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We present a software to simulate the propagation of positive streamers in dielectric liquids. Such liquids 
are commonly used for electric insulation of high-power equipment. We simulate electrical breakdown 
in a needle–plane geometry, where the needle and the extremities of the streamer are modeled by 
hyperboloids, which are used to calculate the electric field in the liquid. If the field is sufficiently 
high, electrons released from anions in the liquid can turn into electron avalanches, and the streamer 
propagates if an avalanche meets the Townsend–Meek criterion. The software is written entirely in 
Python and released under an MIT license. We also present a set of model simulations demonstrating 
the capability and versatility of the software.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Streamers in liquids

Dielectric liquids, specifically transformer oils, are used as elec-
tric insulation in high-power equipment such as power transform-
ers [1]. Equipment failure is always a possibility, and in a world 
with ever-growing need for energy, there is a continuous effort 
to make equipment better, cheaper, more compact, and more envi-
ronmentally friendly. To prevent equipment failure due to electrical 
discharges, new insulating liquids as well as additives are tested, 
experiments are carried out to better understand the physical na-
ture of the phenomena, and simulations are performed to test the 
validity of predictive models [2,3].

Since electrical discharge events are rare at operating condi-
tions, model experiments are designed to induce discharge in the 
liquid. In one such model experiment, a needle electrode is placed 
opposing a planar electrode, where the needle–plane gap is in-
sulated by a liquid [2]. If high voltage is applied, resulting in a 
sufficiently strong electric field close to the needle, the liquid will 
lose its insulating properties and begin to conduct electricity, and 
subsequent (partial) discharges from the needle into the liquid 
can occur. The charge transported into the liquid can increase the 
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electric field and lead to partial discharges in new regions in a 
self-induced manner. Shadowgraphic images reveal that a gaseous 
channel, a “streamer”, is formed and how it branches as it propa-
gates through the liquid [4]. If a streamer bridges the gap between 
two electrodes, an electric discharge can follow, possibly destroy-
ing the affected equipment.

Streamers are commonly classified by their polarity and speed 
of propagation from the slow 1st mode to the fast 4th mode, rang-
ing from below 0.1 km/s to well above 100 km/s [2]. Streamers 
with negative polarity typically have a lower inception voltage than 
streamers with positive polarity (positive streamers), however, pos-
itive streamers typically lead to breakdowns at lower voltage than 
negative streamers, and as such, research is mainly concerned with 
positive streamers. The streamer phenomenon involves processes 
covering several length and time scales. Speed and branching is 
studied in gaps of different sizes (mm–m), while many of the 
interesting processes, such as field ionization, high-field conduc-
tion, electro-hydrodynamic movement, bubble nucleation, cavita-
tion, electron avalanches, photoionization, occur on a μm-scale 
[2,3]. A streamer usually stops or leads to a breakdown on a μs-
scale (km/s = mm/μs), whereas processes such as recombination of 
electrons and anions can occur within picoseconds. Consequently, 
experimentation as well as simulation is challenging.

1.2. Modeling and simulations

While sophisticated equipment is required for experiments, 
simulations often investigate the effect of given processes through 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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relatively simple models. The fractal nature of the streamer struc-
ture can be simulated by considering a lattice where each point is 
either part of an electrode, the liquid, or the streamer [5]. Here, 
the streamer expands to new lattice points when some criterion, 
such as electric field strength, is obtained. Through kinetic Monte 
Carlo methods, the stochastic nature and the physical time can also 
be studied in such simulations [6–8]. Radial expansion of streamer 
channels and conduction within the streamer have also been in-
vestigated [9–12]. The latter mechanism, channel conduction, is 
also included in [13,14], where the streamer propagation criterion 
is a function of the square of the electric field. The charge and 
conduction of a streamer can also be studied by considering the 
streamer as an electrical network of resistors and capacitors, with-
out necessarily confining the points of the network to a grid [15]. 
Models where the streamer consists of a set of discrete points are 
simplistic but also efficient. Conversely, with a higher demand for 
computational power, computational fluid dynamic (CFD) methods 
can be applied to solve the equations for generation and transport 
of charged particles (the flow of natural particles is often ignored) 
during a streamer discharge [16,17], while the stochasticity and 
branching of streamers can be introduced by adding impurities 
[18]. Such CFD-calculations often ignore the phase change from liq-
uid to gas as well and are confined to a small region because of the 
computational complexity. However, for simplified, single-channel 
streamers, both the phase change and the processes in the channel 
can be simulated [19,20]. Code used for simulation of streamers in 
liquids is rarely published, in fact, we found just a single exam-
ple [21].

1.3. Avalanche model

We have previously described our streamer model for positive 
streamers where the propagation is based on an electron avalanche 
mechanism [22]. Here, the avalanche process takes place in the liq-
uid, in the high-field region in front of the streamer, and can cause 
a direct transition to a streamer channel. We assume this is the 
main propagation mechanism of positive second-mode streamers 
in non-polar liquids. However, as mentioned above, there are other 
possible propagation mechanisms. The focus of the model is on the 
streamer extremities and the high-field region in the liquid in front 
of them, whereas the streamer channel itself, and the mechanisms 
therein, are given a simplified representation. The model has been 
extended to account for conductance in the streamer channel and 
capacitance between the streamer and the planar electrode [23], 
as well as photoionization in front of the streamer [24], the latter 
as a mechanism for the transition from slow to fast propagation.

Streamer propagation is simulated in a setup resembling model 
experiments, a needle–plane gap filled with a model liquid, see 
Fig. 1 for details. The needle and streamer give rise to an elec-
tric field, affecting charged particles in the liquid. A number of 
anions, “seeds” for electron avalanches, is modeled within a vol-
ume surrounding the streamer, a “region of interest” (ROI). Elec-
trons released from the anions can create electron avalanches, and 
the streamer propagates when an avalanche meets the Townsend–
Meek criterion, i.e. exceeds a critical number of electrons [22]. The 
needle and the streamer heads (the extremities of the streamer) 
are modeled as hyperboloids, which simplifies calculating the elec-
trical field since the Laplacian is analytic in prolate spheroid co-
ordinates [25]. The electric field and potential are calculated by 
considering electrostatic shielding [22], as well as the conductance 
in the channel and the capacitance towards the planar electrode 
[23]. The streamer undergoes a transition into a fast propagation 
mode when radiation from the streamer head can ionize molecules 
directly in front of the streamer [24]. More details on the model 
are given in section 3.
2

Fig. 1. Illustration of the main components in the simulation model. The needle elec-
trode and the streamer heads are hyperboloids, each with a potential V i . A region of 
interest (ROI) is used to limit the computational effort to a region surrounding the 
active part of streamer. The ROI controls the position of the “seeds”, which are clas-
sified as anions, electrons, or avalanches, depending on the electric field strength at 
their position. The “shadowgraphic” image of the streamer is created by plotting all 
former positions of streamer heads. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

The main output of the simulations includes the propagation 
speed, the streamer shape (branching), and propagation distance. 
In addition, properties such as the initiation time, the potential of 
individual streamer heads, electric breakdown within the streamer 
channel, and avalanche growth, can also be investigated. Simula-
tions show how various parameters affect the results, where the 
gap size, applied voltage, and type of liquid are important para-
meters for a simulation. Furthermore, other parameters such as the 
size of a streamer head, the conductivity of the streamer channel, 
properties of additives, and avalanche growth parameters can be 
varied to validate whether the underlying physical models are rea-
sonable.

1.4. Scope

The present work describes the use, functionality and imple-
mentation of Cerman [26], a software to do simulations with our 
model [22–24], with the purpose to make the software publicly 
available. Section 2 demonstrates how to set up, simulate, and 
evaluate results of a relevant problem. Further details on the model 
and its implementation are given in section 3, whereas section 4
outlines the current functionality and some prospects for the fu-
ture. A summary is then given in section 5. Furthermore, details on 
the algorithm are included in Appendix A, simulation parameters 
in Appendix B, and simulation example input files in Appendix C.

2. Simulation – using the software

2.1. Software overview

The software name Cerman is an abbreviation of ceraunomancy, 
which means to control lightning or to use lightning to gain in-
formation. The implementation is done in Python, an open-source, 
interpreted, high-level, dynamic programming language [27], and 
the software is available on GitHub [26] under an MIT license. 
The software is script-based, and controlled through the command 
cerman , which is used for creation of input files, running simu-
lations, and evaluating the results. When a simulation is started, 
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Listing 1: Example of JSON-input file, cmsim.json , defining a simulation series with several values for the needle voltage V 0 and the 
threshold for breakdown in the streamer channel Ebd, both with and without photoionization enabled. Furthermore, each permutation 
is to be carried out 10 times with different initial seed positions. Note, by setting alphakind to A1991 , α is calculated by (6). See 
Appendix B for a description of the parameters.
the simulation parameters are loaded from an input file, and the 
classes for the various functions are initiated. See Appendix B for a 
summary of simulation parameters. The simulation itself is essen-
tially a loop where seeds in the liquid are moved and the streamer 
structure is updated until the streamer stops or leads to a break-
down. The algorithm is detailed in Appendix A.

2.2. Getting started

Download Cerman from GitHub [26] and install it by running

pip install .

from the downloaded folder. This installs the python package 
and the script cerman . Python 3.6 or above is required, as 
well as the packages numpy [28], scipy [29], matplotlib , 
simplejson , and statsmodels . The dependencies are auto-
matically installed by pip . The software has been developed in 
OSX and has been tested on Linux as well.

2.3. Create simulation input

Each simulation requires a JSON-formatted input file where the 
parameters are given. Such files can be created from a master in-
put file, specifying the parameters for a simulation series. A master 
input file can be created from a regular input file by changing a 
parameter value into a list of values. More than one parameter can 
contain lists, and all possible combinations of values are found to 
create the input files for the simulation series. To demonstrate, we 
use cmsim.json in Listing 1, which specifies a simulation series 
exploring the influence of various parameters. The ten values for 
the applied voltage are specified through a linspace -command, 
while the values for the threshold for breakdown in the channel 
and photoionization (fast mode) enabled are given in list form. 
Furthermore, simulation_runs specifies the number of similar 
simulations, only differing by random_seed . If random_seed
is null , then each input file is created with a random number as 
3

random_seed , and when a number is specified, a range of num-
ber is generated, in this case, the numbers 1 through 10. Note that 
random_seed refers to the seed number for initializing the ran-
dom number generator, not to the seeds within the ROI. However, 
a given random_seed does corresponds to a given initial posi-
tions of the seed anions. Defining fixed a random_seed for each 
simulation series makes it easier to see how a change in a given 
value affects the simulation, but for analyzing a larger assemble of 
simulations, it is usually preferable that the simulations are uncor-
related, i.e. have random initial anion placement.

Individual input files are created by running the cerman with 
the argument ci (create input) and specifying which file to ex-
pand with -f :

cerman ci -f <filename>

This command creates a number of new files by permutation of 
all lists in the given input file. The permutation of 10 random 
seeds, 10 applied voltages, 5 breakdown thresholds, and 2 modes 
for photoionization in Listing 1 results in 1000 files. By default, 
the random seed is expanded first, followed by the needle voltage, 
which is useful to consider when designing a simulation series. 
Choosing an appropriate number of values for these two para-
meters makes it easier to search for simulation files with given 
properties. When expanding the example in Listing 1, the least sig-
nificant digit ??X indicates random seed number, the second digit 
?X? indicates the needle voltage, while the most significant digit 
X?? indicates the threshold for breakdown in the streamer chan-
nel and whether photoionization is enabled or not.

The action pp (plot parameters) creates a matrix representa-
tion of the parameter variation in set of input files, and is used 
like

cerman pp -g <pattern>

The argument -g specifies the pattern to search (or “glob”) for, 
e.g. cmsim_?00.json . The files are plotted at the x-axis and the 
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Fig. 2. Visualization of the difference in parameter values between a selection of input files.
varied parameters on the y-axis, see Fig. 2 for an example output. 
The name of the output file is based on the first file in the pattern.

After ensuring that the input parameter values are as desired, 
simulations are run using

cerman sims -g <pattern> -m <no>

which creates a queue of all files matching the pattern, and simu-
lates a given number in parallel. For instance,
cerman sims -g "cmsim_?5?.json" -m 15 , simulates all 
input files with the same voltage, creating a queue where up to 15 
separate subprocesses each run one simulation. These python pro-
cesses are single threaded, and work best if numpy is limited to a 
single thread as well. Each simulation dumps the input parameters 
and progress information to a log file. For each simulation we then 
have a parameter file, a log file, and one or more save files. The 
files are named by extending the name of the master file, e.g.

cmsim.json # master file
cmsim_290.json # input parameters
cmsim_290.log # log file
cmsim_290_gp5.pkl # save file
cmsim_290_stat.pkl # save file

2.4. Evaluate results

The results are evaluated by parsing the data stored from one 
or more simulations. The input file, Listing 1, defines two “save 
specifications” as true , i.e. enabled, each defining various sim-
ulation data to be dumped to disk at given intervals or occa-
sions. The save_spec called stat saves iteration number, CPU 
time, simulation time, leading head z position, number of critical 
avalanches, and the position of each new streamer head, for every 
iteration. This enables evaluation of the shape of the streamer and 
its propagation speed. The save_spec called gp5 saves most of 
the data available, including the position of all the seeds (anions/-
electrons/avalanches), for every 5 percent of streamer propagation, 
i.e. a total of 20 times for a breakdown streamer. The data is saved 
using pickle and can be loaded to analyze a given iteration, a 
whole simulation, or by combining data from several simulations.

Evaluate iterations. Iteration data can be used to analyze the de-
tails of a simulation. This is particularly useful when evaluating the 
validity of the simulation parameters. Use for instance

cerman pi seedheads -r <start stop> -g <pattern>

where pi means “plot iteration” and seedheads is a scatter plot 
of avalanches and the streamer head configuration. The option -r
4

controls the range of iterations to plot. Figure 28 in [22] shows a 
number of such plots.

Evaluate simulations. Use ps for simulation plots. These are 
mainly plotted with the z-position in the gap on the y-axis. Plot-
ting the x- or y-position of streamer heads on the x-axis, using 
shadow , gives a “shadowgraphic” plot of the streamer:

cerman ps shadow -g <pattern> -o <options>

Similarly, plotting the propagation time on the x-axis is done in 
a streak plot (see Fig. 3). Options can be added to control the 
limits/extents of the plot, the figure size, the behavior of the leg-
end, redefining the axis labels, starting each plot with an offset, 
saving the plotted data to a JSON-file, and much more. Use help
to show available commands and options, for instance:

cerman help # for the main script
cerman ps help # for plot simulation
cerman ps shadow -o help # for shadow plot

Single simulation data may be of interest, but it is often better 
to compare several simulations in the same plot to visualize how 
the input parameters affect the results. The gp5 save requires a 
lot of disk space, but can be very useful in analyzing the data. For 
plotting the potential of each head, use

cerman ps headsestr -g <pattern> -o <options>

The current (active) heads of the streamer are selected, their po-
tential is scaled (electrostatic shielding, using a nnls-approach, 
cf. [22]), and then, the electric field at their position is calculated. 
However, the options can be used to specify the method for scaling 
and which positions to calculate the field for, e.g. at the position 
of each appended (new) streamer head. The electric field strength 
and electric potential are presented as scatter plots against the z-
position of each given position, as well as dashed line indicating 
the average value, see Fig. 4.

Evaluate a series of simulations. The difference in the simulated 
parameters can be visualized using pp and globing for the pkl -
files or log -files. An existing log -file indicates that a simulation 
was initiated. The command

cerman psr -g <pattern>

parses log files and plots the reasons why the simulations were 
terminated. An example of such a plot is shown in Fig. 5. This is a 
good way to verify that simulations have completed successfully.

When all simulations are completed and verified, parse all the 
save files and build a combined database of the results:
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Fig. 3. (left) Streak plots where “options” have been used to limit the x-axis and to show V , Ebd, and photoionization on the legend. (right) Shadow plots where each 
streamer is plotted with an offset and the legend is hidden. The legend is the same for both plots.

Fig. 4. The electric strength (left) and the electric potential (right) at the tip of each new streamer head. The streamer heads are sampled for every 5% of propagation. The 
“options” are used to control which streamer heads to use for the calculation and which positions to calculate for.

Fig. 5. Example, parsing the log files to visualize how simulations have terminated. “Unknown” implies that the simulation is not complete (ongoing or aborted).
5
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Fig. 6. Example, combination plots: (left) propagation speed using both markers and colors, and (right) propagation length for only a given value of one parameter with the 
other parameter colored.
cerman ca -g <pattern> -o mode=reload

The option reload forces files to be parsed, even if they already 
are in the database. When parsing the save files, a number of 
properties are extracted or calculated. Results such as propagation 
length (ls), average propagation speed (psa), inception time (ita), 
average jump distance (jda), simulation time (st), and computa-
tional time (ct) are saved in the database. The results are plotted 
by using

cerman pr <parameter> -f <file> -o <options>

The parameter gives the x-axis of the plot, for instance v (nee-
dle voltage). The results to plot is given through the option, 
e.g. -o ykeys=ls_psa . The software inspects the database of 
parsed save files for varied parameters and automatically create 
plots of all possible permutations using colors and markers. Fig. 6
shows a selection of such plots, where needle voltage is on the 
x-axis and the other parameters have been added automatically.

As illustrated, the software has been designed to facilitate simu-
lating and analyzing a large simulations series in a semi-automatic 
fashion. The individual simulations have their parameters defined 
in dedicated files, while the behavior of the cerman -script is de-
fined by command line arguments.

3. Model implementation

This section describes the implementation of our model [22–24]
in more detail. An overview of the model is already given in sec-
tion 1.3, and Fig. 1 is useful for understanding the principal setup, 
a needle–plane gap where electron avalanches grow from single 
electron seeds.

The electric field. The needle electrode and the streamer heads 
are modeled as hyperboloids. The Laplacian electric potential V i

and electric field E i from a streamer head i is calculated analyt-
ically in prolate spheroid coordinates [22]. For a position r, the 
electric potential V (r) and field E(r) is given by the superposition 
principle,

V (r) =
∑

i

ki V i(r) and E(r) =
∑

i

ki E i(r) , (1)

where the coefficients ki are introduced to account for electrostatic 
shielding. An optimization is performed such that the unshielded 
potential at the tip of any streamer head j equals the sum of all 
the shielded potentials at that position, V j(r j) = ∑

ki V i(r j) [22]. 
6

The needle and the extremities of the streamer, i.e. each electri-
cal hyperboloid, probably interacts to a greater extent than the 
method of superimposing and scaling the hyperboloids accounts 
for. To include such interactions or to calculate the full Poisson 
field requires a much greater computational effort. However, the 
applied method scales the potential at the very tip of each hyper-
boloid, to better estimate the Laplacian field in its vicinity.

Region of interest (ROI). The ROI is a cylindrical volume used to 
control the position of seeds, see Fig. 1. Note, the seeds in this 
respect include all anions, electrons, and even all avalanches. The 
number of seeds in a simulation is given by the specified density 
of seeds and the volume of the ROI. Initially, the seeds are placed 
at random positions within the ROI. When a seed falls behind the 
ROI, collides with the streamer, or creates a critical avalanche, it 
is removed and replaced by a new seed. The new seed is placed 
with a z-position one ROI-height closer to the plane, at a random 
xy-position (at a radius less than the ROI radius). The ROI vol-
ume is defined by a distance from the z-axis, and a given length 
above and below the leading streamer head, which is the part of 
the streamer closest to the planar electrode. When a new streamer 
head is created closer to the plane, the streamer propagates, and 
the ROI moves as well.

Anions, electrons, and electron avalanches. Each seed j is classified 
according to the electric field E j at its location:

E j ≥ Ec =⇒ avalanche , E j ≥ Ed =⇒ electron , or

E j < Ed =⇒ anion , (2)

where the avalanche threshold Ec and detachment threshold Ed

are given as input parameters. Seeds move in the electric field with 
a speed dependent on their mobility μ, which gives the distance 
the seed moves, �s = Eμ�t , for a time step �t . The number of 
electrons Ne in an electron avalanche, starting from a single elec-
tron, can be calculated by [22]

Ne = exp
∑

i

�siαi = exp
∑

i

Ei μe αm e−Eα/Ei �ti , (3)

where α is the avalanche growth, μe is the electron mobility, �t is 
the time step, and i is an iteration, whereas the avalanche growth 
parameters αm and Eα have been obtained from experiments [22]. 
In practice, however, we only calculate and store the exponent in 
(3), Q e = ln Ne,

Q e =
∑

�Q i =
∑

�siαi , (4)

i i
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for each electron avalanche. When a low-IP additive is present, α
is modified by adding a factor [22]

αi,add = αi(1 − xadd + xaddekα(Ib−Ia)) (5)

which is dependent on the mole fraction of the additive xadd, and 
the difference in IP between the base liquid Ib and the additive Ia

modified by a factor kα as prescribed by [30]. This is the default 
setting for the software. Another model for α given in [31] is also 
implemented:

αi,mod = 3eE2
α

Ib Ei
e
− Eα

Ei . (6)

This method is applied in Listing 1.
Expanding the streamer structure. According to the Townsend–

Meek criterion [32], streamer breakdown occurs when an ava-
lanche exceeds a critical number of electrons Nc = exp(Q c). When 
an avalanche obtains Q e > Q c, we place a new streamer head at 
its position [22]. The initial potential of a new streamer head is 
calculated by considering the capacitance and potential of the clos-
est existing streamer heads [23]. If adding the new head implies 
removing another head (see the paragraph below), the potential 
changes slightly, mimicking transfer of charge. However, if both the 
new and the present head stays, they share the “charge”, which 
gives a moderate reduction in the potential of both heads.

Optimizing the streamer structure. There are three criteria for re-
moving heads. A streamer head i is removed if

ν j(ri) < ν j(r j) or

ki < kc or
(
(|ri − r j| < dm) and (zi > z j)

)
, (7)

are satisfied for any other streamer head j [22]. The first condi-
tion checks whether the tip of one hyperbole (r i ) is inside another 
hyperbole, a collision (the ν-coordinate describes a hyperboloid, 
specifically the asymptotic angle). The second condition removes 
heads whose potential are to a high degree shielded by other 
heads (if the coefficient ki in (1) lower than a threshold kc ). The 
third condition checks whether two streamer heads are closer than 
dm and should be merged to a single head, where the one at the 
highest z-coordinate is removed.

Conduction and breakdown in the streamer channel. Conduction in 
the streamer channel increases the potential of each streamer head 
i each iteration,

�V i = V 0 − V i → V i = V 0 − �V i e−�t/τi . (8)

The time constant τi = RCτ0 (for a given head i) is calculated from 
the resistance R in the channel and the capacitance C towards the 
plane [23]

R ∝ � , and C ∝
(

ln
4z + 2rs

rs

)−1

, (9)

where � is the channel length (distance to the needle), rs is the 
tip curvature radius of the streamer head, and z is the z-position 
of the streamer head. As such, each streamer head is treated as 
an individual RC-circuit, e.g. the three streamer heads in Fig. 1
would each have an individual resistance (channel) as well as an 
individual capacitance towards the planar electrode. The capaci-
tance in (9) is based on a single hyperboloid above a grounded 
plane [23]. As such, superimposing each streamer branch would 
overestimate the capacitance of a branched streamer, and there-
fore this calculation is not performed within our simulations. In 
fact, we do not even calculate the absolute capacitance of individ-
ual branches, the capacitance of a streamer head is always kept as 
a measure relative to either the needle electrode or another part of 
7

the streamer. In addition to the calculation of ti in (8), the capac-
itance is used to determine the change in streamer head potential 
when the streamer propagates to new positions [23]. The linear re-
sistance in (9) is a simple model in comparison to models which 
also estimates expansion and relaxation within the channels, e.g. 
[11,14]. However, we also model breakdowns within the streamer 
channel, for which the resistance is greatly reduced. If the conduc-
tion is low, the potential difference �V i increases as the streamer 
propagates, and the electric field within the streamer channel 
Es = �V i/�i may increase as well. If Es exceeds a threshold Eb, 
a breakdown occurs, equalizing the potential of the streamer head 
and the needle, which is achieved by setting τi = 0 in (8) for the 
given iteration.

Photoionization. Photoionization is a possible mechanism for fast 
streamer propagation [33]. We have proposed a mechanism in 
which the propagation speed of a streamer increases if the liq-
uid cannot absorb radiation energy to excited states, as a result of 
a strong electric field reducing the ionization potential [24]. Since 
the full model, considering fluorescent radiation from the streamer 
head, and a field-dependent photoionization absorption cross sec-
tion, is computationally expensive, a simpler model is used in the 
simulations. Instead we calculate the field strength E w required to 
reduce the ionization potential below the energy of the fluores-
cent radiation. In each iteration, if the electric field E at the tip of 
a streamer head i exceeds the parameter E w , the head is moved a 
distance �si towards the planar electrode,

�si = −v w �t �(E(ri) − E w) ẑ , (10)

where v w is the photoionization speed, and � is the Heaviside 
step function. For more details on the entire model, see our previ-
ous work [22–24].

4. Current functionality and future prospects

The main function of the model and the software is to sim-
ulate streamers in a point–plane gap, using the Townsend–Meek 
criterion for propagation. The propagation criterion is met when 
electron avalanches obtain a given size. This model and the algo-
rithm are fixed, but there are several parameters which can be 
adjusted. Changing experiment features such as needle tip radius, 
gap size, voltage, liquid properties, or the parameters of the al-
gorithms, is straightforward. Proposals to extend the software to 
encompass new functionality is given in this section.

In [22] we explored the fundamental features of the model, 
i.e. a streamer consisting of charged hyperbolic streamer heads, 
and streamer growth by electron avalanches initiating from an-
ions. The model predicts several aspects of streamer propagation, 
and shows how they are linked towards the values of given in-
put parameters. The predicted propagation speed and the degree 
of branching were both lower than expected. We found how the 
speed was dependent mainly on the number of electron avalanches 
and their growth, while the branching was mainly related to how 
the streamer heads were configured and managed, which is mainly 
controlled by the parameters kc and dm in (7).

The electron avalanche model was calibrated to have streamer 
inception at 30 kV [22] according the propagation criterion given 
in [30]. However, the simulated streamers do not propagate far 
at this voltage, and potentials above 60 kV is required for a 
breakdown [22]. For small gaps, 3 mm to 10 mm, the inception 
of propagation streamers occurs between 14 kV to 36 kV, depend-
ing on how “propagation” is defined [30,34,35]. The higher end 
of these values can typically also give breakdown, whereas fast 
streamers can occur at voltages above 60 kV [35]. In larger gaps, 
50 mm to 77 mm, well above 100 kV is required for a breakdown, 
and the acceleration voltage is just 10 kV to 30 kV above that 
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[34,36]. The focus of our work has been on using correct values 
for our parameters, rather than, for instance, argue for an increase 
in nseed or μe to increase the speed of the simulated streamers.

When new streamer heads were added, their potential was 
set assuming a constant electric field within the channel, result-
ing in a moderate voltage drop between the needle electrode and 
the streamer head [22]. To better represent the dynamics of the 
streamer channel, an RC-model was developed [23]. In the RC-
model, the potential of new streamer heads is dependent of the 
potential of the closest existing streamer heads. If the conductance 
of the streamer channel is high, then the potential of the streamer 
head is kept close to that of the needle, giving results comparable 
to those without the RC-model. Conversely, having low conduction 
regulates the speed of the streamer, increasing the likelihood that 
more branches are able to propagate. Furthermore, the RC-model 
also allows for simulation of a breakdown within the streamer 
channel itself, which is likely what occurs during a re-illumination. 
This breakdown occurs when the electric field within the channel 
exceeds a given threshold.

The importance of photoionization during a streamer break-
down is unknown. We explored different aspects of photoioniza-
tion in [24], and implemented a model for change to a fast prop-
agating mode. Molecules excited by energetic processes, such as 
electron avalanches, can relax to a lower energy state by emitting 
radiation. We argued that fluorescent radiation can be important, 
and modeled how this radiation can cause ionization in high-field 
areas, since the high-field reduces the ionization potential. For in-
stance, for cyclohexane, we assume that radiation from the lowest 
electronically excited state (about 7 eV) can cause ionization when 
the local electric field is in the range 1.4 GV/m to 3.1 GV/m [24]. 
Molecular dissociation within the streamer and radiation from 
other molecules than the base molecules are interesting aspects 
of the streamer phenomenon, but are not considered in the cur-
rent model. Moreover, the energy available in form of radiation is 
unknown and difficult to quantify.

In the current implementation, a square wave voltage is ap-
plied to the needle at the beginning of the simulation. It is easy 
to change the behavior to a voltage ramp, from zero to max over a 
given time. This can be the basis for a study on streamer inception 
where other parameters such as needle size and the electron prop-
erties of the liquid are investigated as well. Simulating a dynamic 
voltage, such as a lightning impulse, requires some more work, but 
is also achievable.

We have focused on cyclohexane since many of its properties 
are well-known, but other non-polar insulating liquids can be stud-
ied by changing relevant parameters. The seed density nion is based 
on the low-field conductivity σ and electron mobility μe of the 
liquid, and the propagation speed scales linearly with both seed 
density nion and electron mobility μe. In [22], we calculated nion in 
the range 6 × 1011 m−3 to 6 × 1012 m−3, the lower value from the 
equilibrium generated by cosmic radiation, and the higher value 
from the ion mobility and the liquid conductivity. For simulations 
thereafter, nion = 2 × 1012 m−3 have been used. The electron av-
alanche growth parameters are also liquid-dependent, and Eα in 
particular has a big impact on the results [22]. Streamer para-
meters, such as conductivity of the streamer channel and streamer 
head radius, need to be reevaluated as well for other liquids. The 
properties of the streamer channel are also important to simulate 
the effects of external pressure, which mainly affects processes in 
the gaseous phase [37].

The effect of additives with a low ionization potential (IP) 
is modeled as causing an increase in electron avalanche growth 
[22,30]. Other additives can easily be used as long as the IP of 
both the base liquid and the additive are known. Low-IP addi-
tives are known to facilitate the propagation of slow streamers 
and to increase the acceleration voltage, possibly as a result of in-
8

creased branching [34], however the mechanisms involved are not 
known. It is possible that low-IP additives are sources of electrons 
that can initiate avalanches, produced for instance through pho-
toionization or fluctuations in the electric field. Such mechanisms 
can be added to the model and simulated, but will require some 
work. Furthermore, the mechanisms of added electron scavengers 
can also be interesting for further investigation, and particularly if 
negative streamers are to be simulated [30].

Our primary concern has been with positive streamers, since 
these are more likely to lead to a complete breakdown than neg-
ative streamers. The model relies on electrons detaching from an-
ions, moving towards regions where the field is higher, and then 
forming electron avalanches. The polarity of our model can eas-
ily be reversed, however, the electrons would then drift away and 
be unable to form avalanches. As such, a model for creation of 
new electrons is needed to simulate negative streamers with the 
software. Charge injection from the needle and the streamer can 
be one such mechanism [38]. Another option is to model electron 
generation (charge separation) in the high-field region surrounding 
the needle and the streamer. Such mechanisms are interesting for 
simulating positive streamers as well.

The hyperbole approximation simplifies the calculations of 
the electric field, both from the needle electrode and from the 
streamer heads. Other experimental geometries, such as plane–
needle–plane, or even more realistic real-life geometries can be 
implemented. The challenge is to set the correct shielding or scal-
ing of the streamer heads according to the influence of the ge-
ometry. Simpler geometric restrictions are easier to implement, for 
instance by manipulating the ROI. The streamer can be restricted 
to a tube by setting a low value for the maximum radius of the 
ROI. Another method is setting the “merge threshold” very high, 
such that the streamer is restricted to a single channel with a sin-
gle head, which can be representative for a streamer in a tube 
[39].

There are many mechanisms that can be added to investigate 
different methods of streamer propagation, for instance effects of 
Joule heating or electro-hydrodynamic cavitation [40]. There are 
also several parts of the existing model that can be improved. Bet-
ter calculation and balancing of charges and energy would greatly 
improve the model. For instance an electric network model where 
the streamer is consisting of several interconnected parts, in con-
trast to the current implementation where all the streamer heads 
are individually “connected” to the needle. Such an approach can 
give a better understanding of the charge flow in the different 
parts and branches of the streamer, as well as a better repre-
sentation of the electric field. Development towards a model for 
a space-charge limited field [41] can further improve the elec-
tric field representation, however, possibly at a high computational 
cost.

5. Summary

We present a software for simulating the propagation of posi-
tive streamers in a needle–plane gap insulated by a dielectric liq-
uid. The model is based on the Townsend–Meek criterion in which 
an electron avalanche has to obtain a given size for the streamer 
to propagate. The software was developed and used for simulating 
our models for electron avalanche growth [22], conductance and 
capacitance in the streamer channels [23], as well as photoion-
ization in front of the streamer [24]. From the examples on how 
to set up, run, and evaluate simulations, others can recreate our 
previous results or create their own set of simulations. Further-
more, the overview of the implementation and algorithm serves as 
a good starting point for others to change or extend the function-
ality of the software.
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Fig. 7. The simulation algorithm consists of initialization, a loop where the seeds and the streamer structure is updated, and then a finalization. In the loop, first the seeds 
(anions, electrons avalanches) are affected by the electric field, then the streamer structure is modified and this changes the electric field, finally the region of interest (ROI) 
is updated and the data from the iteration is evaluated. The loop concludes when one (of several) criterion is met, typically low propagation speed or reaching the opposing 
electrode. Details on each step are found in Appendix A.
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Appendix A. The algorithm

This section describes the algorithm used to implement the 
model in more detail, essentially each part of Fig. 7, while ref-
erencing relevant parts from section 3.
9

Initialize simulation. The simulation input parameters are read 
and used to initialize classes for code profiling, simulation logging, 
calculation of avalanche growth, the needle, the streamer, the re-
gion of interest (ROI), the seeds (anions, electron, avalanches), how 
to save data, and how to evaluate simulation data. The initiation 
of the log file includes dumping the input parameters to the file. 
Given the ROI volume and the seed density, a number of seeds is 
created and placed within the ROI at random positions. Then, the 
save files are initialized by dumping the initial data, mainly infor-
mation concerning the needle and the seeds.

Update seeds. The electric field E is calculated for each seed (ap-
plying (1)) and the seeds are classified as avalanches, electrons, 
and anions. All the avalanches move in the electric field and grow 
in size (see (3)). The procedure is repeated until an avalanche 
collides with a streamer head, an avalanche meets the Townsend–
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Meek criterion, or a total of NMSN repetitions has been performed. 
The “time” spent in this inner loop sets the time step for the cur-
rent iteration of the main simulation loop. Finally, all the electrons 
and anions are moved. The inner loop over just the avalanches 
saves significant computational time since the calculation of the 
electric field is the most expensive part of the computation and 
the avalanches are usually a small fraction of all the seeds.

Photoionization. The electric field at the tip of each streamer 
head is calculated and compared with the threshold for photoion-
ization. Each streamer head where E > E w is “moved” a distance 
v w�t towards z = 0. Moving implies creating a new head, setting 
the potential by “transferring charge”, and removing the old head.

Manage new heads. For each critical avalanche a new head is 
created. If the simulation time step is set sufficiently low, there is 
usually zero or just one new head. The new head is discarded if it 
satisfies any of the criteria in (7), however, if adding it will cause 
another to be removed (later), the new head is classified as “merg-
ing”. If none of the criteria in (7) is met by adding the new head, 
i.e. all heads are kept, then it is a “branching” head, since adding it 
is potentially the start of a new branch. The potential of “merging” 
is set by “charge transfer” from the closest head, while “branching” 
heads have their potential set by “sharing charge” with the closest 
head, where the latter method also modifies the potential of the 
existing head [23].

Manage streamer. The potential of each streamer head is relaxed 
towards the potential of the needle by applying (8). This step in-
creases the potential of the streamer head to the potential of the 
needle when a breakdown in the channel occurs. As mentioned 
above, the calculation of the electric field for the seeds is compu-
tationally expensive, and it actually scales with both the number of 
seeds and the number of streamer heads. It is therefore preferable 
to keep the number of heads to a minimum. Superfluous heads 
are trimmed according to the criteria in (7). Then, the electrostatic 
shielding is set for the trimmed structure.

Update ROI. Seeds that have moved behind the ROI, collided 
with the streamer, or lead to a critical avalanche are removed 
and replaced by a new seed. When a seed is replaced, the new 
seed is placed a distance, equal to the height of the ROI, closer to 
the plane, at a random xy-position within the ROI radius. If the 
streamer has moved closer to the plane, the ROI moves as well, 
and seeds behind the new position are replaced. If a streamer head 
is close to the edge of the ROI, the ROI expands towards the maxi-
mum radius. New seeds are created at random position within the 
expanded region.

Evaluate iteration. Iteration data is extracted from the various 
classes to be saved for later use. The data is used to evaluate 
whether any stop condition is fulfilled, and stored to dedicated 
classes. Which data to store and how often to sample the data 
is controlled by the user input. The saved data is dumped to a file 
at regular intervals to keep memory requirements of the program 
low. Information to monitor the progress is printed to the screen, 
at regular intervals. Finally, a number of temporary variables, rele-
vant only to the iteration is cleared, and the program is prepared 
for a new iteration.

Terminate? If none of the conditions for stopping a simulation 
are met, the next iteration is performed. These conditions include 
low streamer speed, streamer head close to the plane (breakdown), 
simulation time exceeded, computation time exceeded, and more. 
When a criterion is met, any unsaved data is dumped to disk, and 
a final logging to file and screen is performed, before the program 
terminates.

Appendix B. Parameters

The parameters for a simulation are supplied by the user in 
a JSON-formatted file (see Listing 1). A list of all important para-
10
meters is shown in Table 1. Most of the default parameter values 
were motivated, calculated, and/or tested for sensitivity in [22], 
whereas [23] and [24] introduced a some new parameters and jus-
tified their default values.

Experimental conditions. The potential, position and size of the 
needle are important parameters in an experiment. These para-
meters give the origin and the maximum potential of the streamer 
in the simulations. We have mostly dealt with streamers in small 
gaps dg = 3 mm to 10 mm at potentials V n = 30 kV to 150 kV 
[22–24], however, single-channel streamers in gaps up to 50 mm
have also been simulated [42]. The potential is perhaps the most 
important parameter of a simulation, and as such, great care 
should be taken when selecting its value. Higher potentials can, 
for instance, require a larger ROI and smaller time steps. More de-
tails follow below.

Seeds and avalanches. The creation and movement of seeds (an-
ions, electrons, and avalanches), as well as the growth of the 
avalanches, are controlled by the parameters of the liquid. We 
have based the simulations on cyclohexane as a model liquid since 
most of its properties are well-known [22]. The number of seeds 
in a simulation is given by the ROI volume and the seed density. 
The latter property is calculated from the low-field conductivity 
and the ion mobility, unless explicitly set by the user [22]. The 
remainder of the liquid parameters relates mainly to the thresh-
old for electron detachment, electron avalanche growth, and criti-
cal avalanche size, see (2) to (6). Further information on electron 
avalanches and their parameters is found in e.g. [22,30,31,43,44].

Streamer structure. The parameters for the streamer can be split 
in two groups. The first group controls creation of the streamer 
heads and how they are treated in relation to each other, whereas 
the second group is related to the RC-model, controlling the poten-
tial of the streamer heads and the electric field within the streamer 
channel. There is also the option to choose whether the electric 
field from the streamer, acting on the seeds, is calculated using 
32- or 64-bit precision. The latter requires about twice the time 
to compute. The tip radius of the streamer heads is chosen based 
on the inception of second-mode streamers [22], and this para-
meter is essential to calculate the electric field. In this respect, dm
and kc, see (7), are also important. The first one sets the minimum 
distance between two heads, and the latter, the minimum scaling 
of a head. A low dm allows for a fine-branched streamer, whereas 
higher values can suppress branching altogether. For higher poten-
tials, it makes sense to reduce kc, allowing more streamer heads 
to be kept during the simulation. The minimum potential differ-
ence between the needle and each streamer head is given by the 
field within the channel Es [22]. The difference can be larger if the 
conductance is low, however, it can be limited to a maximum by 
the value of Ebd [23]. It is also possible to change the way the re-
sistance and the capacitance is calculated, for instance as parallel 
plane or sphere capacitor, but this has insofar only been used to 
explore differences in outcomes. The time constant τ0 (in (8)) and 
Ebd are the actual main contributors of the RC-model and are of 
importance to the streamer breakdown simulations [23]. Further-
more, the parameters for photoionization are included in (10) to 
increase the speed when a given threshold field is exceeded [24].

Simulation algorithm. The parameters in the last section are 
mainly related to the simulation algorithm itself. The time step and 
the number of steps per loop, limiting the maximum movement 
of seeds, are essential for a good results. The random seed, used 
to initialize the random number engine, controls the initial place-
ment of seed anions. Choosing the same random number enables 
the study of, for instance, changing voltage with the same ini-
tial seed configuration. Conversely, not setting the random number 
makes the simulations uncorrelated, which is better for statistics. 
The size of the ROI decides how many seeds that are included in 
a simulation. For instance, an ROI of 10 mm3 in combination with 
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Table 1
Main parameters for simulation program. The experimental conditions specify an overvoltage applied to 
medium size needle–plane gap. The values of the physical parameters in seeds and avalanches and streamer 
structure are justified in our previous work [22–24]. Parameter values related to the simulation algorithm, or 
the model in general, have also been discussed in previous work. See further description in Appendix B.

Property Keyword Symbol Default

Experimental conditions
Distance from needle to plane gap_size dg 10 mm
Voltage applied to needle needle_voltage V n 100 kV
Needle tip radius needle_radius rn 6.0 μm

Seeds and avalanches
Seed number density seeds_cn nseeds 2 × 1012 /m3

Anion mobility liquid_mu_ion μion 0.30 mm2/Vs
Electron mobility liquid_mu_e μe 45 mm2/Vs
Liquid low-field conductivity liquid_sigma σion 0.20 pS/m
Electron detachment threshold liquid_Ed_ion Ed 1.0 MV/m
Growth calculation method alphakind – I2009
Critical avalanche threshold Q_crit Q c 23
Electron multiplication threshold liquid_Ec_ava Ec 0.2 GV/m
Electron scattering constant liquid_Ealpha Eα 1.9 GV/m
Max avalanche growth liquid_alphamax αm 130 μm−1

Additive IP diff. factor liquid_k1 kα 2.8 eV−1

Base liquid IP liquid_IP Ib 10.2 eV
Additive IP additive_IP Ia 7.1 eV
Additive mole fraction additive_cn xadd 0.00

Streamer structure
Streamer head tip radius streamer_head_radius rs 6.0 μm
Minimum field in streamer channel streamer_U_grad Es 2.0 kV/mm
Streamer head merge distance streamer_d_merge dm 25 μm
Electrostatic shielding threshold streamer_scale_tvl kc 0.20
Photoionization threshold field streamer_photo_efield E w 3.1 GV/m
Photoionization added speed streamer_photo_speed v w 20 km/s
Data type for field calculation efield_dtype – float32
RC-model time constant rc_tau0 τ0 1 μs
RC resistance model rc_resistance – linear
RC capacitance model rc_capacitance – hyperbole
RC breakdown field rc_breakdown Ebd 6 kV/mm

Simulation algorithm
Time step of avalanche movement time_step �t 1.0 ps
Max avalanche steps per iteration micro_step_no NMSN 100
Seed for random number generator random_seed – None
Number of similar simulations simulation_runs – 10
ROI – behind leading head roi_dz_above z+

ROI
1.0 mm

ROI – in front of leading head roi_dz_below z−
ROI

1.0 mm
ROI – radius from center roi_r_max rROI 3.0 mm
Stop – low streamer speed stop_speed_avg vmin 100 m/s
Stop – streamer close to plane stop_z_min zmin 50 μm
Stop – avalanche time stop_time_since_avalanche tava

max 100 ns
Sequential start number seq_start_no – 0
Enable profiling of code profiler_enabled – False
Interval – dump save data to file file_dump_interv – 500
Interval – display data on screen display_interv – 500
Level of logging to file log_level_file – 20
Level of logging to console log_level_console – 20
a seed density of 2 × 1012 /m3 results in 20 000 seeds generated, 
a size which is easily treated by most computers. The size of the 
ROI should depend on the magnitude of the electric field [22]. A 
streamer branch lagging behind the ROI will die, and the ROI ra-
dius gives the maximum lateral movement of the streamer. Finally, 
several parameters can be used to control how long a simulation 
will run, to prevent wasting computational time on uninterest-
ing simulations, and to stop a simulation if the streamer stops or 
reaches the other electrode. Additional parameters control how of-
ten information is logged, and how detailed the logging should be.

Appendix C. Example files

This appendix contains a number of examples of possible sim-
ulations. The files in Listings 2 to 5 are all included in the folder 
examples on GitHub [26].

Listing 2: The example file small_gap.json specifies a 
small gap and a range of voltages along with many parameter val-
11
ues equal to the defaults (cf. Table 1). Although all values used 
in a simulation are stored in the log, it is nice to be explicit in 
the input as well. By specifying 10 simulation_runs and 10 
voltages, a total of 100 simulations is created from this file. Each 
simulation initiated with the seeds at uncorrelated positions since 
random_seed is none .

Listing 3: The example file small_gap_mod.json builds on 
Listing 2, but a number of parameters are modified, notably the 
seed density and the electron avalanche parameters, as well as 
several parameters for the streamer. All data is stored every 5th 
percent of propagation by gp5 and every 100th nanosecond by 
ta07 . Storing the properties of tens of thousands of seeds en-
ables plotting of the development of seeds, but also requires a 
lot of disk space. Specifying streamer saves all the streamer 
heads every 0.1 percent of propagation and is used to evaluate 
the development of the streamer. Since random_seed is 1 and 
simulation_runs is 10, a range of random_seed from 1 
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Listing 2: The example file small_gap.json specifies simulations similar to the baseline studies in section 3.1 in [22].

Listing 3: The example file small_gap_mod.json specifies simulations similar to the attempts to facilitate branching in section 3.5 
in [22].

Listing 4: The example file rc.json specifies simulations similar to those performed in section 4 in [23].
12
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Listing 5: The example file pi.json specifies simulations similar to those performed in section 7 in [24].
through 10 is generated, giving the same 10 initial seed positions 
for each voltage.

Listing 4: The example file rc.json specifies the low and 
high conductivity within the streamer channel, and a range of 
threshold fields for electric breakdown in the streamer channel. 
The linspace-command is a convenient method for creating a 
list of values. By combining 2 values for the conductivity and 5 
values for breakdown with 10 values for the voltage, a total of 100 
simulations are created from this file.

Listing 5: The example file pi.json specifies electrical break-
down in the streamer channel, with and without photoionization 
enabled, the keyword user_comment does not affect the simu-
lations, but can be convenient to set. 600 input files are created 
when expanding this file (100 voltages, with and without pho-
toionization, for three different breakdown thresholds).
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