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Abstract—This paper presents a novel approach, based on the 

theory of hyperplanes, for mode identification of linear systems. 

The proposed approach can operate on either a set of ordinary 

differential equations (converted to diagonal form, if needed) or a 

set of partial fractions derived from a synthesized transfer 

function of the system under analysis. For either format, the 

linear system is structured to have as unknown variable a vector 

containing the residues. Singular value decomposition is initially 

used to identify an initial sparsity of the residue vector where the 

number of nonzero values corresponds to the pre-defined order 

of the dominant poles (eigenvalues) under search. An algorithm 

based on geometrical search of hyperplanes is used to optimize 

the selection of the nonzero residue locations, minimizing the 

residual of the zero residue hyperplanes. Finally, a recalculation 

of the residues is carried out by using the obtained optimal 

sparsity. 

 
Index Terms—Frequency-domain analysis, linear systems, 

reduced order systems, and singular value decomposition. 

I.  INTRODUCTION 

HE large number of components and apparatus being part 

of an electrical power network makes it desirable to have 

a methodology for its equivalent representation via a reduced-

order model [1]-[5]. The main desirable characteristics of such 

a methodology are: closeness of dynamic response to that of 

the original complete system, robustness, and ease of 

computer implementation.  

Also, the methodology should allow to identify dominant 

poles of the system to guarantee its fidelity from the 

controllability/observability point of view [6]. This 

corresponds to what is known in the literature as modal 

truncation or modal approximation [7]-[10]. Modal 

approximation basically decomposes a transfer function into a 

set of partial fractions retaining only those having their poles 

closest to the imaginary axis [8]. 

 Regarding model order reduction techniques, two of the 

widely used methods for linear time invariant (LTI) systems 

are balanced truncation and moment matching [11]-[16]. The 

former method yields reduced-order stable models with 
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uniform error bound. However, one of the main steps in such a 

technique is the calculation of the controllability and 

observability grammians, noting that for large systems such 

calculation is a major challenge due to its cubic computational 

complexity [1], [4]. The latter method has a lower 

computational complexity and is usually combined with 

numerically stable computation methods based on Krylov 

subspaces [13]. However, this technique lacks a uniform error 

bound since it matches moments at specific local frequency 

points only. In [16], a model order reduction technique based 

on dominant subspace projection is proposed; this technique 

provides a better approximation performance based on a new 

pair (A-1, A-1B) to form the Krylov subspace, compared to 

usage of the traditional pair (A, B). 

Regarding modal approximation, i.e., identification of 

dominant poles (eigenvalues) of a transfer function, a major 

contribution is the subspace accelerated dominant pole 

algorithm (SADPA) [8]. The SADPA performs an iterative 

Newton-type computation of eigentriplets consisting of 

eigenvalue and right and left eigenvectors via a set of initial 

pole estimates (shifts). SADPA is enhanced by applying 

subspace acceleration, dominant pole selection strategy, and 

deflation to avoid convergence to already found eigentriplets. 

The SADPA technique in [8] is also extended to the multi-

input multi-output (MIMO) case, i.e., SAMDP [9]. 

This paper proposes an alternative approach for dominant 

pole identification. The method is based on an initial selection 

of partial fractions provided by singular value decomposition 

(SVD) [17], followed by refinement using geometrical search 

of hyperplanes [18]. It is demonstrated that SVD initial 

selection does not always agree with dominant poles of the 

transfer function. Moreover, the residual given by non-chosen 

partial fractions should be minimum because closeness of the 

poles to the imaginary axis does not imply a dominant 

behavior of the frequency response. 

The proposed approach can indistinctly be applied to modal 

truncation and model order reduction. Its mathematics are 

much simpler than those in dominant subspace projection-

based methods mentioned above and curve-fitting methods, 

such as Vector Fitting [19], with comparable results. 

Sections II-IV present the evolution of the proposed 

technique. Section V presents some numerical results and 

comparison between the different stages of Section II-IV. 

Section VI concludes the paper. The mathematical details of 

the proposed approach are shown for the single-phase case. 

The extension to the MIMO case is straightforward. 

Dominant Modes Identification of Linear Systems 

via Geometrical Search 

Adam Semlyen, Life Fellow, IEEE, Abner Ramirez, Senior Member, IEEE, Bjørn Gustavsen, Fellow 

Member, IEEE, Reza Iravani, Fellow Member, IEEE  

T 

Authorized licensed use limited to: CINVESTAV. Downloaded on January 25,2021 at 16:24:13 UTC from IEEE Xplore.  Restrictions apply. 

"© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." 

This is the accepted version of an article published in IEEE Transactions on Power Delivery 
http://dx.doi.org/10.1109/TPWRD.2020.3038093 

mailto:iravani@ecf.utoronto.ca
mailto:adam.semlyen@utoronto.ca
mailto:bjorn.gustavsen@sintef.no
mailto:abner.ramirez@cinvestav.mx


0885-8977 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRD.2020.3038093, IEEE
Transactions on Power Delivery

 2 

II.  SVD INITIAL REDUCTION 

Consider the complete (full-order) LTI system of order N: 

 

 x Ax Bu= + , (1a) 

 Cxy = , (1b) 

 

where N NA  , 1NB  , and 1 NC  . Without loss of 

generality, the D term is omitted in (1b). 

The state space model (1) comes either from the 

constitutive differential equations of the network or from the 

rational approximation of a transfer function. In the former 

case, matrix A contains the poles and is already assumed in 

diagonal form, obtained by a transformation matrix. As for the 

second case, the diagonal matrix A contains the poles provided 

by a rational fitting tool such as Vector Fitting [19], vector C 

has as elements the corresponding residues, and vector B 

contains “ones”. In this case, the relation between the rational 

approximation of the transfer function and constitutive 

matrices/vectors in (1) is direct, as indicated in (2). The 

structure of system (A, B, C) for the multi-port case, as 

provided by VF, can be found in [20].  

 

 1

1

( ) ( )
N

k

kk

q
H j C sI A B

j a



−

=

= = −
−

 , (2) 

 

where ak taken from A corresponds to the kth pole and qk taken 

from the product between C and B corresponds to the kth 

residue. A dominant pole in (2) is a pole ak with corresponding 

residue qk such that | | / | Re( ) |k kq a  is large compared to 

other poles [8].  

By evaluating the central part of (2) for F frequencies and 

separating the real and imaginary parts, we obtain 

 

 v Wq= , (3) 

 

where 2 1Fv   contains the real and imaginary elements of 

H, 2F NW   is a matrix of coefficients, and qN1 

contains the real and imaginary parts of residues transformed 

into a single residue variable, qk, under a change of variable 

(Appendix A). This change of variable permits to halve the 

number of columns of matrix W. By applying SVD to W we 

obtain 

 
Tv U V q=  , (4a) 

or 

 
TV q g = , (4b) 

 

where g = UTv (T denotes transpose). Using only the r 

dominant singular values of W, system (4b) can be truncated 

to obtain a system of order r with r < N 

 

 T
r r rg V q= , (4c) 

 

where 1r
rg  , r r

r
  , and r N

rV  .  

The solution of the underdetermined system (4c) is a sparse 

vector q; this sparsity dictates the r partial fractions to be 

selected in (2) The sparsity of q is chosen such that the 

solution of the truncated system (4c) produces minimal error 

in the least squares sense, in this paper achieved by the use of 

Matlab’s backslash “\” operator [21]. This choice may 

however not result either in an optimal selection of the partial 

fractions (dominant poles) in (2), or a minimum value of the 

residual in (4d), as shown in later sections. 
 

 
T

N r N r N rV q g− − − − .       (4d) 

 

Although closeness of the poles to the imaginary axis 

indicates dominance over other poles, the minimum residual 

criterion has to be guaranteed for dominant behavior of 

frequency response (which is related to location of system’s 

resonances). This criterion can also be adopted for assessing 

accuracy of approximation between the original Nth order 

system and the one obtained via dominant pole identification. 

The number of frequencies and their distribution is still an 

open topic. Such number is associated to the phenomenon 

under analysis, the nature of the frequency-dependent network 

elements, among other factors. As for dynamic simulations, 

two points that must be satisfied are the Nyquist’s criterion, 

involving maximum frequency, and the frequency-domain 

resolution to precisely account for resonance peaks. The 

proposed approach gives the flexibility to select the number of 

samples and their distribution (linearly or logarithmically 

spaced). 

III.  OPTIMIZATION BY BRUTE FORCE APPROACH 

To obtain an optimal reference solution in terms of both 

pole dominance and minimum residual, we first introduce a 

brute force method which searches through all possible 

solutions. Assume that r dominant modes from a complete 

system of order N are going to be identified. We divide (4b) as 
 

   11 1

2 22

T

T
gV

q
gV

      =
        

, (5) 

 

with dimensions of Σ1 being equal to r. Equation (5) 

constitutes two independent matrix-vector equations, 

 

 1 1M q g= , (6a) 

 2 2M q g= . (6b) 

 

To obtain all possible sparsity patterns in q, a set of 

combinatorial numbers is generated. This set defines the r 

columns taken from M1 such that q of dimensions r×1 is 

obtained from 

 
1

1 1rq M g−= . (7a) 

 

For illustration purposes, assume that N = 7 and r = 2; then, 

the number of combinations of N positions taken r at a time, is 

given by !/ !( )!cn N r N r= −  which results for this example 

in 21 (! denotes factorial). For all q’s obtained from (7a) by 

applying the set of combinations, the residuals 2e  in (7b) 

are calculated (considering only the corresponding r columns 

in M2). The set of r columns taken from M1, yielding the 
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minimum residual, provides the optimal sparsity in terms of 

least squares error. 

 2 2 2re M q g= − . (7b) 

    

The brute force approach provides the optimum sparsity in 

the residue vector q which, in turn, provides the dominant 

poles under search with minimum residual. However, an 

obvious large number of combinations results for large 

systems, making this approach unfeasible. A better approach 

is presented next. 

IV.  OPTIMIZATION VIA GEOMETRICAL SEARCH 

A.  Hyperplanes Equations 

In the last part of the SVD reduction procedure (Section II), 

the residue vector q is forced to be sparse through the least 

squares solution provided by Matlab. This implies some 

arbitrariness which can result either in a non-optimal choice of 

partial fractions in (2) or in non-minimal residual in (4d). In 

the following we attempt to optimize the sparsity pattern of q. 

For the complete system, (3) is exactly satisfied for any 

residue vector qo, i.e., 

 0o oe Wq v= −  . (8) 

 

We choose an initial qo that corresponds to a vector of 

“ones”. Now, we apply SVD to (3), to obtain the new residual: 

 

  0T
oe V q g=  −  . (9) 

 

Partition of (9) gives 

 

 1 1 1 1 0T
oe V q g=  −  , (10a) 

 2 2 2 2 0T
oe V q g=  −  , (10b) 

 

where the dimensions of the system in (10a) correspond to the 

r desired dominant poles. Note that there exists the possibility 

of having very small singular values in Σ2, e.g., 10-8; those can 

be set to 10-8 to avoid numerical issues and without affecting 

accuracy in computation of dominant poles. Besides, the 

number of equations in (9) should be reasonably small as we 

perform a combinatorial optimization, as explained next. 

The objective is to calculate a new q, which is sparse, and 

satisfies: 

 1 1 1 1 0Te V q g=  − = , (11a) 

 22 22
minTe V q g= − = . (11b) 

Let us write  

 qqq o += . (12) 

 

Then, substituting for q from (12) into (11), taking (10) into 

account, gives 

 1 1 0TV q  = , (13a) 

 
2

2 2 minTV q  = . (13b) 

 

Expression (13a) is satisfied for any q in the range of V2 

(since V is orthonormal). Thus, we define 
 

 2q V z = , (14) 

 

where z is arbitrary at this stage. Then, substituting for Δq 

from (14) into (12), and accounting for (13b) gives 
 

 2oq q V z= + , (15) 

 
2

2
minz = . (16) 

 

Using a new variable 2y z=   we obtain 

 

 
1

2 2( )o oq q V y q By−= +  = + . (17) 

 

Expression (17) can be handled as a set of hyperplanes [18]. 

Note that, as q is sparse, one subset of equations in (17) is 

equal to zero.  

Sparsity of q is optimized via two alternative methods 

described in Sections IV.B and IV.C, respectively. Both 

methods identify dominant poles and are accompanied by 

evaluation of residual criterion of the final sparsity, as defined 

by (4d). 

B.  Geometrical Search Algorithm #1: Distance to the Origin 

Assuming an initial sparsity in q given by Matlab’s 

backslash “\” operator, the geometrical search algorithm 

(denoted hereafter to as GS1) consists of the following steps: 

• STEP 1. First, divide (17) into two groups, the lower one 

containing the non-zero residues, i.e., 2 0gq  , 

 

 
1 1 1

2 2 2

g og g

g og g

q q B
y

q q B
     

= +          
. (18) 

 

For illustration purposes, assume N = 7 and r = 2. Then, the 

sparsity of 1 2[ ]T
g gq q  is [0 0 0 0 0 ]T• •  with the dots 

indicating non-zero values. Second, calculate the distance to 

the origin of the intersection of planes from group one, given 

by 

 
1

1 1( )o g ogy B q−= − . (19) 

 

• STEP 2. Calculate distances to the origin of the planes 

from group two (see Fig. 1). 

 

 
2, 2,

2,

2,

g k og k

g k

g k

q q
y

B

−
= . (20) 

 

In this example, Bg2,k is the k-th row of matrix Bg2 with k = 

6, 7. 
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o

hyperplane #6

hyperplane #7

y
o

y
g2,6

y
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Fig. 1.  Initial distance to the origin, yo, and hyperplanes 6 and 7 for 

the initial iteration in the geometrical search algorithm. 

 

• STEP 3. The plane of group two which is closest to the 

origin is the candidate to be part of group one (pull-in). 

The remaining planes keep their current positions in group 

two (push-out). As graphical interpretation for our 

example, based on Fig. 1 plane 6 is pulled-in and plane 7 is 

pushed-out. 

• STEP 4. To find the candidate to replace the pulled-in 

plane in step 3 (plane 6), a sweeping procedure is applied 

to the planes in group one. This implies calculation of the 

following distances to the origin (yi) (using an expression 

similar to (20)): 
 

(7, 1): planes # 2, 3, 4, 5, 6 → y1 

(7, 2): planes # 1, 3, 4, 5, 6 → y2 

(7, 3): planes # 1, 2, 4, 5, 6 → y3 

(7, 4): planes # 1, 2, 3, 5, 6 → y4 

(7, 5): planes # 1, 2, 3, 4, 6 → y5 
 

where the first number in parenthesis represents the pushed-

out plane in step 3 and the second number corresponds to the 

plane candidate to be pushed-out. 

The candidate yielding the minimum distance to the origin, 

if such a distance is smaller than yo, is chosen. This distance 

becomes the new yo and we continue to step 5. Otherwise, 

most likely Matlab has given the right sparsity of q. 

Nevertheless, the computational algorithm is able to pull-in a 

different plane from group two and going back to step 3 in an 

iterative fashion. If none of the other planes give a distance 

smaller than yo, the final sparsity is taken as that given by 

Matlab and the algorithm ends. 

• STEP 5. Update the newly pushed-out planes. Assuming in 

the example that y5 was the minimum distance in step 4, 

plane 5 is pushed-out, thus the new sparsity of q becomes 

[0 0 0 0 0]T• •  and the updated hyperplanes are 

calculated as 

 2,5 2,5 2,5 5g og gq q B y= + , (21a) 

 2,6 2,6 2,6 5g og gq q B y= + . (21b) 

 

• STEP 6. Using the new sparsity of q and based on the new 

arrangement as in (18), go to step 2. 

C.  Geometrical Search Algorithm #2: Distance Between Two 

Planes 

The pull/push algorithm GS1, outlined in the previous 

section, may require a significant computing time for selecting 

the push-out plane, since that implies monitoring if a smallest 

norm is obtained. Below, we describe an alternative method 

(denoted hereafter to as GS2) which is substantially more 

efficient than GS1. 

First, (17) is scaled by the inverse of the norm of the rows 

of B, such that the resultant matrix P has all its rows with 

norm equal to 1. Then, by changing the sign of the resulting 

expression we get 

 0=+− Pyd . (22) 

 

Expression (22) represents a set of hyperplanes in the y-

space where the elements of d represent their distance to the 

origin. Finally, similar to (18), we split (22) into two groups 
 

 
1 1

2 2

0
0

g g

g g

d P
y

d P
−     + =   −      

. (23) 

  

The GS2 algorithm pulls in, into group 1 and from group 2, 

the plane with the smallest distance to the origin (say plane 

#6). The criterion of which plane to push-out (say plane #5) is: 

“The union of planes 5&6 is a hyperplane of order by-one-less 

than either plane 5 or plane 6 alone and its distance to the 

origin is D56. We choose plane 5 assuming that D56 is maximal 

(compared to all other choices)”. Appendix B shows that this 

distance is given by 

 56 56 56/D d s= . (24) 

 

In particular, s56 represents the sine of the angle between 

planes 5 and 6 and it is intuitively clear that the smaller the 

angle the larger the distance to the geometrical intersection of 

the two planes. 

D.  Further Residues Refinement 

The GS1 and GS2 algorithms outlined above can yield an 

optimized sparsity of the weighted residue vector q. As for 

dynamic simulation, a further improvement can be made by 

recalculating the values of the residues. This is done by 

keeping in a system of the form of (29) (Appendix A) the 

columns corresponding to the calculated sparsity. The final 

system is full-rank and can be accurately calculated. This 

process gives the final residues. 

E.  Model Order Reduction 

As mentioned in Section II, the original state space system 

(1) can be originated either from the network’s differential 

equations or from a rational approximation. Application of 

either GS1 or GS2 algorithm and residue refinement provides 

an r-order reduced state space system. This means, for 

instance, that one can utilize VF with an arbitrary 

approximation order N and then identify an r-order model with 

mode optimal sparsity guaranteed by GS1 or GS2. 

In fact, the reduced-order model has the possibility of being 

non-passive. If this is the case, a post-processing passivity 
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enforcement algorithm can be applied to the reduced-order 

system, such as the residue perturbation method in [22], its 

enhanced version in [23], or via a pole selective technique 

[24]. 

V.  NUMERICAL RESULTS 

A.  RLCG Case 

To introduce the proposed methods, the RLCG circuit of 

Fig. 2, with the transfer function 
 

1

2

1 1 2 2 2 2

1/1 /

/ ( / ) (1 ) /
input

o

L s G C
Y

R s R L L s R L G C s R G C

+
= + +

+ + + + +
 ,  (25) 

 

is analyzed in this Section. The three poles corresponding to 

(25), using the values in Fig. 2, are: 
 

Real:   −10 5 

Complex:  −5050 ± 8688.93j 

 

100oR = 

1 100R =  2 100R = 

1 1L mH=
2 10L mH=

410G mho−= 1C F=

inputY

 
Fig. 2.  RLCG circuit used as introductory example. 

 

The magnitude of the input admittance obtained by direct 

evaluation of (25) and its rational approximation via VF are 

presented in Fig. 3. In VF, 2048 samples are used and an 

arbitrary order of approximation of 10 is defined, yielding 

5×10 ̶18 as RMS approximation error. This arbitrarily chosen 

order can probably be selected by a common VF user, as no 

criterion exists so far for an optimal order. The poles by VF 

are arranged as complex followed by real poles (in ascending 

order in magnitude) and are listed in Table I where the ones 

corresponding to the analytical poles listed above are 

presented in bold-type. 

 

 
Fig. 3.  Admittance of the RLCG circuit and its approximation via 

VF. 
 

 

 

TABLE I 

POLES GIVEN BY VF APPROXIMATION 

Complex poles (×10 6) Real poles (×10 10) 

 ̶  0.005050 ± 0.008688j 

̶  0.516049 ± 1.633688j 

̶  2.418143 ± 1.606464j 

 

 ̶  0.00000066 

 ̶  0.00000999 

 ̶  0.00001000 

 ̶  7.97236069 

 

Setting r = 3, the (initial) sparsity given by applying SVD, 

as in Section II-A, is  0 0 0 0 0 0 0
T

• • • , where the 

dots indicate non-zero values. This sparsity indicates that the 

first pair of complex poles in Table I first column and the first 

real pole in Table I second column are selected. The pair of 

complex poles agree with the analytical one (−5050±8688.93j) 

but an incorrect real pole −0.66×10 4 is selected by SVD. 

The GS1 and GS2 schemes of Section IV are applied to this 

case study. These schemes provide the same sparsity, i.e., 

 0 0 0 0 0 0 0
T

• • • , which corresponds to the analytical 

poles, as can be verified in Table I. The brute force approach 

also provides the same sparsity as GS1 and GS2. Application 

of the dominant pole concept, given in Section II, to the set of 

10 partial fractions given by VF, results in the dominances 

listed in Table II. 
TABLE II 

DOMINANCE OF POLES GIVEN BY VF 

Dominance / Re( )k kq a  

0.011394 

0.011394 

0.000000 

0.000000 

0.000000 

0.000000 

0.000000 

0.000000 

0.010000 

     0.000000 

 

The three largest values of the list above correspond to the 

analytical poles (bold-type in Table II) and to the sparsity 

given by GS1, GS2, and brute force approaches. 

The residual metrics in (4d) is utilized in this paper. As for 

this example, the residuals given by SVD and GS1 (same for 

GS2 and brute force) are of 0.0702 and 2.47×10-11, 

respectively.  

Further experiments (not shown here) with distinct orders of 

approximation in VF yield sparsity corresponding to the 

analytical poles, as given by both GS1 and GS2. As an 

example, using N = 14, SVD provides positions (1, 2, 11) as 

non-zero elements with residual of 0.072 while GS1 and GS2 

approaches yield (1, 2, 13) positions corresponding to the 

analytical poles and residual of 2.3×10-15. The higher orders 

are not reported as VF gives many close-to-zero residues. For 

completeness of this example, the singular values previously 

obtained are presented in Fig. 4. 
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Fig. 4.  Singular values of the 10th order approximation of RLGC 

circuit. 
 

B.  Single-Phase System 

This case study involves a two-dimensional network for 

which a typical cell is depicted in Fig. 5 and extends to the 

right and downward. In that network, each of the horizontal 

and vertical branches consists of series R and L elements; at 

each node, a CG load is connected. The input is the voltage 

and the output is the current shown at the left-top corner of the 

grid. The seven ordinary differential equations (ODEs) for a 

single cell are given as an illustrative example in Appendix C. 

The total number of states for a 10-grid network (extending 

10 cells to the right and 10 cells downward) is 279 and is 

initially reduced to 4 states (resulting in 4 complex pairs of 

poles). The state space system is diagonalized and expressed 

into partial fractions form, as in (2). As the preliminary data 

treatment, partial fractions with very small residues (in 

absolute value < 10-10) are removed, yielding a 100 order from 

the original 279 poles. The 100-order is considered as the full-

order system. 

The magnitudes and phases of the full- and reduced-order 

transfer functions and the absolute error among them are 

presented in Fig. 6; these are obtained either with SVD, GS1, 

or GS2 approaches. As for the 50-order system (recalling that 

real and imaginary parts of residues are compacted under a 

change of variable), the resultant sparsity by SVD means that 

the elements of q, (15, 16, 22, 50), are non-zero values. The 

same sparsity is obtained via the brute force approach and by 

both the geometrical search algorithms GS1 and GS2. The 

residual in (4d) for all methods is of 0.0124. 

Table III lists the cpu-times of the four above mentioned 

approaches used for this example. Table III indicates that SVD 

and GS2 consume about the same cpu-time. The brute force 

approach requires sweeping among the nc = 230,300 

combinations to obtain the optimal combination. 

As the second experiment, the 10-grid network of order 100 

(partial fractions with very small residues already removed) is 

reduced to 18 states (18 complex pairs of poles). Verification 

with the brute force approach is not practically possible owing 

to the 1.8053×1013 combinations. Fig. 7 presents magnitude 

and absolute error of the 18-order approximation given by 

GS1. As a reference, Fig. 8 presents the pole map as given by 

the three methods. 
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Fig. 5.  Typical cell for the 2-D single-phase network. 

 

 
(a) 

 
(b) 

Fig. 6.  Transfer function and 4-order approximation, (a) magnitude 

and (b) absolute error. 

 

TABLE III 

CPU-TIMES 

 SVD Brute force GS1 GS2 

Cpu-time (s) 0.002 2.6 2.0 0.002 
 

The sparsities (non-zero positions in vector q of expression 

(3)) given by SVD, GS1, and GS2 are given in Table IV. It is 

observed from Table IV that sparsities among the three 

methods are partly distinct. To assess their accuracy, residuals 

are calculated via (4d) and listed in Table V. The GS1 

(distance to the origin) approach provides the smallest 

residual, although cpu-time is the largest, as seen in Table VI. 

GS2 yields a cpu-time comparable with SVD and with 

comparable residual as GS1.  
TABLE IV 

SPARSITIES 
 Sparsity 

SVD 14, 15, 16, 17, 19, 20, 22, 23, 26, 27, 29, 30, 35, 37, 38, 41, 45, 50 

GS1 12, 15, 16, 17, 19, 20, 22, 23, 26, 29, 30, 34, 35, 37, 38, 41, 46, 50 

GS2 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 29, 30, 35, 37, 38, 41, 45, 50 
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TABLE V 

RESIDUALS 

 SVD Brute 

force 

GS1 GS2 

Residual 1.064×10-3 --- 8.708×10-4 1.033×10-3 

TABLE VI 

CPU-TIMES 

 SVD Brute force GS1 GS2 

Cpu-time (s) 0.0038 --- 2.11 0.004 

 

 
(a) 

 
(b) 

Fig. 7.  Transfer function and 18-order approximation, (a) magnitude 

and (b) absolute error. 

 
Fig. 8.  Poles locations for 18-order approximation. 

C.  Three-Phase 469-Bus System 

This Section shows the capability of the methodologies 

based on hyperplanes theory to identify dominant poles of 

frequency dependent network equivalents (FDNEs). The 

system under analysis, taken from [25], is presented in Fig. 9. 

It consists of 469 nodes, 58 distributed parameters frequency-

dependent overhead lines, 280 RLC branches, 105 ideal 

transformer units, and 16 generators modeled as constant 

voltage sources behind RL impedances. The FDNE for the 

external zone (region outside the study zone) is calculated 

with 400 logarithmically-spaced frequency samples, resulting 

in a 15 × 15 × 400 input admittance matrix Y.  

An order of approximation of 130 is utilized in VF, 

resulting in a state space system of dimensions 1950 (three 

phases, five ports) with an RMS error of 2.8×10-5. It is noted 

that passivity enforcement is applied to the fitted admittance. 

Tables VII and VIII list the residuals and cpu-times, 

respectively, given by SVD, GS1, and GS2 approaches. An 

order of 40 is originally specified in SVD. For this specific 

case, GS1 yields the smallest residual but consumes the largest 

cpu-time (1 iteration required). On the other hand, GS2 (2 

iterations required) yields smaller residual than SVD while 

comparable cpu-time. 

Figure 10(a) presents the dominant poles identified by GS2 

only; Table IX lists their corresponding frequencies.  

To continue the application of GS-based techniques to 

model order reduction, a residue recalculation is applied based 

on the identified dominant poles via either the linear 

formulations (29) or (31) of Appendix A. The frequency 

domain spectra of elements (1, 1) and (1, 2) of the original 

input admittance matrix and those by the reduced-order via 

GS2 are presented in Figs. 10(b) and 10(c). The three 

identification methods provide 14 real poles and 26 pairs of 

complex poles. As for the GS2, the frequencies listed in Table 

IX agree with the main spikes of the frequency domain spectra 

of Figs. 10(b) and 10(c) (note that due to space limitations, not 

all elements are presented in this paper).  

 
TABLE VII 

RESIDUALS 

 SVD Brute force GS1 GS2 

Residual 0.1944 --- 0.1929 0.1939 

 

TABLE VIII 

CPU-TIMES 

 SVD Brute force GS1 GS2 

Cpu-time (s) 2.32 --- 1470.00 3.93 

 

TABLE IX 

FREQUENCIES OF COMPLEX POLES (HZ) BY GS2 

Frequency (Hz) 

307.15 

645.24 

1006.44 

1328.05 

1466.87 

1629.96 

2060.67 

 

 
(a) 
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(b) 

 
(c) 

Fig. 10.  469-bus three-phase system (a) pole map and (b) frequency 

domain spectra of original and reduced-order systems, element (1, 1) 

and (c) element (1, 2). 

D.  Comparison with Balanced Truncation Method 

In the previous Section, dominant poles identification is 

taken to the limit by defining a very small order, i.e., 40, from 

a 1950-order system. For comparison purposes, the balanced 

truncation method, chosen due to its uniform error bound and 

well-defined approximation errors [11], is applied to the 

network in Fig. 9. Details of implementation of the balanced 

truncation method in Matlab environment can be found in 

[26]. 

The approximation results, including residue refinement, by 

the balanced truncation method (labeled as BT) corresponding 

to Figs. 10(b) and 10(c) are presented in Figs. 11(a) and 11(b),  

 

 

respectively (absolute errors not shown). The cpu-time taken 

by balanced truncation is of 31 s. It is observed from Figs. 

11(a) and 11(b) a poor agreement between the original spectra 

and their approximation. This poor agreement can be 

attributed to the very small order chosen for reduction, as 

confirmed by the singular values provided by the balanced 

truncation technique and presented in Fig. 11(c). The first and 

40th Hankel singular values, σ, have magnitudes of 1.058 and 

0.043, respectively, giving a ratio of 0.041. The closeness 

between the full and truncated systems, which can be 

evaluated with (26), is equal to 0.085 which is highly 

correlated with the ratio of 0.041 [11], [12]. Note that if closer 

approximation is desired, we must truncate to a higher number 

of singular values, as shown in Fig. 11(c), increasing the order 

of approximation. Finally, the eigenvalues of the state matrix 

corresponding to reduced-order system are listed in Table X, 

showing that not all principal spikes in the spectra are 

identified and confirmed by the approximations in Figs. 11(a) 

and 11(b). 

 

1/2

2 2

1 1

N r

r i i

i r i

E  
= + =

 
=  

 
  . (26) 

 

 
(a) 

Fig. 9.  469-bus three-phase system, taken from [25]. 
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(b) 

 
(c) 

Fig. 11.  Balanced truncation method applied to 469-bus three-phase 

system (a) frequency domain spectra of original and reduced-order 

systems, element (1, 1) and (b) element (1, 2), and (c) Hankel 

singular values. 
 

TABLE X 

FREQUENCIES OF COMPLEX POLES (HZ) BY BALANCED TRUNCATION 

Frequency (Hz) 

8.71 

995.13 

1014.53 

1264.83 

1297.68 

1644.87 

1653.85 

VI.  CONCLUSIONS 

The topic of dominant pole identification is addressed in 

this paper by singular value decomposition followed by two 

alternative methods based on geometrical search of 

hyperplanes. It is observed that the two techniques (GS1, GS2) 

based on hyperplanes provide an optimized pole identification 

in cases where SVD does not. The computation time of GS2 is 

similar to that of the initial SVD calculation, thereby offering 

an optimization refinement at little additional cost.  

APPENDIX A 

Consider the transfer function in (2) with m complex poles 

and n real poles, 

  
1 1

( )
m n

kk

k kk k

yx
H j

j a j b


 = =

= +
− −

  . (27) 

 

Evaluating (27) for F frequencies, 
 

 

11

1 1 1 1 1 1

1

1 1

( )1 1 1 1

1 1 1 1

( )

m n
m

F F m F F n
n F

H jx

j a j a j p j p
x
y

j a j a j p j p y H j


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   
   − − − −
    =    
   

− − − −        

. (28) 

 

By separating real and imaginary parts in (28) we have, 

 

1

1
1

( )

( )
( )

( )

r
r

r i r
i

r F

ir i i

i F

H j
x

A A C
x

H j
H jB B C

y

H j








 
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     =    
           

, (29) 

where: 

 2 2 2 2
1 1

1 1

( ) ( )
r r

r i r i

A a
a a a a 

 
= − + + − + + 

, 
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i

r i r i

a a
A
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 

 
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r
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B
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 2 2 2 2
1 1

1 1

( ) ( )
i r

r i r i

B a
a a a a 

 
= − − + − + + 

, 

 

 
2 2

1

r

b
C

p 
= −

+
,     

1

2 2
1

iC
p




= −

+
.  

 In (29), subscripts r and i represent the real and imaginary 

parts, respectively. The same notation holds for poles, 

residues, and H. 

To reduce dimensions in (29), a change of variable is 

applied to both real and imaginary parts of the complex 

residues as follows: 
 

     ( )r r
r i r i r r i i

i i

x u
A A A A w A u Au w

x u
   = = +
      

. (30) 

A similar change of variable is applied to real residues. 

Thus, we finally obtain 

 

1 1

/2
'
1 1

'

( )

( )
( )

( )

r

r r i i r

m r F

ir r i i i

i Fn

w H j
A u Au C v

w H j
w H jB u B u C v

H jw








   
 +   
     =    +
     
     

. (31) 

Note that (31) has half columns compared with (29). 

Finally, (31) becomes (3). 

APPENDIX B 

Since P is a normalized version of B, we have: 
 

 1 2 2 1 56cos( )T T
g g g gP P P P c= = = , (32) 

so that 

 56 56sin( ) 1s c = = − . (33) 

It can be shown that 
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 2 2
56 5 56 5 6 62d d c d d d= + + , (34) 

 

where d5 and d6 are calculated with (20). 

APPENDIX C 

A typical cell of the network is shown in Fig. 5. This cell 

can be repeated to the right and below to form a larger 

network. The system of ODEs obtained for one cell is 
 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

/ 0 0 1/ 0 0 1/ 0
0 / 0 0 1/ 1/ 0 0
0 0 / 0 1/ 0 1/ 0

1/ 0 0 / 0 0 0 1/
0 1/ 1/ 0 / 0 0 0
0 1/ 0 0 0 / 0 1/

1/ 0 1/ 0 0 0 / 0

G C C Cx x
G C C Cx x

G C C Cx x
x xL R L L
x xL L R L
x xL R L L
x xL L R L

− −     
− −     

  −   
 = +   − −
    − −
    − −
    − −     

u





 
 
 
 



. (35) 

ACKNOWLEDGMENT 

 This work was originated based on discussions with Adam 

Semlyen, Professor Emeritus at the University of Toronto. The 

co-authors would like to dedicate this work to Prof. Semlyen 

in appreciation of his contributions and mentorship in the field 

of power systems analysis. 

REFERENCES 

[1] A.C. Antoulas, Approximation of Large-Scale Dynamical Systems, 

series on Advances in Design and Control, SIAM, USA, 2005. 

[2] U.D. Annakkage, N.K.C. Nair, Y. Liang, A.M. Gole, V. Dinavahi, B. 
Gustavsen, T. Noda, H. Ghasemi, A. Monti, M. Matar, R. Iravani, and 

J.A. Martinez, “Dynamic system equivalents: A survey of available 

techniques,” IEEE Trans. Power Del., vol. 27, no. 1, pp. 411-420, 
Jan. 2012. 

[3] P. Benner, V. Mehrmann and D.C. Sorensen. Dimension Reduction 
of Large-Scale Systems. Lecture Notes in Computational Science and 

Engineering, vol. 45, Springer-Verlag, Jun. 2005. 

[4] W.H.A. Schilders, H.A. van der Vorst, and J. Rommes, Model Order 
Reduction: Theory, Research Aspects and Applications, vol. 13, 

Springer, Berlin, 2008. 

[5] P. Vorobev, P. Huang, M. Al Hosani, J. L. Kirtley and K. Turitsyn, 
“High-fidelity model order reduction for microgrids stability 

assessment,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 

874-887, Jan. 2018. 
[6] J.R. Smith, J.F. Hauer, and D.J. Trudnowski, “Transfer function 

identification in power system applications,” IEEE Trans. on Power 

Systems, vol. 8, no. 3, pp. 1282-1290, Aug. 1993. 
[7] N. Martins and P.E.M. Quintao, “Computing dominant poles of 

power system multivariable transfer functions,” IEEE Trans. on 

Power Systems, vol. 18, no. 1, pp. 152-159, Feb. 2003. 
[8] J. Rommes and N. Martins, “Efficient computation of transfer 

function dominant poles using subspace acceleration,” IEEE Trans. 

on Power Systems, vol. 21, no. 3, pp. 1218-1226, Aug. 2006. 
[9] J. Rommes and N. Martins, “Efficient computation of multivariable 

transfer function dominant poles using subspace acceleration,” IEEE 

Trans. on Power Systems, vol. 21, no. 4, pp. 1471-1483, Nov. 2006. 
[10] A. Lopez and A.R. Messina, “An optimal modal approximation 

method for model reduction of linear power system models,” Int. J. 

Electrical Power and Energy Systems, vol. 44, no. 1, pp. 293-300, 
Jan. 2013. 

[11] B. Moore, “Principal component analysis in linear systems: 

Controllability, observability, and model reduction,” IEEE Trans. 
Autom. Control, vol. AC-26, no. 1, pp. 17-32, Feb. 1981. 

[12] A. Ramirez, A. Mehrizi-Sani, D. Hussein, M. Matar, M. Abdel-

Rahman, J. Jesus Chavez, A. Davoudi, and S. Kamalasadan, 
“Application of balanced realizations for model-order reduction of 

dynamic power system equivalents,” IEEE Trans. Power Del., vol. 

31, no. 5, pp. 2304-2312, Oct. 2016. 

[13] G. Troullinos and J.F. Dorsey, “Application of balanced realizations 
to power system equivalents,” IEEE Trans. Autom. Control, vol. AC-

30, no. 4, pp. 414-416, Apr. 1985. 

[14] J. Liesen and Z. Strakos, Krylov Subspace Methods: Principles and 
Analysis. Oxford University Press, 2013. 

[15] Z. Zhu, G. Geng, and Q. Jiang, “Power system dynamic model 

reduction based on extended Krylov subspace method,” IEEE Trans. 
Power Syst., vol. 31, no. 6, pp. 4483–4494, January 2016.  

[16]    G. Shi and C.J.R. Shi, “Model-Order Reduction by Dominant 

Subspace Projection: Error Bound, Subspace Computation, and 
Circuit Applications”, IEEE Trans. on Circuits and Systems –I: 

Regular Papers, vol. 52, no. 5, pp. 975-993, May 2005. 

[17]      V.C. Klema and A.J. Laub, “The singular value decomposition: Its 
computation and some applications,” IEEE Trans. on Automatic 

Control, vol. AC-25, no. 2, pp. 164-176, April 1980. 

[18]     A. Bjorck, Numerical Methods in Matrix Computations, Springer, 
Switzerland, 2015. 

[19] B. Gustavsen and A. Semlyen, “Rational approximation of frequency 

domain responses by vector fitting,” IEEE Transactions on Power 
Delivery, vol. 14, no. 3, pp. 1052-1061, July 1999. 

[20] B. Gustavsen and A. Semlyen, “A robust approach for system 

identification in the frequency domain,” IEEE Transactions on Power 
Delivery, vol. 19, no. 3, pp. 1167-1173, July 2004. 

[21] The MathWorks, Inc. Matlab v. R2019b, USA.  

[22] B. Gustavsen and A. Semlyen, “Enforcing passivity for admittance 
matrices approximated by rational functions”, IEEE Trans. on Power 

Systems, vol. 16, no. 1, pp. 97-104, Feb. 2001. 
[23] B. Gustavsen, “Passivity enforcement by residue perturbation via 

constrained non-negative least squares,” IEEE Trans. on Power 

Delivery, early access, doi: 10.1109/TPWRD.2020.3026385 
[24] E. Medina, A. Ramirez, J. Morales, and K. Sheshyekani, “Passivity 

enforcement of FDNEs via perturbation of singularity test matrix,” 

IEEE Trans. on Power Delivery, vol. 35, no. 4, pp. 1648-1655, Aug. 
2020. 

[25] J. Morales, J. Mahseredjian, A. Ramirez, K. Sheshyekani and I. 

Kocar, “A Loewner/MPM–VF combined rational fitting approach,” 
IEEE Trans. on Power Delivery, vol. 35, no. 2, pp. 802-802, Apr. 

2020. 

[26] A. Ramirez, Vector fitting-based calculation of frequency-dependent 
network equivalents by frequency partitioning and model-order 

reduction,” IEEE Trans. Power Del., vol. 24, no. 1, pp. 410–415, Jan. 

2009. 

Authorized licensed use limited to: CINVESTAV. Downloaded on January 25,2021 at 16:24:13 UTC from IEEE Xplore.  Restrictions apply. 

"© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." 

This is the accepted version of an article published in IEEE Transactions on Power Delivery 
http://dx.doi.org/10.1109/TPWRD.2020.3038093 

https://doi-org.access.biblioteca.cinvestav.mx/10.1109/TPWRD.2020.3026385



