− Pmax

ik ≤ Bik
(
θi,t − θk,t

)
≤ Pmax

ik

Θmin
b ≤ θb,t ≤ Θmax

b

pb,t =
∑

g∈G b

pg,t +
∑

r∈R b

pr,t −
∑

e∈E b

pe,t −
∑

d∈D b

pd,t

0 ≤ pg,t ≤ Pmax
g

0 ≤ pr,t ≤ ϕr,s⋅Pmax
r,t

pd,t = PDd,t − plsd,t ≥ 0

pse,t = psc
e,t − psd

e,t

SOCmin
e ≤ soce,t ≤ SOCmax

e

0 ≤ psc
e,t ≤ PSc

e,t

0 ≤ psd
e,t ≤ PSd

e,t

soc
e,̃t

= soc
e,̃t− 1

+ ΔT̃
t

(

ηcpsc
e,̃t
−

psd
e,̃t

ηd

)

∀b ∈ B , g ∈ G b, r ∈ R b, e ∈ E b, d ∈ D b, t ∈ T s, t̃ ∈ T s\

{

ts

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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