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1 Introduction

Operating a wind power plant (WPP) in the future will aim to maximise the revenue rather than
maximising the power production. The reduction of structural loading and actuator wear and the
provision of ancillary services will become more important in this context. There is a need for plant
control strategies that trade these control objectives while respecting the existing industrial practice,
where the different levels in the hierarchy may be provided by different equipment vendors.

This report establishes a baseline, hierarchical wind power plant controller for the TotalControl
project: “baseline”, because the controller relies only on standard sensors associated with existing
SCADA (Supervisory Control And Data Acquisition) systems; and “hierarchical”, because the plant
controller is subservient to the individual turbines’ controllers. The turbine-level controllers have
complete command over the actuators (generator power, blade pitch, nacelle yaw), and provide the
supervisory functions and limits needed for safe operation of the turbines. The interface between the
plant and turbine controllers is limited to an active power command1 sent from the plant to each
turbine, and sensor measurements returned from the turbines to the plant.

The design of a control system can be split into, first, the specification of control objectives and
requirements, and afterwards, the synthesis of a control architecture that fulfils the objectives. We
have followed this approach, with Section 2 describing the specifications and Section 3 the synthesis.
In short, the objective of the plant controller is to track an operator power command while providing
coordinated active load control, reducing the severity of loading on the turbines in a “smart” way. It
was found that a simple control law will suffice; but some rather sophisticated state estimation is needed
in order to estimate the severity of loading on each turbine, based on limited sensor measurements.
Section 4 describes the development of a state observer providing the required load metrics.

The performance of the plant controller is demonstrated in Section 5, for operation of the TotalCon-
trol Reference Wind Power Plant under curtailment – that is, the operator has provided a power
command that lies under the maximum possible production, given the present wind conditions. The
analysis is based on the electromechanical model of TotalControl D1-5 (STAS, Merz et al. 2019), to
which the plant controller has been linked. It is found that there is a meaningful synergy in coordin-
ating the control of the turbines in a large wind power plant: loads can be reduced on those turbines
that need it the most, without excessively burdening the other turbines, and while still providing
accurate plant-wide power tracking.

2 Control objectives, requirements, and design philosophy

The primary objective of the wind plant controller is to deliver the demanded active power ̂𝑃PCC at
the point of common coupling (PCC) with the electric grid. The actual power must accurately track
the command on a timescale of seconds, in order that the wind plant can provide primary frequency
support. The secondary objective of the wind plant controller – to be considered only after the primary
objective is satisfied – is to reduce the levels of loading and fatigue in the turbines.

The design of the baseline plant controller is subject to the following requirements:

1. There is a standard interface, described in Section 2.1, between the plant controller and its sur-
roundings. Only standard SCADA sensor measurements are available: no direct measurements
of strains or internal loads, no lidars measuring atmospheric flow, no ocean wave radar.

2. The plant controller does not include an embedded model of atmospheric flow or turbine wakes.
Such models would increase the complexity of the controller beyond what is reasonable to expect
for a “baseline” design.

1We shall not consider reactive power (voltage) control, nor coordinated nacelle yaw control, in the baseline controller.
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3. The control hierarchy must be obeyed. The turbine controller has authority over the turbine’s
actuators, and the turbine controller is a “black box” from the perspective of the plant controller:
the plant controller sees only the interface variables, not the internal architecture and states of
the turbine controller. Because of this, it might be more appropriate to think of the command,
sent from the plant controller to a turbine, as a request: it is not necessarily delivered, and the
plant controller must be able to adapt.

4. The plant controller must be of a type that the small-signal stability properties can be com-
puted explicitly. The implication is that a state-space model of the plant controller can be
linearized about a given steady-state operating point. This rules out certain features like hys-
teretic frequency-exclusion bands. The motivation for this restriction is to be able to study
the dynamics and stability of large electric grids, to which the wind plant is connected, using
eigenmodes and frequency-domain analysis.

2.1 Interface between the plant controller and other subsystems

A sketch of the closed-loop system, encompassing the wind plant and its surroundings, is shown in
Fig. 1. What is important here is the definition of the interface variables passed between the blocks;
Table I. In the view presented in Fig. 1, which is one of a number of possible ways to categorize the
system,

• the wind plant consists of the wind turbines, local vortex wakes with induced velocity, collection
grid, and electrical transmission system to the point of common coupling with the main electric
grid;

• the atmosphere consists of the surrounding flow that mixes with the turbine wakes upon breakup
of their vortical structure; and,

• the electric grid here refers to the regional grid to which the wind plant is connected.

Then, the wind plant passes to the atmosphere the induced velocity V𝑖 caused by the vortical wake
of each turbine, and receives in return the effective wind velocity V approaching each wind turbine.2
The wind plant delivers a three-phase electrical current waveform i𝜃

PCC (in the 𝑑-𝑞 frame labelled 𝜃)
to the PCC bus, while the grid provides the bus voltage v𝜃

PCC.
Consistent with the objectives of the present wind plant controller, it is assumed that only standard

sensor measurements are available. From the electric grid, the plant controller receives the measured
current 𝑖𝑖𝑖𝜃

PCC and voltage 𝑣𝑣𝑣𝜃
PCC. Although wind field measurements V are indicated in Fig. 1, these

would require non-standard sensors and are not presently implemented. Rather, an estimate of the
local wind speed at each turbine is available as part of the state observer of Section 4. The plant
controller receives a large set of data from the wind plant, namely the sensors associated with the
SCADA system mounted on each wind turbine. These provide measurements of the current and
voltage waveforms, 𝑖𝑖𝑖𝜃

𝑠 and 𝑣𝑣𝑣𝜃
𝑠, at the transformer high-voltage terminals; the rotor speed Ω; the

collective blade pitch 𝛽; the nacelle yaw angle 𝜒; the absolute nacelle velocity v𝑔
𝑛, measured by an

inertial measurement unit; the anemometer wind speed 𝑉 𝑎; and the anemometer wind angle 𝜃𝑎.
The wind plant controller provides active and reactive power ( ̂𝑃 and �̂�) and yaw angle (�̂�) set-

point commands to each wind turbine. The wind turbine controller implements the power commands,
if possible, through coordinated control of its generator (typically via a power converter) and blade
pitch. This delegation of responsibility respects the hierarchy of control and safety functions in the

2This view is most natural if the induced velocity is computed using a blade element momentum type method. If
CFD is used to resolve the wake, local induction, and aerodynamic forces, then the interface would be the motions of
the blades. There also exist lower-resolution CFD approaches landing somewhere in between these two bounding cases:
the interface could also be drawn at the local aerodynamic forces, for instance.
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Figure 1: A high-level block diagram of a wind power plant and its surroundings, showing the interface variables.

Inputs
̂𝑃𝑃𝐶𝐶 Active power demand at PCC

�̂�𝑃𝐶𝐶 Reactive power demand at PCC
𝐸 A metric representing the present electricity price

𝑖𝑖𝑖𝜃
PCC Measured current at PCC

𝑣𝑣𝑣𝜃
PCC Measured voltage at PCC
𝑖𝑖𝑖𝜃
𝑠 Measured 𝑑-𝑞 current at the turbine transformer terminals

𝑣𝑣𝑣𝜃
𝑠 Measured 𝑑-𝑞 voltage at the turbine transformer terminals
Ω Measured rotor speed
𝛽 Measured collective blade pitch
𝜒 Measured yaw angle
v𝑔

𝑛 Measured nacelle velocity in the global frame
𝑉 Anemeometer wind speed
𝜃𝑎 Anemeometer wind direction

Outputs
̂𝑃 Active power command

�̂� Reactive power command
�̂� Nacelle yaw command
𝜆 Flags setting the operating mode

Table I: General interface variables available to the control law. The second block of inputs, as well as the
outputs, are repeated for each wind turbine in the plant.
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Figure 2: Active load control, illustrated on a spectrum of tower bending moments. The dashed lines indicate
the original spectrum, with no active load control. (a): rejection of low-frequency aerodynamic loads. (b):
rejection of wave loads. (c): active damping of resonance.

plant. In addition to power and yaw commands, a wild-card variable labelled λλλ is shown in Fig. 1; the
thought is that this may contain flags to set the turbines’ operating mode, if the turbine controller
allows for this.

2.2 Active load control and its limitations

There are different types of active load control, and the plant controller cannot provide all of them.
It is useful to classify the types of active load control along the lines of Merz and Pedersen (2018, pp
148-149):

The wind turbine responds to the applied environmental loads. We can distinguish between
three types of responses. The first is the response to the applied loads that would be
encountered during steady-state operation in a uniform, constant wind, and ocean currents.
These loads include the thrust and torque associated with extracting energy from the wind,
and the unavoidable gravity cycles in rotating components. The second category consists
of the response to fluctuations and nonuniformities in the environment – turbulence, wind
shear, and ocean waves – at frequencies which are not near resonance. The dynamic
amplification is low, and the response is concentrated at frequencies associated with peaks
in the applied loads. The third type of response is resonance. The dynamic amplification
is high at particular resonant frequencies. A small amount of energy in the environmental
loads at these frequencies may trigger a large response…
We define the control objectives of load reduction as a strategy which reduces the steady-
state loads on the turbine; load rejection as counteracting fluctuations in the applied loads,
usually (though not necessarily) at frequencies away from resonance; and active damping
as counteracting the response at poorly-damped resonance frequencies.

Through intelligently tailored power commands, a plant controller can contribute to load reduction,
and the rejection of low-frequency aerodynamic loads. Consider a spectrum of internal bending mo-
ments in the tower, like that shown in Fig. 2. This shows two instances of load rejection, (a) rejecting
turbulent wind and (b) ocean waves; and one instance of active damping, at the first tower resonant
frequency. The plant controller could conceivably contribute to (a), but not (b) or (c).

2.3 Desired response characteristics

Figure 3 shows the desired trends in the response under different combinations of power-tracking and
load-tracking errors; here it is assumed that the load is the rotor thrust 𝐹𝑇 . In essence, the nominal
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Figure 3: Sketches of the desired response characteristics of the commanded power ̂𝑃 under different combina-
tions of power-tracking 𝜆𝜖𝑃 and thrust-tracking 𝑃( ̂𝐹𝑇 ) errors.

power level is set by the thrust-tracking function. Then, a correction with integral action is added
based on the turbine’s share of the plant-wide power error, 𝜆𝜀𝑃 . Note in particular how power-tracking
takes precedence; that is, under a sustained error in the target thrust, the thrust-tracking controller
must not overwhelm the offset dictated by the power-tracking controller.

2.4 Design philosophy

Before proceeding, it might be worth adding a few words about the philosophy used in designing the
control architecture. In addition to the objectives, requirements, and limitations mentioned above,
we wanted the control law to be simple. This makes it understandable and accessible: useful as a
baseline for comparison against more advanced algorithms. Being simple makes the control law useful
for other types of studies, such as the grid integration of wind power plants, or wind turbine loads
when operating in coordination with other turbines: studies, in other words, which require a good
wind plant controller, but whose emphasis is not the controller itself.

Drawing inspiration from Madjidian (2016), we came upon the idea of parallel control loops: one
loop provides the “ideal” active load control for each turbine, and the other provides a correction to
the power set-point, ensuring that the overall plant power equals that commanded by the operator,
to the extent that wind conditions allow. Note the implication: the problem is not how to dispatch
power set-points to the turbines in the plant; rather, the problem becomes how to dispatch power
corrections to the turbines in the plant. There is little correlation in turbulent wind speed fluctuations
from one turbine to the next, and when averaged over a large wind plant, the corrections will tend to
be small. This is nice, because we can then consider the active load control function independently of
the plant power command tracking function.

We chose to pursue a model-based controller, where a model of the system is used to provide
meaningful quantites of interest, on which a set of straightforward control laws can be based. Thus,
although our controller is model-based, we did not employ “optimal” control synthesis, in either its
linear LQG variant, or a more difficult nonlinear Lyapunov/Pontryagin approach. We expect, based
on the results of Madjidian, that the potential for improvement is small; although, an optimal control
approach would be useful for simultaneously implementing different kinds of active load control, rather
than pursuing only single goals like “steady thrust” or “steady torque”.

Adaptive control was considered, but we decided not to go this route. In the context of wind plant
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Figure 4: An expansion of the plant control block, showing how the interface variables feed into the state
observer and control law.

control, the performance of model-free adaptive controllers suffers due to the continually fluctuating
wind conditions; extremum-seeking controllers will have a hard time finding a steady “optimum” to
which to converge. Parameter adaptation of a fixed-architecture model-based controller could be
useful, but we leave this to a later iteration of the control design. Algorithms that continually adapt
the control architecture fall into the category of machine learning, which we find too advanced – and,
in practice, uncertifiable – to be considered as a baseline.3

While the control law (Section 3) is simple, our state observer (Section 4) ended up being complex,
due to an effort to obtain realistic estimates of fatigue from limited sensor measurements. If it is not
desired to implement such a complicated observer, it is possible to retain the spirit of the control
algorithm while using a simpler metric for the severity of loading, like the standard deviation of
nacelle displacements.

3 Control architecture

With reference to Fig. 1, let us zoom in for a closer look at the plant control block. This is shown in
Fig. 4. The plant controller consists of a state observer – an embedded model of the system – and a
control law.

The role of the state observer is to take the SCADA data feed from each wind turbine and estimate
quantities used by the control law. Although the state observer estimates the state variables x∗, these
are not used directly in the control law. Following the selected design philosophy, the observer provides
physically meaningful outputs. These are classified into two categories: standard outputs z∗, which
can be expressed in the form 𝑔(x∗) and linearized as C∆x∗; and fatigue outputs ΠΠΠ∗, which are derived
from spectral analysis and fatigue cycle counts. A more detailed description of the state observer and
its outputs is given in Section 4. What matters here is that z∗ includes important loads like the rotor
thrust 𝐹𝑇 ∗ and shaft torque 𝑇 ∗, the wind speed 𝑉 ∗, and available power 𝑃 ∗

𝑎 ; while ΠΠΠ∗ includes the
3We are optimistic about the future of data-driven algorithms, and automated synthesis of nonlinear, robust, multi-

objective controllers.
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Figure 5: Architecture of the wind plant control law. The starred block provides anti-windup features; it is
shown in Fig. 6.

wear (degradation, fatigue) rate Ḋ∗ for key components like the blades, driveshaft, foundation, and
actuators.

Figure 5 shows the proposed control law. This consists of two main pathways: one tracking the
operator power command, and the other providing active load control. Both pathways are informed by
the component wear rate Ḋ∗, and the available power 𝑃 ∗

𝑎 based on the current wind conditions. The
control law is repeated for each turbine.4 This implies that the integration of the error in plant power
𝜀PCC, which ensures tracking, is done separately for each turbine. The reason for doing things this
way is so that gain-scheduling via 𝜆 (associated with damage rate) can be done inside the integrator,
as is proper; and so that saturation can be customized to fit the operating conditions of each turbine.

Note that both the thrust-tracking and power-tracking controls act through the same power com-
mand. In typical PI control designs, the effectiveness of each control loop is ensured by separating
them in frequency; for example, an active tower damping controller may act in parallel with the rotor
speed controller, since filters are applied to isolate the action of the former to the vicinity of the tower
resonant frequency, and remove this frequency from the latter. This frequency separation is not pos-
sible here: the specifications call for a controller that can adjust the power so as to track two targets
– rotor thrust and plant power – at once, in the same frequency band. For an individual turbine, this
would be impossible. But the plant power is the sum of 𝑁 turbines; hence the hope is that some of
the turbines are in a position to compensate for imperfect tracking by other turbines.

4The plant control law is implemented on central control hardware, not at each turbine; but on the central hardware
there is a block (Fig. 5) associated with each turbine.
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Figure 6: The block providing anti-windup features.

3.1 Duelling controllers

A viable architecture is provided by giving the pathways different response characteristics: the power-
tracking branch is a PI controller, with integral action, while the thrust-compensation branch is a
proportional gain acting against a low-pass filter.5 They can then duel, but after some time the power-
tracking function will inevitably win. The thought behind the “duelling-controllers” architecture can
be stated like this: When the rotor thrust and plant power targets agree, then they reinforce each
other, and the turbine will move towards the common set-point quickly. When the rotor thrust and
plant power targets disagree, then they partially cancel each other, and the turbine will move towards
the power set-point slowly at first, but then more quickly as the thrust error reaches its equilibrium.
Therefore, turbines for whom a given power correction is favorable will end up taking more, and those
for whom it is unfavorable less.

When a turbine reaches the maximum power allowed by the local wind conditions, it may never be
able to reach the commanded power set-point. The anti-windup strategy is represented by the starred
block in Fig. 5, expanded in Fig. 6. This represents a “soft” anti-windup algorithm, with a smoothed
transition between zero and full saturation, with an example shown in Fig. 7. This smoothing is
perhaps not necessary for the operation of the controller, but it is implemented for consistency with
the rest of the STAS program, where smoothed transitions are needed for numerical stability during
Newton-Raphson solutions and gradient-based optimization. Soft anti-windup also has the benefit of
allowing the integrator to track a bit beyond the available power, whose estimate may not always be
precise.

The turbine’s nominal share of the plant power command ̂𝑃PCC – what ̂𝑃 would be in the absence
of thrust and power-tracking corrections 𝛿 ̂𝑃𝑇 and 𝛿 ̂𝑃𝑃 – is provided as a feed-through pathway, with
no control dynamics except those provided by the filtering of the input signals. Power-tracking and
thrust compensation are provided as corrections to this nominal output.

The target thrust ̂𝐹𝑇 is set according to the wind turbine’s typical 𝐶𝑇 (TSR, 𝛽) table, where
TSR = 𝑅Ω/𝑉∞ is the tip-speed ratio. However, there is a major catch, because it is not desired
that the target thrust tracks the actual blade pitch angle, nor local turbulent fluctuations in the wind
speed; it is, after all, the effect of these that we are trying to reject! For the wind speed, we have the
cluster estimate 𝜇𝑉 of Section (4.5.2). The blade pitch is trickier. Starting with the nominal power,
𝜆1 ̂𝑃PCC, it is possible to convert this to a power coefficient 𝐶𝑃 , and then solve the 𝐶𝑃 (𝜆, 𝛽) table for
a nominal value of the blade pitch, ̂𝛽. It is this value, rather than the actual blade pitch, that is then
used in the 𝐶𝑇 table – that is, 𝐶𝑇 (𝑅Ω/𝜇𝑉 , ̂𝛽) – to get the target thrust. It will be seen in Section 4
that the value of �̇�∗ changes slowly, on a timescale of several minutes, and so the variability of 𝜆1 is
not a problem for purposes of setting ̂𝐹𝑇 .

5…that is, an additional low-pass filter, since all the inputs are already low-pass and notch filtered. A proportional-
gain/low-pass filter arrangement is common in power systems, this being the effective response of a governer with
speed-droop. (Kundur 1994, p. 589)
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Figure 7: Output of the anti-windup block for a case in which the valid range of 𝑢 is between 0 and 1. The
smoothed transition between 𝜂 = 0 and 𝜂 = 1 is convenient for numerical solution of the nonlinear state
equations.

3.2 Scheduling as a function of damage rate

The nominal power in the feed-through pathway and the gains on the power-tracking controller,
are scheduled as a function of the estimated damage rate �̇�∗. The scheduling is determined by
two functions 𝛼1(�̇�∗) and 𝛼2(�̇�∗). In the case study of Section 5.4 a simple linear relationship is
implemented, but the functions may instead be based on a more thorough consideration of whatever
“damage rate” is intended to represent in practice. In any case, the 𝛼’s are a turbine’s way of saying, “I
would like to reduce my static load level and my share of power-command tracking.” This information
is shared with the other turbines: everyone can see everyone else’s 𝛼’s.6 The 𝑗th turbine then gets its
fair share of the burden by weighting according to

𝜆1,𝑗 = 𝛼1,𝑗
𝛼1,𝑗 + ∑𝑘≠𝑗 𝛼1,𝑘

, (1)

and similarly for 𝜆2,𝑗. The sum in the denominator is taken over all 𝑁 turbines in the plant, except
for the 𝑗th one, whose control block we are in.

4 Estimation of wind, loading, and fatigue

In order to effectively fulfil its control objectives, a wind plant controller needs to know something
about the operating state of each wind turbine. An estimate of the operating state is obtained through
sensor measurements. Combining these sensor measurements with a model of the system – an observer
– provides additional knowledge and insight, which can be used to aid decision-making, finding the
best control actions.

4.1 Design philosophy

The observer is a model of the system, and there are many possible ways to construct such a system
model. One aspect is the fidelity of the model, how much detail is used in modelling the physical
processes. A model embedded in a real-time controller must be at the low-fidelity end of the range,
but the model used for control design (including synthesis) does not need to be.7 Thus the upper

6Again, this is all done on the central control hardware, so it isn’t actually necessary to send the information out to
the individual turbines, just their plant-control blocks.

7Zhou et al. (1996), for instance, recommend synthesizing a controller based on a comparatively high-fidelity model,
and then reducing the controller in a subsequent step.
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constraint on fidelity is mostly due to the analysis tools at our disposal, and if there is a need or desire
for human-understandability in the design process.

Another key choice regards the synthesis of the control architecture, and accordingly the outputs
needed from the observer. The control architecture may be determined automatically using state-
feedback methods and the separation principle, in which case the designer’s role is to specify a suitable
performance metric. Often the performance metric is chosen as a quadratic function of the state and
control variables, and then the designer iteratively adjusts the weights until a desirable performance is
obtained. The observer’s role is to output estimates of a set of state variables that can be assumed to
represent the “complete” system dynamics, and, by the separation principle, the observer is designed
and tuned independently of the control law and its performance metric. Alternatively the control
architecture may be designed manually, and in this case the observer should output quantities that
are most directly meaningful to the designer. Here the performance metrics – things to be maximized,
or minimized, or driven to zero – become part of the observer, and the control law is built around
them; the metrics are not just used in the synthesis step, they are retained in real-time operation.
There is no requirement that the observer model represents the complete system; selected processes
or subsystems can be modelled, and others omitted.

The most general definition of an observer would be one that models a full set of state variables,
and also outputs performance-related variables. We pursue such an observer, to allow flexibility in
the approach to control design.

4.2 Interface variables

The observed variables may be organized as follows:

z∗ =
⎧{{
⎨{{⎩

x∗
𝑡 ,

⎡
⎢⎢
⎣

𝑉 ∗

𝜃∗

𝑎∗

𝐹 ∗
𝑇

⎤
⎥⎥
⎦

, [𝐹 ∗
𝑤

𝜃∗
𝑤

] , [𝑃 ∗
𝑎

𝑄∗
𝑎
]
⎫}}
⎬}}⎭

, ΠΠΠ∗ =
⎧{{
⎨{{⎩

⎡
⎢⎢
⎣

𝑆∗
𝑉

S∗
𝑤

S∗
𝜎

𝑆∗
𝛽

⎤
⎥⎥
⎦

, [Ḋ∗

D∗
𝑎
]
⎫}}
⎬}}⎭

. (2)

Table II defines the variables in (2). It is useful if we divide the variables into two types, denoted
respectively z∗ and ΠΠΠ∗. The z∗ variables listed in the upper part of Table II are estimates of things
that are happening “now”, at the present time. By constrast, the spectral variables in ΠΠΠ∗ derive from
correlations over different lengths of time. Also, component wear is a fundamentally nonlinear function
of material stress cycles – that is to say, it depends on a count and categorization of reversals in the time
series of material stress. Though straightforward to compute in either the time or frequency domain,
the ΠΠΠ∗ variables require special consideration, especially as regards a state-space implementation.

The state observer was designed under the assumption that the system is linear, operating in the
vicinity of a set of equilibrium points. Working with linear system models makes the dynamics human-
understandable through eigenmodes; the principle of superposition greatly simplifies analysis; and
frequency-domain transfer functions with associated load and response spectra enable rapid calculation
of fatigue (component wear rates), as well as rough estimates of the extreme response. Synthesis of
a final, nonlinear controller is done in a subsequent step by scheduling over the family of linear
models. This may require special logic to handle strong nonlinearities, such as the transition between
maximum-power-point tracking and power set-point control modes. The scope of this report is limited
to the first phase, designing state observers for selected operating points, with the use of linear systems
theory.

4.3 Architecture

The architecture of the state observer is shown in Fig. 8. The observer consists of an embedded model
of the wind turbine, which, together with its gain matrix G, are set up as a typical linear optimal
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Table II: Definition of observer outputs. Above the line: z∗. Below the line: ΠΠΠ∗.

x∗
𝑡 Wind turbine state variables

𝑉 ∗ Effective wind speed
𝜃∗ Effective wind direction
𝑎∗ Effective axial induction factor
𝐹 ∗

𝑇 Rotor thrust
𝐹 ∗

𝑤 Ocean wave force
𝜃∗

𝑤 Ocean wave direction
𝑃 ∗

𝑎 Available active power
𝑄∗

𝑎 Available reactive power
𝑆∗

𝑉 Spectrum of effective wind speed
S∗

𝑤 Wave force cross-spectra
S∗

𝜎 Cross-spectra of structural stresses
𝑆∗

𝛽 Spectrum of pitch actuator rate
Ḋ∗ Component wear (degradation, fatigue) rate
D∗

𝑎 Estimated remaining life

filter (Sections 4.3 and 4.4). The outputs are then augmented by a set of calculations that culminate
in an estimate of the wear rate of selected structural components (Sections 4.5 through 4.7).

The state observer is based on an open-loop model of the wind turbine, including the local wind
and wave environments. Figure 9 shows the architecture of the turbine model. Inputs are the signals
from the plant controller, and a collection of white noise processes exciting the wind (turbulence) and
ocean waves. The turbulent wind and ocean waves are modelled as filtered white noise: this is an
assumption, a rough approximation of the true behavior, for purposes of state observation. The wind
turbine consists of the local rotor aerodynamics, structures, actuators, electrical components, and the
turbine’s own controller. Together, the states of these subsystems are collected into x𝑡. Some of the
components are equipped with sensors, which will eventually be used to form y∗; and the quantities
needed to form the outputs z∗ and ΠΠΠ∗ are obtained from various parts of the model.

The equation of a (linear) state observer has the form

𝑑∆x∗

𝑑𝑡 = A∆x∗ + B∆u + G(∆y − ∆y∗) (3)

with
∆y∗ = C𝑦∆x∗ (4)

in continuous time. Here x∗ is a vector of states; u is a vector of control inputs, fed back from
the controller; y is the set of sensor measurements that are passed to the observer; and y∗ is the
prediction of the same sensor measurements, derived from the state vector. The ∆’s indicate that the
equations have been linearized, such that the dynamic variables represent perturbations with respect
to an operating point, usually an equilibrium point. The discrete-time equation is similar,

∆x∗,𝑘+1 = A∆x∗,𝑘 + B∆u𝑘+1 + G(∆y𝑘+1 − ∆y∗,𝑘+1), (5)

the only “catch” being that the estimated sensor measurements

∆y∗,𝑘+1 ∶= C𝑦(A∆x∗,𝑘 + B∆u𝑘+1) (6)

are computed using a prediction A∆x∗,𝑘 + B∆u𝑘+1 of the states at timestep 𝑘 + 1. We shall formu-
late the state equations in continuous time, switching to discrete time when this allows us to avoid
mathematical difficulties with white noise: dealing with continuous-time white noise is an unnecessary
complication, since the equations will ultimately be solved numerically in discrete time. A second-
order Runge-Kutta scheme is sufficient: if a continuous-time state equation is 𝑑x/𝑑𝑡 = Ax+Bu, then
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Figure 8: The architecture of the state observer, showing the embedded wind turbine model, a module that
distinguishes local turbulence from broader weather patterns, and an analytical spectral model that estimates
the severity of loading and fatigue.

in discrete time

x𝑘+1 ≈ (I + A∆𝑡 + 1
2A2∆𝑡2) x𝑘 + (B∆𝑡 + 1

2AB∆𝑡2) u𝑘+1. (7)

Alternatively, to guarantee numerical stability with a comparatively large timestep, an implicit integ-
ration scheme may be used, such as the second-order trapezoidal method,

x𝑘+1 ≈ (I − 1
2A∆𝑡)

−1
(I + 1

2A∆𝑡) x𝑘 + (I − 1
2A∆𝑡)

−1
B∆𝑡 u𝑘+1. (8)

The outputs z∗ and ΠΠΠ∗ are functions of the state variables x∗; in fact, many of the z∗ are state
variables. Let us go through the outputs in turn and look at how each is estimated by the observer.

4.3.1 Turbulent wind

The observer’s internal representation of the wind starts with an effective wind speed 𝑉 and wind
direction 𝜃. This can be thought of as the incoming wind, spatially averaged over the rotor swept area;
it is the effective “upstream” wind that does not include the induction due to the vortex wake. The
turbine’s standard sensors – which, it is assumed, do not include strain measurements in the blades
– are not sufficient to resolve features in the turbulence with a length scale smaller than the rotor
diameter. Rather, small-scale, high-frequency, and rotationally-sampled features in the turbulence are
filled in by a stochastic model, calibrated to the observed large-scale properties.8 This is necessary in
order to predict the severity of the dynamic loading and response in various components.

8The anemometer measures small-scale and high-frequency turbulence at a single point near the nacelle, but this
cannot be used to resolve the turbulent flow over the rest of the rotor plane.
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Figure 9: The architecture of the wind turbine model around which the state observer is built. The arrow
behind the turbine subsystem blocks is to indicate that many internal variables, not resolved in the figure, are
passed back and forth between these blocks.
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There are three phases to the calculation of the turbulent wind and turbine response. The first
phase (Section 4.4) is the estimation of the effective wind speed and direction at each wind turbine,
using the turbine’s sensors. The second phase (Section 4.5) is to separate the “weather” from the
“turbulence” by establishing a concensus, among a cluster of adjacent turbines, of the large-scale flow
properties. The third phase (Section 4.6) is to fit a spectral model to the estimates of effective wind
speed, and use this to estimate the stochastic properties of the turbine response.

At present, suffice it to say that the internal representation of the effective wind speed and direction,
for purposes of state estimation, is low-pass filtered white noise. There is also significant energy at
the 3𝑃 blade-passing frequency; this can be represented as a band pass filter. The combined filters
have the functional form

𝑑
𝑑𝑡

⎡
⎢⎢
⎣

𝑉
𝜃𝑉
𝛹𝑉
𝑉3𝑃

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

−𝛼𝑉 0 0 0
0 −𝛼𝜃 0 0
0 0 0 1
0 0 −𝛼2

3𝑃 −2𝜁3𝑃 𝛼3𝑃

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑉
𝜃𝑉
𝛹𝑉
𝑉3𝑃

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝛼𝑉 0
0 𝛼𝜃
0 0

2𝜁3𝑃 𝛼3𝑃 0

⎤
⎥⎥
⎦

[𝑛𝑉
𝑛𝜃

] . (9)

Here 𝛼 is the corner frequency in rad/s, 𝜁 is a damping ratio, and 𝑛 represents either white noise or
an input time series. The parameters are calibrated based on the measured wind speed and direction;
refer to Section 4.5 for the details.

4.3.2 Rotor aerodynamics

Rotor aerodynamic outputs include the rotor-average induction factor and the rotor thrust. The
induction factor 𝑎 is related to the strength of the vortex wake, and hence the severity of downstream
wake deficits and turbulence. The rotor thrust is a useful metric of the aerodynamic loading; for
instance, a load-reducing control law can track a constant rotor thrust and thereby eliminate low-
frequency aerodynamic load fluctuations.

The rotor-average induction factor is defined as the ratio of the induced velocity 𝑉𝑖 and effective
wind speed 𝑉 ,

𝑎 ∶= −𝑉𝑖
𝑉 . (10)

The negative sign makes 𝑎 a positive quantity when 𝑉𝑖 opposes 𝑉 , as is always the case for a wind
turbine. The induced velocity is one of the aerodynamic states associated with each blade element;
that is to say, it is part of the state vector x𝑡 and is therefore readily available. The elements’ induced
velocities are averaged over the rotor swept area to obtain a scalar 𝑉𝑖. Linearizing (10) gives

∆𝑎 ∶= − 1
𝑉0

∆𝑉 ∗
𝑖 + 𝑉𝑖0

𝑉 2
0
∆𝑉 ∗, (11)

where 𝑉 ∗ is the estimated wind speed.
The rotor thrust is the summation of the axial component of aerodynamic force along the blades.

The element forces are output from the STAS aeroelastic module. However, these are expressed in
multi-blade coordinates and with respect to the blade body (pitch) coordinate system. They need to
be transformed into the rotor coordinate system before extracting the axial component and summing.
The full transformation takes the form

F𝑟,𝜓 = T𝜓
𝐵T𝑟

𝑦T𝑦
𝑦0T𝑦0

𝑔 T𝑔
𝑝0T𝑝0

𝑝 T𝐵
𝜓 F𝑝,𝜓. (12)

Linearized, this is

∆F𝑟,𝜓 = T𝜓
𝐵 T𝑟

𝑝∣0 T𝐵
𝜓 ∆F𝑝,𝜓 + T𝜓

𝐵 (T𝑟
𝑦

∂T𝑦
𝑦0

∂q𝐵 ∣
0

T𝑦0
𝑝 ∣

0
+ T𝑟

𝑝0∣0
∂T𝑝0

𝑝
∂q𝐵 ∣

0
) T𝐵

𝜓 F𝑝,𝜓
0 T𝐵

𝜓 ∆q𝜓. (13)
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The equations describing the transforms are documented in Merz (2018). The 𝑧 component of F𝑟 is
the thrust-direction force at the given blade element, and the sum over all blade elements gives the
total rotor thrust.

The available power 𝑃𝑎 is defined based on the observed wind speed 𝑉 ∗. Let the maximum power
coefficient of the wind turbine be 𝐶∗

𝑃 . The available power is then

𝑃𝑎 = 𝐶∗
𝑃

1
2𝜌𝐴(𝑉 ∗)3, (14)

where 𝜌 is the measured air density and 𝐴 the rotor swept area. Linearized, this is

𝑃𝑎 = 𝐶∗
𝑃

3
2𝜌𝐴(𝑉 ∗

0 )2 ∆𝑉 ∗. (15)

4.3.3 Ocean wave forces

Ocean waves are represented as an oscillating wave force on the support structure, and a direction
from which the dominant waves approach. The force amplitude can be represented by a second-order
band-pass filter9

𝑑
𝑑𝑡 [𝛹𝑤

𝐹𝑤
] = [ 0 1

−𝜔2
𝑤 −2𝜁𝑤𝜔𝑤

] [𝛹𝑤
𝐹𝑤

] + [ 0
2𝜁𝜔𝑤

] 𝑛𝑤, (16)

with 𝜁𝑤 = 0.1 and 𝜔𝑤 = 2𝜋/𝑇𝑝. It is assumed that the wave direction 𝜃𝑤 is known from either forecasts
or local measurements at the site.

4.3.4 Available power

Under a given steady wind condition a wind turbine has a maximum steady-state active and reactive
power that can be provided. Active and reactive power capabilities are completely different, but not
always independent. The active power capacity is determined by the wind, or in above-rated conditions
by the power rating of the generator and other electrical components. Active power draws energy
from the rotating driveshaft, and therefore impacts the mechanical components. Reactive power, by
contrast, is a purely electrical quantity. In some wind turbine designs, the full reactive power capacity
can be provided under any operating conditions. In other designs, there is a relationship between the
active power and the reactive power capacity. At present the former type is assumed, such that the
reactive power capacity is constant, provided as an input at the start of the analysis.

As for the active power capacity, this is computed from the measured rotor speed. The power-
speed curve for maximum power tracking is known to the controller, and for a given rotor speed the
maximum power can be read directly from this curve. When tracking a curtailed power command,
the present turbine controller10 sets the target rotor speed based on the estimated wind speed, and
so there is a direct relationship between the rotor speed and the available power – or at least, a best
estimate of the available power.

4.4 Observer gain matrix

A Kalman filter (least-squares optimal filter) is used to estimate turbine states and the derived outputs
of Section 3. Errors between predicted and measured sensor outputs are linked with estimates of the
state variables through a gain matrix. This gain matrix is determined automatically as part of the
Kalman filter. It can be said to be “optimal”, but this can be misleading, since it is usually necessary
to tune a set of weights in the performance metric in order to obtain a good result. That said, it is
quite convenient to work with a small set of tunable parameters, rather than manually specifying the
structure and values of the gain matrix.

9Fossen (1994), Smilden (2019)
10Merz et al. (2019)
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Figure 10: The discrete-time Kalman filter “unrolled” in time, as a network.

The architecture of the system is sketched in Fig. 10. This is based on a discrete-time representation
of the dynamics. The system can then be “unrolled” in time, in essence converting the dynamic system
into a static network along which the variables, and their probability distributions, propagate. The
system model is

x𝑘 = Ax𝑘−1 + Bw𝑘, y𝑘 = Cx𝑘 + n𝑘 (17)

and the corresponding observer model is

x∗,𝑘 = Ax∗,𝑘−1 + G(y𝑘 − y∗,𝑘), y∗,𝑘 = CAx∗,𝑘−1. (18)

Here w and n are disturbances, w on the system and n on the sensor measurements. They are intended
to be white-noise processes, although we shall avoid mathematical treatment of continuous-time white
noise. Other inputs u, like control signals, which cannot be considered disturbances, are neglected.
To be concise we have dropped the ∆’s on the dynamic variables: it is implicit that we are wholly in
the world of linear dynamic systems.

The crux of the problem is to find the gain matrix G. This is developed in two phases, first as
a formal optimization problem, which provides some guidance; then the approach is modified to be
more practical.

In the formal version, we seek to minimize the mean-squared error between the actual and predicted
state variables.11 Defining the error ξξξ = x − x∗,

Π = 𝐸[ξξξ𝑇ξξξ] = Tr{𝐸[ξξξξξξ𝑇 ]} = Tr{ΣΣΣ}, (19)

where ΣΣΣ is the covariance. The dynamics of the error follow from (17) and (18),

ξξξ𝑘 = (I − GC)Aξξξ𝑘−1 + (I − GC)Bw𝑘 − Gn𝑘. (20)
11Note that for this measure to be meaningful it is critical to scale the variables to the same order of magnitude. If

needed this can be accomplished with a simple transformation z = Sx, applied to the state equations.
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Write this as
ξξξ𝑘 = ΦΦΦξξξ𝑘−1 +ΨΨΨw𝑘 − Gn𝑘. (21)

From the definition of covariance,

𝐸[ξξξ𝑘(ξξξ𝑘)𝑇 ] = 𝐸[(ΦΦΦξξξ𝑘−1 +ΨΨΨw𝑘 − Gn𝑘)(ΦΦΦξξξ𝑘−1 +ΨΨΨw𝑘 − Gn𝑘)𝑇 ], (22)

such that
ΣΣΣ𝑘 = ΦΦΦΣΣΣ𝑘−1ΦΦΦ𝑇 +ΨΨΨQΨΨΨ𝑇 + GRG𝑇 , (23)

with Q = 𝐸[ww𝑇 ] and R = 𝐸[nn𝑇 ] being the covariance of w and n, respectively. Since w and n are
assumed to be white noise,12 all the cross-covariance terms like 𝐸[ξξξw𝑇 ], 𝐸[wn𝑇 ], and so on, are zero.

We can see in (20) and (23) the tension between the gain matrix G and the error ξξξ. Think in
terms of the scalar case,

𝜉𝑘 = (1 − 𝑔𝑐)𝑎𝜉𝑘−1 + (1 − 𝑔𝑐)𝑏𝑤𝑘 − 𝑔𝑛𝑘, 𝜎𝑘 = 𝜑2𝜎𝑘−1 + 𝜓2𝑞 + 𝑔2𝑟. (24)

Both disturbances are always, at every step, acting to increase the covariance. We can assume that
the system is stable, so 𝜑 has the opposite effect, tending to decay the error and its covariance. On
the one hand, we want to put the gain high, so that the error decays rapidly: say, the upper limit of
𝑔 = 1/𝑐, giving 𝜑 = 0 and 𝜓 = 0. On the other hand, so high a gain will amplify the measurement
noise 𝑛, and this is ultimately counterproductive. The optimal gain minimizes the covariance 𝜎𝑘, such
that

∂𝜎𝑘

∂𝑔 = −2(1 − 𝑔𝑐)𝑐𝑎2𝜎𝑘−1 − 2(1 − 𝑔𝑐)𝑐𝑏2𝑞 + 2𝑔𝑟 = 0 (25)

giving

𝑔 = 𝑐𝑎2𝜎𝑘−1 + 𝑐𝑏2𝑞
𝑐(𝑐𝑎2𝜎𝑘−1 + 𝑐𝑏2𝑞) + 𝑟 . (26)

Let us now return to the matrix case. Here the gain is chosen so as to minimize (19), the trace of
ΣΣΣ𝑘. That is, each element of the gain matrix is chosen such that

∂Tr{ΣΣΣ𝑘}
∂𝑔𝑖𝑗

= ∂
∂𝑔𝑖𝑗

Tr{ΦΦΦΣΣΣ𝑘−1ΦΦΦ𝑇 +ΨΨΨQΨΨΨ𝑇 + GRG𝑇 } = 0. (27)

Now,
∂

∂𝑎𝑖𝑗
Tr{ABA𝑇 } = 𝑏𝑗𝑝𝑎𝑇

𝑝𝑖 + 𝑎𝑖𝑝𝑏𝑝𝑗, (28)

so if B is symmetric, as is the case in our problem,

∂
∂𝑎𝑖𝑗

Tr{ABA𝑇 } = 2𝑎𝑖𝑝𝑏𝑝𝑗. (29)

Also,
∂

∂𝑎𝑖𝑗
Tr{AB} = 𝑏𝑗𝑖,

∂
∂𝑎𝑖𝑗

Tr{BA𝑇 } = 𝑏𝑖𝑗 (30)

We proceed term-by-term. The first two terms are similar,

∂
∂𝑔𝑖𝑗

Tr{ΦΦΦΣΣΣ𝑘−1ΦΦΦ𝑇 } = −2(AΣΣΣ𝑘−1A𝑇 C𝑇 )𝑖𝑗 + 2(GCAΣΣΣ𝑘−1A𝑇 C𝑇 )𝑖𝑗 (31)

12There is really no loss of generality with this assumption, since correlated signals can be generated through aug-
mentation of the state space.
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and
∂

∂𝑔𝑖𝑗
Tr{ΨΨΨQΨΨΨ𝑇 } = −2(BQB𝑇 C𝑇 )𝑖𝑗 + 2(GCBQB𝑇 C𝑇 )𝑖𝑗. (32)

The third term becomes
∂

∂𝑔𝑖𝑗
Tr{GRG𝑇 } = 2(GR)𝑖𝑗. (33)

Together,
G = (AΣΣΣ𝑘−1A𝑇 + BQB𝑇 )C𝑇 [C(AΣΣΣ𝑘−1A𝑇 + BQB𝑇 )C𝑇 + R]−1 (34)

and it is evident how (34) preserves the form of the scalar equation (26).
The filter equations (18), (23), and (34) can be implemented in real-time state observation, starting

with estimates of x∗,0 and ΣΣΣ0. Our use of these equations is design: we want to find the gain matrix
G – the structure of the state observer – at a set of specified operating points. The conditions at each
operating point are assumed to be stochastically stationary. Rather than tracing the time evolution
of ΣΣΣ, this is prescribed to be constant. As a result, (23) becomes

ΦΦΦΣΣΣΦΦΦ𝑇 −ΣΣΣ +ΨΨΨQΨΨΨ𝑇 + GRG𝑇 = 0, (35)

which is to be solved together with (34) for ΣΣΣ and G.
There are two numerical algorithms implemented in STAS for the solution of (35).13 A slow-but-

reliable method is to treat the stationary problem as a transient one, making an initial guess for ΣΣΣ0

and solving (23) and (34) in time. Another possibility, with faster convergence, is to iterate between
the gain and covariance equations:

1. Guess an initial gain matrix G0. For the method to work, G0 must be such that the system is
stable; that is, all the eigenvalues of ΦΦΦ0 = (I − G0C)A have a magnitude less than 1. Set 𝑘 = 0
and G𝑘 = G0.

2. Solve the discrete Lyapunov equation (35) for ΣΣΣ𝑘, using the present gain matrix G𝑘.

3. Solve the gain equation (34) for G𝑘+1, using ΣΣΣ𝑘.

4. Check for convergence, which can be based on the change in the gain and/or covariance matrices
from one iteration to the next. Increment 𝑘 and return to Step 2.

If we were rigorously following Kalman, which we are not, then Q is the covariance of the external
disturbances acting on the system; R is the covariance of the disturbances or noise on the sensor
measurements; and G is the optimal gain that minimizes the covariance of the error in the state
estimate. One problem with this approach is that the atmospheric turbulence and ocean waves are
not white noise. It is possible to shape the frequency response in a rudimentary way by augmenting
the state space like (9) and (16) – in essence, telling the observer that we expect the disturbances to
behave in this way. The result is a rough approximation, not precise, and it is required to tune the
damping parameters to provide an appropriate weight on peak frequencies.

The main downside to the formal Kalman filter is the characterization of measurement noise R,
which is poorly defined in general. Even if one rigorously calibrated a noise model to trial measure-
ments, there are a range of factors, including more obscure forms of uncertainty, that call for higher
level of “noise” than that which would be associated with high-quality sensors. The gains result from a
tradeoff between process and measurement noise; but the measurement noise is, to some extent, a set
of arbitrary tunable parameters. A practical approach is therefore to treat the weights in R as arbit-
rary tunable parameters, and iterate until the observer performance, and robustness, is satisfactory.

13Stengel (1994). The original references for the iterative method are two letters to the IEEE Transactions on Automatic
Control: Kleinman (1968) and Hewer (1971).
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It is usually acceptable to define R as a diagonal matrix, so there are as many tunable parameters as
sensors.

On initial trials, it was found that the “optimal” filter derived from the above procedure had
a potential flaw: the error y − y∗ was not driven to zero; that is, given a steady-state input, there
appeared a steady-state offset between the sensor measurements and estimates. This is to be expected:
say that a step function is given as input for w; then, an expression for the steady-state sensor error,
based on (17) and (18), is

y − y∗ = C [I − A(I − A + GCA)−1GC] (I − A)−1Bw. (36)

The error approaches zero only in the limit, as the gains G become large. Nonzero steady-state error
is an annoyance, since it is clearly incorrect, and non-physical in the case of variables like nacelle
velocity.14 To fix this, an integral term was added to each of the sensor errors; essentially, the sensor
error y − y∗ is passed through a PI controller, with K𝑃 = I. The observer (18) becomes

[x∗,𝑘

x𝑘
𝐼

] = [A G
I 0 ] [x∗,𝑘−1

x𝑘−1
𝐼

] + [ G
K𝐼

] (y𝑘 − y∗,𝑘), (37)

where K𝐼 is a diagonal matrix of integral gains. The integral gains are small, so that they do not
interfere noticeably with the “optimal” state estimates, but rather slowly eliminate residual steady-
state errors.

4.5 Estimating the weather and turbulence

In order to be consistent with the spectral analysis of Section 4.6, turbulence is defined as a fluctuation
with respect to a mean value. This implies a separation of scales. There is a background flow associated
with what we might call the “weather”, upon which is superposed fluctuating eddies associated with
the atmospheric boundary layer, wakes from other turbines, thermal instabilities, and so on. This
view of atmospheric flow is useful, but has its flaws. In reality, the weather is always shifting: often
gradually – many locations experience a diurnal cycle in wind conditions, for instance – but sometimes
abruptly, during convective conditions and the passage of fronts. The questions are then, what is the
“mean wind”, what is the “turbulent” component of 𝑉 (the effective wind speed over the rotor), and
what is fine-scale turbulence versus measurement noise?

Consider the information at our disposal. At each turbine, the effective wind speed 𝑉 (𝑡) is estim-
ated from two sources: the rotor dynamics, which are an integral part of the turbine state model; and
the anemometer wind speed measurement on the nacelle housing. The former is reliable under normal
operating conditions, in particular when there is little yaw misalignment and when the rotor aerody-
namic model is well-calibrated to the actual turbine performance.15 The anemometer measurement is
sensitive to local wind conditions at the nacelle, and so it is noisy.

The weather consists of features in the atmospheric flow that are on the scale of the wind plant,
or larger. The weather can therefore be identified by comparing the winds measured over clusters
of wind turbines. In fact, this can be used as a definition, for purposes of wind plant control: the
weather is that component of the measured wind speed and direction that is consistent across a cluster
of several adjacent wind turbines. Note that this includes

1. what we would normally consider the “weather”;

2. the flow on each side of a passing front, but not the frontal boundary itself; and,
14There may be drift in the input sensor measurements, and it is assumed that this has been removed; here we are

talking about nonzero errors that are an artifact of the observer model.
15It is usually possible to arrive at a well-calibrated model of the rotor aerodynamics, which can be evaluated by

comparing the computed and measured electrical power over long periods of operation. The performance can change
over time, in particular due to leading-edge fouling and erosion. The ambient air density must also be taken into account.
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Figure 11: Examples of two turbine clusters, used to estimate the “mean” wind speed and direction at the
starred turbines.

3. persistent gradients in the wind speed associated with the extraction of energy from the atmo-
spheric boundary layer, but not local, meandering wake effects.

From this definition of weather, it follows that the “turbulence” is that component of the measured
wind that is not consistent from one turbine to the next in the cluster.

So the key to identifying 𝜇𝑉 , and by extension 𝜎𝑉 , 𝐼 , 𝐿𝑢, and 𝑆𝑉 , is to establish concensus among
the turbines in a cluster. Here it pays to take a Bayesian approach; this can handle things like shut-
down turbines, sensor miscalibration, and other faults that would throw off a simple averaging of the
signals.

4.5.1 Clusters of turbines

It is assumed that the wind turbines are arranged in an array of approximately uniform spacing. The
layout may be regular or irregular. For each turbine, a cluster is defined as the turbine plus its nearest
eight neighbors. Figure 11 shows an example of two such clusters on a regular, staggered layout.

The choice of eight neighboring turbines is somewhat arbitrary. It is a reasonable choice, though,
for the following reasons. The cluster spans three rows and columns in a regular gridded layout. It
is evident in Fig. 11 that for a plant of a moderate size such a cluster achieves a balance between
being local and encompassing a significant sector of the plant. For instance, if there was a steady
gradient in the wind speed across the plant, then the values of 𝜇𝑉 at the blue and red starred turbines
would correctly differ. Nine turbines (one plus eight neighbors) provide multiple redundancy, with
the possibility of detecting and eliminating faulty or miscalibrated sensors; it is unlikely that more
than four out of nine sensors would be severely miscalibrated. For large commercial wind turbines,
and typical plant spacings of 𝑠 = 5𝐷 to 8𝐷, the convection time 2𝑠/𝜇𝑉 across the cluster is on the
order of several minutes. This is a reasonable timescale at which to distinguish between random,

PROJECT
TotalControl

REPORT NUMBER
2020:01124

VERSION
1.0 24 of 64



local turbulence and more persistent features in the flow. The tradeoff is essentially one of consistency
during steady weather conditions, and achieving a faster response to dynamic changes in the weather.16

4.5.2 Estimation of the cluster wind speed and direction

A Bayesian approach works explicitly with probability distributions over the possible values of the
cluster wind speed 𝜇𝑉 and direction 𝜇𝜃. Fluctuations in the speed and direction are assumed to be
independent. In reality this assumption is not rigorously true, nor entirely false – but it is practical.
The way that the algorithm incorporates sensor measurements compensates for imprecision in the
stochastic model, which in any case is highly simplified.

The procedure consists of propagating the probability distribution in time, incorporating the
wind speed estimates provided by the turbine state observers. The probability distribution is low-
dimensional, due to some fortunate features of the problem. Specifically, that we are to estimate a
single 𝜇𝑉 and 𝜇𝜃 for the cluster, and that these are independent, means that we are dealing with two
separate scalar (one-dimensional) probability distributions. In addition, the turbulent fluctuations –
the deviations of the individual turbine signals with respect to the cluster 𝜇𝑉 or 𝜇𝜃 – are expected to
be independent and uncorrelated. This means that it is not necessary to formulate a high-dimensional
joint probability distribution over the measurements.

There are a variety of algorithms we could use to solve for the probability distribution at each
timestep. The most common algorithms would work with a linear system model and Gaussian prob-
abilities, and propagate an expected value and variance. There are also advanced Monte-Carlo type
algorithms that approximate the stochastic properties through repeated realizations. However, be-
cause the problem deals with low-dimensional probability distributions, it is feasible to apply the
cell-to-cell mapping technique (CCMT).17 This is a general solution to stochastic problems, both
linear and nonlinear, whose numerical implementation consists of matrix operations. CCMT suffers
from the “curse of dimensionality”, but for low-dimensional problems it is efficient enough for real-time
applications; and it is easy to program.

Let us walk through the procedure for a single timestep; this is then repeated to advance in time.
The procedure is the same for 𝜇𝑉 and 𝜇𝜃; we will consider 𝜇𝑉 as an illustration. The input available
at the start of the 𝑘th timestep includes the probability density 𝜑(𝜇𝑘−1

𝑉 ) from the previous timestep,
and estimates 𝑉 𝑘

𝑖 , obtained from the state observers associated with the 𝑖 = {1, 2, … , 𝑛} turbines in
the cluster.

The first step is to update 𝜑(𝜇𝑉 ) from timestep 𝑘 − 1 to 𝑘, prior to incorporating the new meas-
urements. We are free to choose the update equation. The choice is constrained by the information
available as input to the timestep. If we had a lot of information – say, lidar measurements of the wind
field ahead of each turbine – then the update equation could be based on a quite elaborate stochastic
or physical flow model. For the present controller design, where simplicity is desireable, and only basic
sensor measurements are available, we represent the drift in 𝜇𝑉 as discrete, binary white noise. The
formula is

̂𝜇𝑘
𝑉 = 𝜇𝑘−1

𝑉 + 𝛾 ∆𝑡 𝛿𝑘, (38)

where 𝛿𝑘 ∈ {1, −1} with probability 𝑝(𝛿) ∈ {0.5, 0.5} is binary white noise, and 𝛾 is a tunable
parameter. In effect, (38) says that “𝜑(𝜇𝑉 ) diffuses”; and 𝛾 controls the strength of diffusion.

According to CCMT, we divide the possible values of ̂𝜇𝑉 into discrete bins, or cells. There is a
probability density 𝜑( ̂𝜇𝑉 ,𝑚) or total probability 𝑝( ̂𝜇𝑉 ,𝑚) = 𝜑( ̂𝜇𝑉 ,𝑚)∆𝜇𝑉 associated with each cell.
Applying (38) to each cell in turn, considering the possible input values 𝛿 with their probabilities 𝑝(𝛿),

16Annoni et al. (2019) applied a clustering algorithm to an onshore wind plant with an irregular layout, and found
that a 15-turbine cluster produced minimum errors in the estimate of wind direction. Nine-turbine clusters produced a
slightly higher error: 2.8∘ average error for 9 turbines, versus 2.5∘ for 15 turbines, in the particular case considered.

17Hsu CS (1987)
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Figure 12: A two-parameter distribution representing the uncertainty in measurements at a single turbine, given
a value of the cluster average.

a matrix equation can be written,
φφφ( ̂𝜇𝑘

𝑉 ) = ΛΛΛφφφ(𝜇𝑘−1
𝑉 ). (39)

Here φφφ collects the 𝜑( ̂𝜇𝑉 ,𝑚) into a column vector. Thus the update takes the form of a sparse matrix-
vector multiplication.

The second step is to incorporate the information contained in the measurements. Ths is done
using Bayesian inference:

𝜑(𝜇𝑘
𝑉 |𝑉 𝑘

1, 𝑉 𝑘
2, … , 𝑉 𝑘

𝑛) = 𝜑(𝑉 𝑘
1, 𝑉 𝑘

2, … , 𝑉 𝑘
𝑛| ̂𝜇𝑘

𝑉 ) 𝜑( ̂𝜇𝑘
𝑉 )

∑𝑚 𝜑(𝑉 𝑘
1, 𝑉 𝑘

2, … , 𝑉 𝑘
𝑛| ̂𝜇𝑘

𝑉 ,𝑚) 𝜑( ̂𝜇𝑘
𝑉 ,𝑚)

. (40)

But here the assumptions of independence some into play, considerably simplifying things. We can
write (40) as

𝜑(𝜇𝑘
𝑉 |𝑉 𝑘

1, 𝑉 𝑘
2, … , 𝑉 𝑘

𝑛) = 𝜑(𝑉 𝑘
1| ̂𝜇𝑘

𝑉 ) 𝜑(𝑉 𝑘
2| ̂𝜇𝑘

𝑉 ) … 𝜑(𝑉 𝑘
𝑛| ̂𝜇𝑘

𝑉 ) 𝜑( ̂𝜇𝑘
𝑉 )

∑𝑚 𝜑(𝑉 𝑘
1| ̂𝜇𝑘

𝑉 ,𝑚) 𝜑(𝑉 𝑘
2| ̂𝜇𝑘

𝑉 ,𝑚) … 𝜑(𝑉 𝑘
𝑛| ̂𝜇𝑘

𝑉 ,𝑚) 𝜑( ̂𝜇𝑘
𝑉 ,𝑚)

. (41)

Evidently, solving (41) requires a model for 𝜑(𝑉 |𝜇𝑉 ): the probability of measuring a particular 𝑉 at
one of the turbines, if the “true” cluster value were 𝜇𝑉 . The difference between the cluster-wide wind
speed and the value observed at a single turbine may be due to the real effect of local turbulence, or
else errors in the measurement: noise, bias, or sensor failure.

The arguments leading up to (38) apply here as well: we get to choose the model for 𝜑(𝑉 |𝜇𝑉 ),
simple or elaborate. Using a simple model is practical, since the measurements continually serve to
correct the modelling errors; though it could be expected that a well-designed elaborate model would
increase the precision. We elect to go simple, defining an empirical two-parameter distribution shown
in Fig. 12. This consists of a normal distribution and a constant “background” probability. The
normal distribution, scaling with the parameter 𝜎, is centered about the true (or given) value of 𝜇𝑉 ,
and accounts for turbulence as well as measurement errors. The background probability, a constant 𝛽,
spans the possible range of 𝑉 − 𝜇𝑉 . It accounts for the possibility of sensor failure or other anomalies.

The range of 𝑉 is fixed at ±50 m/s; this is arbitrary, in that the values of the other parameters can
be adjusted to achieve any desired relative weighting between the background and normal distributions.
Formally, since 𝜑(𝑉 |𝜇𝑉 ) is a probability distribution, the integral under the curve is equal to 1.
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However, (41) is a ratio between like quantities, so 𝜑(𝑉 |𝜇𝑉 ) can be scaled by any uniform factor
without affecting the result.

It is well to keep in mind that the cluster values 𝜇𝑉 and 𝜇𝜃 are computed in turn for each turbine
in the plant. In general, there is a unique cluster associated with each turbine. Even though one
turbine and its neighbor are part of each others’ clusters, it is not so that their values of 𝜇𝑉 and 𝜇𝜃
are the same.

4.5.3 Time series of turbulence

Once the cluster mean wind speed and direction is found using the methods of Section 4.5.2, a time
series of turbulence at each turbine can be generated by computing

𝑣𝑖 = 𝑉 𝑖 − 𝜇𝑉 and 𝜃𝑖 = 𝜃𝑖 − 𝜇𝜃. (42)

4.6 Turbulence and response spectra

Turbulence and response spectra are computed based on the time series (42), together with a numerical
model that fills in the higher frequencies and smaller spatial scales, which cannot be resolved with
the basic sensor measurements. The time series is logged over 𝑁 discrete timesteps, the most recent
measurement replacing the last in the sequence. This can be represented as a state space where

𝑥𝑘
𝑖+1 = 𝑥𝑘−1

𝑖 , (43)

𝑥 representing either 𝑣 or 𝜃. 𝑁 should be a power of 2, in order to facilitate the numerical Fourier
transform. The timestep is ∆𝑡, and the length of time over which data is logged is 𝑇 = 𝑁 ∆𝑡.

4.6.1 Measured turbulence spectrum

Given a time series 𝑥(𝑘∆𝑡), the spectrum is computed by

1. mirroring the time series to make it periodic;

2. computing the Fourier coefficients 𝜅(𝑘∆𝑓), where ∆𝑓 = 1/(𝑁 ∆𝑡); and,

3. computing the spectrum
𝑆(𝑘∆𝑓) = 1

∆𝑓 𝜅𝜅∗, (44)

where 𝜅∗ is the complex conjugate of 𝜅.

4.6.2 Theoretical turbulence spectrum and parameters

The stochastic model for the turbulent wind field requires two parameters, the turbulence intensity

𝐼 ∶= 𝜎𝑉
𝜇𝑉

, (45)

that is, the standard deviation divided by the mean; and a length scale 𝐿𝑢, representing in some sense
the size of the energy-carrying turbulent eddies. We assume an isotropic Von Karman spectrum,18

𝑆𝑜
𝑉 (𝑓) = 𝜎2

𝑉
4𝐿𝑢

𝜇𝑉 [1 + 70.8 (𝐿𝑢 𝑓
𝜇𝑉

)
2
]

5/6 . (46)

18The superscript “𝑜” on 𝑆𝑜
𝑉 emphasizes that this is the one-sided spectrum (0 ≤ 𝑓 < ∞), twice the amplitude of the

two-sided spectrum (−∞ < 𝑓 < ∞).
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Figure 13: An example of the Von Karman spectrum, 𝜇𝑉 = 10 m/s, 𝐼 = 0.183, 𝐿𝑢 = 180 m.

This is a convenient spectrum to use, since there are analytical formulas for the covariance between
the three velocity components at any two points in space.19 Figure 13 shows an example of the Von
Karman spectrum.

In operation, the turbulence intensity and length scale are calibrated such that the zero’th and
second spectral moments

𝑚0 = ∫
∞

0
𝑆𝑜

𝑉 𝑑𝑓 = 𝜎2
𝑉 = (𝐼𝑉∞)2 and 𝑚2 = ∫

∞

0
𝑓2 𝑆𝑜

𝑉 𝑑𝑓 (47)

match those observed at each wind turbine.20 There is a catch, though: the observations are made on
the effective rotor-average wind speed, whereas the theoretical spectrum needs to be that at a single
point. It is possible, since the theoretical covariance in space and time is known, to compute the
theoretical spectrum of rotor-average wind speed, and the resulting 𝑚0 and 𝑚2. These can then be
related to the single-point parameters 𝐼 and 𝐿𝑢. For the DTU 10 MW wind turbine (𝐷 = 178.3 m)
used in the present analysis, the following relations hold: first,

𝑦 = 1.3057646 + 0.3628023𝑥 + 0.2079409𝑥2, −4 ≤ 𝑥 ≤ −1.8, (48)

with
𝑦 = log10 𝐿𝑢 and 𝑥 = log10 (𝑚2

𝑚0
) , (49)

which can be solved for 𝐿𝑢; and next,

𝑦 = 0.1852021𝑥 − 0.1479345𝑥2, 1.3 ≤ 𝑥 ≤ 3.3, (50)

with
𝑦 = log10 (1 − 𝑚0

𝜎2
𝑉

) and 𝑥 = log10 𝐿𝑢, (51)

which can be solved for 𝐼 , via 𝜎𝑉 .
19Merz (2015a), Kristensen and Frandsen (1982), Connell (1982)
20The frequency √𝑓2/𝑓0 is the zero-crossing frequency of a narrow-banded Gaussian stochastic process. Now, turbu-

lence is wide-banded, so √𝑓2/𝑓0 is not its zero-crossing frequency; but it gives some motivation for the choice of spectral
moments in the calibration.
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4.6.3 Rotationally‐sampled turbulence spectra

After the nominal Von Karman spectrum is determined, with its characteristic turbulence intensity and
length scale, the spectrum of turbulence seen by the rotating blades can be computed analytically.
The method is documented in TotalControl D3-3.21 The key assumption is that the turbulence is
isotropic and convects at the effective wind speed.

In addition to the stochastic turbulence, periodic effects like wind shear and tower shadow are also
modelled. The periodic effects are not observable from the basic sensor measurements. Tower shadow
can be estimated theoretically by assuming a potential flow pattern upstream of the tower, together
with undeformed blades. For wind shear, it is necessary either to use a nominal theoretical value for
the wind speed gradient, or to consider the wind shear as an “external” input provided by the plant
operator, who, it is presumed, has access to additional sensors like a meteorological mast.

To reiterate the key concept, it is that the properties of a nominal, theoretical turbulence spectrum
are calibrated to the observed wind speed measurements; and then the details of the stochastic and
periodic flow fields, as seen by the rotating blades, are filled in using theory.

The result is a pair of spectral matrices, with components associated with the flow at each blade
element: S𝑉 (𝑓) accounting for the stochastic turbulence, and S̃𝑉 (𝑓) the periodic fluctuations. These
are kept separate, for reasons that will be made clear in later sections.

4.6.4 Scaling of a reference spectrum

The rotationally-sampled turbulence spectrum will scale with the severity of turbulence and with
the rotor speed. The amplitude of the spectrum scales as the square of the turbulence intensity
𝐼 = 𝜎𝑉 /𝑉∞. A special scaling technique is required in order to get the proper scaling with rotor
speed.22 Under combined perturbations in turbulence intensity and rotor speed, the amplitude scales
as

𝑆𝑣(Ω + ∆Ω, 𝑓) = 𝜅 (𝛾2𝑆𝑣(Ω, 𝜅𝑓) − ∂𝑆𝑣(Ω, 𝜅𝑓)
∂𝑣

𝑉∞
Ω

∆Ω) , (52)

where
𝜅 = Ω

Ω + ∆Ω
(53)

and
𝛾 = 𝐼

𝐼0
. (54)

4.6.5 Ocean wave force spectra

The ocean wave force spectra S𝑤 are computed numerically from a time series of the observed values.
The procedure of Section 4.6.1 is applied here as well. The ocean wave direction changes slowly, and
in the model it is assumed to be constant. It is assumed that the dominant wave direction is available
as an external input.

4.6.6 Transfer functions and response spectra

Defining a transfer function between the environmental inputs 𝑣𝑣𝑣 and some outputs z,

z =
𝑁/2−1
∑

𝑘=−𝑁/2
H𝑘𝑣𝑣𝑣𝑘 exp(−𝑖2𝜋 𝑘𝑝/𝑁), (55)

the spectral matrix transforms as

S𝑧(𝑘∆𝑓) = H𝑘S𝑣(𝑘∆𝑓) H∗𝑇
𝑘 . (56)

21Merz (2020)
22Merz et al. (2019)
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4.6.7 Response spectra in fixed and rotating coordinates

The linearized equations of motion of a three-bladed wind turbine can be made time-invariant with
a multi-blade coordinate transform. This expresses the rotor dynamics in a fixed (non-rotating)
coordinate frame. The state equations (3) are implemented in multi-blade coordinates. Sensor inputs
associated with each blade – in the present state observer, this is only the blade pitch angle – are
transformed to multi-blade coordinates before being fed to the state observer. Solving for response
spectra in the fixed coordinate frame is then straightforward. In order to compute the material stresses
required for fatigue analysis (Section 4.7), driveshaft and blade load spectra need to be transformed
into the rotating frame.

Consider a trio of variables r𝐵 = [𝑟1, 𝑟2, 𝑟3], with each variable associated with the blade indicated
by the subscript.23 The multi-blade coordinate transform is r𝜓 = T𝜓

𝐵r𝐵, where

T𝜓
𝐵 = 1

3
⎡⎢
⎣

1 1 1
2 cosΨ1 2 cosΨ2 2 cosΨ3
2 sinΨ1 2 sinΨ2 2 sinΨ3

⎤⎥
⎦

(57)

with inverse

T𝐵
𝜓 = ⎡⎢

⎣

1 cosΨ1 sinΨ1
1 cosΨ2 sinΨ2
1 cosΨ3 sinΨ3

⎤⎥
⎦

. (58)

The blade azimuth angles are
Ψ𝑘 = Ψ0 + Ω𝑡 + 2𝜋

3 (𝑘 − 1). (59)

It will be convenient to write (58) in complex exponential form,

T𝐵
𝜓 = E0 + E exp(𝑖Ω𝑡) + E∗ exp(−𝑖Ω𝑡), (60)

with

E0 = ⎡⎢
⎣

1 0 0
1 0 0
1 0 0

⎤⎥
⎦

and E = 1
2

⎡⎢
⎣

0 1 −𝑖
0 exp(𝑖2𝜋/3) −𝑖 exp(𝑖2𝜋/3)
0 exp(𝑖4𝜋/3) −𝑖 exp(𝑖4𝜋/3)

⎤⎥
⎦

exp(𝑖Ψ0). (61)

Let us define the variable r𝜓 in the following way:

r𝜓 = r𝜓 + 𝛥r𝜓 + ̃𝛥r𝜓. (62)

Here r𝜓 contains the steady-state values, the components of 𝛥r𝜓 are zero-mean Gaussian processes,
and ̃𝛥r𝜓 is periodic. We are given a spectral matrix of 𝛥r𝜓, S𝜓(𝑓), or in discrete form S𝜓(𝑘∆𝑓) =
S𝜓(𝑘). We are also given the steady-state r𝜓, as well as the Fourier coefficients c𝜓

𝑘 describing ̃𝛥r𝜓. The
goal is to transform these quantities to body (rotating) coordinates. That is, we seek an equivalent
form of (62) in body coordinates,

r𝐵 = r𝐵 + 𝛥r𝐵 + ̃𝛥r𝐵, (63)

where the zero-mean stochastic term 𝛥r𝐵 is characterized by a spectral matrix S𝐵(𝑘), and the zero-
mean periodic term ̃𝛥r𝐵 by Fourier coefficients c𝐵

𝑘 .
To develop the appropriate transformations, let’s start in the time domain. The spectra are each

the individual Fourier transform of a covariance function; the time-domain counterpart to S𝜓 is a
covariance function Q𝜓. By definition,

𝑄𝜓
𝑗𝑘(𝑡, 𝜏) = 𝐸 [(𝑟𝜓

𝑖 (𝑡) − 𝑟𝜓
𝑖 ) (𝑟𝜓

𝑗 (𝑡 + 𝜏) − 𝑟𝜓
𝑗 )] , (64)

23These could be any of the dynamic variables: displacements, loads, stresses, or whatever.
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From (62),

𝑄𝜓
𝑗𝑘(𝑡, 𝜏) = 𝐸 [𝛥𝑟𝜓

𝑖 (𝑡) 𝛥𝑟𝜓
𝑗 (𝑡 + 𝜏)] + 𝐸 [𝛥𝑟𝜓

𝑖 (𝑡) ̃𝛥𝑟𝜓
𝑗 (𝑡 + 𝜏)]

+ 𝐸 [ ̃𝛥𝑟𝜓
𝑖 (𝑡) 𝛥𝑟𝜓

𝑗 (𝑡 + 𝜏)] + 𝐸 [ ̃𝛥𝑟𝜓
𝑖 (𝑡) ̃𝛥𝑟𝜓

𝑗 (𝑡 + 𝜏)] . (65)

It is necessary to make a brief digression to specify what is meant by the expected value. In the
context of random variables, the fundamental definition of an expected value is

𝐸[𝑥] = ∫
∞

−∞
𝑥 𝜑(𝑥) 𝑑𝑥, (66)

where 𝜑(𝑥) is the probability density over 𝑥. It is useful to picture (66) in discrete space – that is,
discretized values of 𝑥 – in which case

𝐸[𝑥] =
𝑛/2−1
∑

𝑘=−𝑛/2
𝑥𝑘 𝜑(𝑥𝑘)∆𝑥 =

𝑛/2−1
∑

𝑘=−𝑛/2
𝑥𝑘 𝑝(𝑥𝑘), (67)

with 𝑝(⋅) the cell probability. Blind application of (66) to a deterministic function simply returns the
value of the function: making use of the Law of the Unconscious Statistician,

𝐸[𝑓(𝑥𝑝)] =
𝑛/2−1
∑

𝑘=−𝑛/2
𝑓(𝑥𝑘) 𝑝(𝑥𝑘) = { 0, 𝑘 ≠ 𝑝

𝑓(𝑥𝑝) 𝑘 = 𝑝 (68)

But this is not really what we want. Rather, given that we are working with a stationary stochastic
process and repeating periodic signal, the appropriate definition of the expected value is the ensemble
average over a set of arbitrary times. That is to say, we consider 𝑡 – the starting time, in the case of the
covariance (65) – to be a uniformly-distributed random variable, and then we evaluate the expected
value according to (66). In this case, the expected value becomes the time-average. To see this, write

𝐸[𝑓(𝑡)] = lim
𝑡→∞

∫
𝑇 /2

−𝑇 /2
𝑓(𝑡) 𝜑(𝑡) 𝑑𝑡 = lim

𝑡→∞
1
𝑇 ∫

𝑇 /2

−𝑇 /2
𝑓(𝑡) 𝑑𝑡. (69)

By the ergodic theorem, (66) and (69) are the same, for a stationary stochastic process. This means
that for both stochastic and periodic quantities, we may define the expected value as the average value
over time.

Picking up Eq. (65) where we left off, it is clear that the two terms in the middle are zero. They
are independent, so

𝐸 [𝛥𝑟𝜓
𝑖 (𝑡) ̃𝛥𝑟𝜓

𝑗 (𝑡 + 𝜏)] = 𝐸 [𝛥𝑟𝜓
𝑖 (𝑡)] 𝐸 [ ̃𝛥𝑟𝜓

𝑗 (𝑡 + 𝜏)] = 0, (70)

and similarly for the other term. Then,

𝑄𝜓
𝑗𝑘(𝑡, 𝜏) = 𝐸 [𝛥𝑟𝜓

𝑖 (𝑡) 𝛥𝑟𝜓
𝑗 (𝑡 + 𝜏)] + 𝐸 [ ̃𝛥𝑟𝜓

𝑖 (𝑡) ̃𝛥𝑟𝜓
𝑗 (𝑡 + 𝜏)] . (71)

We are therefore free to consider the stochastic and periodic processes separately. Should we later
wish to form the combined covariance or spectra, these can be obtained by superposition.

Let us simplify the terminology by making the time 𝑡 implicit. So, for instance, we will write (71)
as

𝑄𝜓
𝑗𝑘(𝜏) = 𝐸 [𝛥𝑟𝜓

𝑖 (0) 𝛥𝑟𝜓
𝑗 (𝜏)] + 𝐸 [ ̃𝛥𝑟𝜓

𝑖 (0) ̃𝛥𝑟𝜓
𝑗 (𝜏)] . (72)

The development that follows is best accomplished in discrete time, and discrete frequencies, since
this is how it is programmed. Working with discrete increments also allows us to avoid integrals,
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limits, and delta functions, and the operations are easier to visualize. Let 𝜏 = 𝑝∆𝜏 and 𝑓 = 𝑘∆𝑓 .
The discrete form of the complex exponential is then

exp (𝑖𝜔𝜏) = exp (𝑖2𝜋𝑘∆𝑓 𝑝∆𝜏) = exp (𝑖2𝜋𝑘∆𝑓 𝑝
𝑁 ∆𝑓 ) = exp (𝑖2𝜋𝑘𝑝

𝑁 ) . (73)

In a similar spirit, let’s define Ω = 𝑤∆𝜏 , and

exp(𝑖Ω𝜏) = exp (𝑖2𝜋𝑤𝑝
𝑁 ) , (74)

where 𝑤 does not necessarily need to be an integer.
Now, we want to arrive at the Fourier representation of ̃𝛥r𝐵,

̃𝛥r𝐵(𝑝) =
𝑁/2−1
∑

𝑘=−𝑁/2
c𝐵

𝑘 exp (𝑖2𝜋𝑘𝑝
𝑁 ) (75)

along with the covariance in body coordinates,

Q𝐵(𝑝) = 𝐸 [(r𝐵(0) − r𝐵) (r𝐵(𝑝∆𝜏) − r𝐵)𝑇 ] . (76)

To do so, we need to first find the steady-state, or mean, r𝐵. Since r𝐵(𝑡) = T𝐵
𝜓 (Ω, 𝑡) r𝜓(𝑡), we have

r𝐵 = 𝐸 [T𝐵
𝜓 (Ω, 𝑡) r𝜓(𝑡)] . (77)

Using (60) for the transform and (62) for r𝜓,

r𝐵 = 𝐸 [(E0 + E exp (𝑖2𝜋𝑤𝑝
𝑁 ) + E∗ exp (−𝑖2𝜋𝑤𝑝

𝑁 )) (r𝜓 + 𝛥r𝜓(𝑝∆𝜏) + ̃𝛥r𝜓(𝑝∆𝜏))] . (78)

Consider this term-by-term:
𝐸 [(E0r𝜓)] = E0r𝜓, (79)

since both quantities are constant;

𝐸 [Er𝜓 exp (𝑖2𝜋𝑤𝑝
𝑁 )] = 0 and 𝐸 [E∗r𝜓 exp (−𝑖2𝜋𝑤𝑝

𝑁 )] = 0; (80)

and,
𝐸 [(E0 + E exp (𝑖2𝜋𝑤𝑝

𝑁 ) + E∗ exp (−𝑖2𝜋𝑤𝑝
𝑁 )) 𝛥r𝜓(𝑝∆𝜏)] = 0, (81)

since, even if there is some energy in the random process at the rotor frequency, the phase is undeter-
mined. As for the periodic part ̃𝛥r𝜓, it can be expanded in a Fourier series akin to (75),

̃𝛥r𝜓(𝑝) =
𝑁/2−1
∑

𝑘=−𝑁/2
c𝜓

𝑘 exp (𝑖2𝜋𝑘𝑝
𝑁 ) . (82)

Then,

𝐸 ⎡⎢
⎣

E0

𝑁/2−1
∑

𝑘=−𝑁/2
c𝜓

𝑘 exp (𝑖2𝜋 𝑘𝑝
𝑀 )⎤⎥

⎦
= 0 (83)

but

𝐸 ⎡⎢
⎣

E exp (𝑖2𝜋𝑤𝑝
𝑁 )

𝑁/2−1
∑

𝑘=−𝑁/2
c𝜓

𝑘 exp (𝑖2𝜋 𝑘𝑝
𝑀 )⎤⎥

⎦
= Ec𝜓

(−𝑤) (84)
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and

𝐸 ⎡⎢
⎣

E∗ exp (−𝑖2𝜋𝑤𝑝
𝑁 )

𝑁/2−1
∑

𝑘=−𝑁/2
c𝜓

𝑘 exp (𝑖2𝜋 𝑘𝑝
𝑀 )⎤⎥

⎦
= E∗c𝜓

𝑤. (85)

Putting together the nonzero terms,

r𝐵 = E0r𝜓 + Ec𝜓
(−𝑤) + E∗c𝜓

𝑤. (86)

The transform from MBC to body coordinates can be written

r𝐵 + 𝛥r𝐵 + ̃𝛥r𝐵 = T𝐵
𝜓 (r𝜓 + 𝛥r𝜓 + ̃𝛥r𝜓) . (87)

In light of (71) and (86), it is clear that we can separate the stochastic part from the periodic part,
like

𝛥r𝐵 = T𝐵
𝜓 𝛥r𝜓 (88)

and
r𝐵 + ̃𝛥r𝐵 = T𝐵

𝜓 (r𝜓 + ̃𝛥r𝜓) . (89)

In other words, the stochastic signal remains stochastic: it influences neither the mean nor the periodic
signal.

A Fourier expansion of (89) at time 𝑡 = 𝑝∆𝜏 gives

E0r𝜓 + Ec𝜓
(−𝑤) + E∗c𝜓

𝑤 +
𝑁/2−1
∑

𝑗=−𝑁/2
c𝐵

𝑗 exp (𝑖2𝜋𝑗𝑝
𝑁 ) =

(E0 + E exp (𝑖2𝜋𝑤𝑝
𝑁 ) + E∗ exp (−𝑖2𝜋𝑤𝑝

𝑁 )) ⎛⎜
⎝

r𝜓 +
𝑁/2−1
∑

𝑘=−𝑁/2
c𝜓

𝑘 exp (𝑖2𝜋𝑘𝑝
𝑁 )⎞⎟

⎠
. (90)

Isolating each frequency in turn,

c𝐵
𝑘 =

⎧{{
⎨{{⎩

0, 𝑘 = 0
E0c𝜓

𝑘 + Ec𝜓
𝑘−𝑤 + E∗c𝜓

𝑘+𝑤, 𝑘 ≠ {±𝑤, 0}
E0c𝜓

𝑤 + Er𝜓 + E∗c𝜓
2𝑤, 𝑘 = 𝑤

E0c𝜓
−𝑤 + Ec𝜓

−2𝑤 + E∗r𝜓, 𝑘 = −𝑤

(91)

The spectra can be obtained directly from the Fourier coefficients. Denoting as S̃𝐵 the periodic part
of the spectral matrix,

S̃𝐵 = 1
∆𝑓 c𝐵 (c𝐵)∗𝑇 . (92)

As for the stochastic part, the covariance transforms as

Q𝐵(𝑝) = T𝐵
𝜓 (0) Q𝜓(𝑝) T𝐵,𝑇

𝜓 (𝑝). (93)

The spectral matrix S𝐵(𝑘) is the (discrete) Fourier transform of (93). This is

S𝐵(𝑘) = ∆𝜏
𝑁/2−1
∑

𝑝=−𝑁/2
Q𝐵(𝑝) exp (−𝑖2𝜋𝑘𝑝

𝑁 ) (94)

or

S𝐵(𝑘) = ∆𝜏 T𝐵
𝜓 (0)

𝑁/2−1
∑

𝑝=−𝑁/2
Q𝜓(𝑝) [E0 + E exp (𝑖2𝜋𝑤𝑝

𝑁 ) + E∗ exp (−𝑖2𝜋𝑤𝑝
𝑁 )]

𝑇
exp (−𝑖2𝜋𝑘𝑝

𝑁 ) . (95)
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This can be written as the sum of three terms,

S𝐵(𝑘) = S1(𝑘) + S2(𝑘) + S3(𝑘) (96)

with

S1(𝑘) = ∆𝜏 T𝐵
𝜓 (0)

𝑁/2−1
∑

𝑝=−𝑁/2
Q𝜓(𝑝) exp (−𝑖2𝜋𝑘𝑝

𝑁 ) E𝑇
0 = T𝐵

𝜓 (0) S𝜓(𝑘) E𝑇
0 , (97)

S2(𝑘) = ∆𝜏 T𝐵
𝜓 (0)

𝑁/2−1
∑

𝑝=−𝑁/2
Q𝜓(𝑝) exp (−𝑖2𝜋(𝑘 − 𝑤)𝑝

𝑁 ) E𝑇 = T𝐵
𝜓 (0) S𝜓(𝑘 − 𝑤)E𝑇 , (98)

and

S3(𝑘) = ∆𝜏 T𝐵
𝜓 (0)

𝑁/2−1
∑

𝑝=−𝑁/2
Q𝜓(𝑝) exp (−𝑖2𝜋(𝑘 + 𝑤)𝑝

𝑁 ) E∗𝑇 = T𝐵
𝜓 (0) S𝜓(𝑘 + 𝑤) E∗𝑇 . (99)

Note how part of the energy at the frequency 𝑓 in rotating coordinates comes from 𝑓 ±Ω frequencies
in multi-blade coordinates.

Obtaining stress spectra at points in the driveshaft requires a similar transformation into the
rotating frame. The transform from nacelle to driveshaft coordinates involves a rotation about the
𝑧𝑛 = 𝑧𝑑 axis by the rotor azimuth angle Ψ, which is identical to Ψ1 from above. The transform can
be written in the same form as (60),

T𝑑
𝑛 = E0 + E exp(𝑖Ω𝑡) + E∗ exp(−𝑖Ω𝑡), (100)

with

E0 = ⎡⎢
⎣

0 0 0
0 0 0
0 0 1

⎤⎥
⎦

and E = 1
2

⎡⎢
⎣

1 −𝑖 0
𝑖 1 0
0 0 0

⎤⎥
⎦

exp(𝑖Ψ0). (101)

The remainder of the derivation, (62) through (99), is unchanged.

4.7 Component wear

Every component in a wind plant wears, or degrades, over time. The degradation process depends on
some combination of time, environment, loading, and chance. The nature of the process is probabilistic,
influenced by chance events (i.e. unmodelled processes): minute inclusions or manufacturing flaws in
the material, bonding failures or in-service impacts that damage the protective coating or insulation,
overload events,24 and other miscellaneous occurences.

The present observer employs a standard method for fatigue analysis, involving cycle counting and
damage summation (Miner’s rule). This type of fatigue analysis, intended primarily for design, is not
necessarily well-suited to economic decision-making in operation. There are two shortcomings. First,
the methods are based on a deterministic value of the material capacity, how many load cycles the
material can take. The allowable capacity must be set at a safe level, based on overlapping conservative
assumptions regarding the above effects (time, environment, loading, chance). The design value is
often set at a lifetime that is one or more orders-of-magnitude below the bulk of the test data.25 It
is important to be conservative in the design phase, when the entire lifetime of the component lies
ahead; conservatism is less warranted during operation, especially late in the component’s scheduled
life when the economic consequences of failure are not so severe. The second shortcoming of typical

24Overload isn’t simple. In ductile metals, tensile overload can extend the lifetime of a cracked part, by stretching and
hardening the material at the crack tip. In composites, tensile overload is likely to cause further damage by breaking
fibers.

25The design lifetime may be lower than the mean of the data by an order-of-magnitude, but the difference in load
level is smaller, due to the power-law relationship between the amplitude of alternating loads and fatigue life.
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fatigue design methods is that they do not incorporate operational data – condition monitoring,
whether by automated sensors or manual inspections – of the actual state of the component. When
the accumulated fatigue damage of the component hits “1.0”, the component is expected to fail; never
mind particular cicumstances that may lead to accelerated or retarded degradation. In structural
components, the alternative of crack-growth methods does provide a framework that can incorporate
in-service inspection data. But inspecting for minute cracks, like the commercial aviation industry
does, is expensive. More likely, other types of dynamic sensor measurements (vibrations, temperature,
oil particle counts), together with superficial inspections (visual inspections of corroded, eroded, or
pitted areas), will be available for estimating the condition of the turbines.26

The present state observer does not offer a solution to the above critique. A cycle-counting method
is used to estimate the rate of accumulation of stress cycles. This estimate is expected to scale
properly with inputs like wind speed, turbulence intensity, the plant control signals, and so on. The
problem comes not in the observer, but rather in the control law, where the objective is to use the
estimate of fatigue rate to trade power generation and load reduction. Beware that the answer is not
straightforward.

With these caveats aside, let us look at a set of methods that can be used to obtain a real-time
estimate of the wear rates in structural and mechanical components.

4.7.1 Material stress

It is assumed that all structures behave linearly, such that there is a linear relationship between
displacement and strain, also strain and stress. This is a sound assumption for normal operation.27

For the design of the present state observer, we can assume that cross-sections do not grossly deform,
metals do not yield, and composites do not crack or buckle.

The structure is represented by a finite beam element model. There is a particular relationship
between the elastic nodal displacements and rotations μμμ𝑒 and the material strain εεε,

εεε(𝑥, 𝑦, 𝑧, 𝑡) = ⎡⎢
⎣

𝜀𝑥
𝛾𝑥𝑦
𝛾𝑥𝑧

⎤⎥
⎦

= D(𝑦, 𝑧)∂S(𝑥)
∂𝑥 μμμ𝑒(𝑡). (102)

The definitions of S and D can be found in Merz (2018). Specifically,

D(𝑦, 𝑧) = ⎡⎢
⎣

1 0 0 0 𝑟𝑧 −𝑟𝑦
0 0 0 −𝑟𝑧 0 0
0 0 0 𝑟𝑦 0 0

⎤⎥
⎦

, (103)

where 𝑟𝑦 and 𝑟𝑧 are the in-plane coordinates of a point in the material relative to some reference line
with respect to which the cross-sectional properties are defined. The matrix S is 6-by-12, and for
standard beam elements its nonzero entries are

𝑆11 = 1 − 𝑥
𝐿, 𝑆17 = 𝑥

𝐿, (104)

𝑆22 = 1 − 3𝑥2

𝐿2 + 2𝑥3

𝐿3 , 𝑆26 = 𝑥 − 2𝑥2

𝐿 + 𝑥3

𝐿2 , 𝑆28 = 3𝑥2

𝐿2 − 2𝑥3

𝐿3 , 𝑆2,12 = −𝑥2

𝐿 + 𝑥3

𝐿2 , (105)

𝑆33 = 1 − 3𝑥2

𝐿2 + 2𝑥3

𝐿3 , 𝑆35 = −𝑥 + 2𝑥2

𝐿 − 𝑥3

𝐿2 , 𝑆39 = 3𝑥2

𝐿2 − 2𝑥3

𝐿3 , 𝑆3,11 = 𝑥2

𝐿 − 𝑥3

𝐿2 , (106)

𝑆44 = 1 − 𝑥
𝐿, 𝑆4,10 = 𝑥

𝐿, (107)

26For some components there may be data from detailed surveys, like ultrasonic inspections of blades.
27There may be certain extreme load cases where nonlinearity is evident: one example would be buckling of blade skin

panels under extreme gust loads.

PROJECT
TotalControl

REPORT NUMBER
2020:01124

VERSION
1.0 35 of 64



𝑆53 = 6𝑥
𝐿2 − 6𝑥2

𝐿3 , 𝑆55 = 1 − 4𝑥
𝐿 + 3𝑥2

𝐿2 , 𝑆59 = −6𝑥
𝐿2 + 6𝑥2

𝐿3 , 𝑆5,11 = −2𝑥
𝐿 + 3𝑥2

𝐿2 , (108)

and

𝑆62 = −6𝑥
𝐿2 + 6𝑥2

𝐿3 , 𝑆66 = 1 − 4𝑥
𝐿 + 3𝑥2

𝐿2 , 𝑆68 = 6𝑥
𝐿2 − 6𝑥2

𝐿3 , 𝑆6,12 = −2𝑥
𝐿 + 3𝑥2

𝐿2 . (109)

If 𝑥 is set to zero – that is, if the internal loads and stresses are to be computed at the “base” of a
particular element – then

𝑑𝑆11
𝑑𝑥 = − 1

𝐿, 𝑑𝑆17
𝑑𝑥 = 1

𝐿, 𝑑𝑆26
𝑑𝑥 = 1, 𝑑𝑆35

𝑑𝑥 = −1, 𝑑𝑆44
𝑑𝑥 = − 1

𝐿, 𝑑𝑆4.10
𝑑𝑥 = 1

𝐿,

𝑑𝑆53
𝑑𝑥 = 6

𝐿2 , 𝑑𝑆55
𝑑𝑥 = − 4

𝐿, 𝑑𝑆59
𝑑𝑥 = − 6

𝐿2 , 𝑑𝑆5,11
𝑑𝑥 = − 2

𝐿,

𝑑𝑆62
𝑑𝑥 = − 6

𝐿2 , 𝑑𝑆66
𝑑𝑥 = − 4

𝐿, 𝑑𝑆68
𝑑𝑥 = 6

𝐿2 , 𝑑𝑆6,12
𝑑𝑥 = − 2

𝐿.

It is convenient to linearize (102) as

∆εεε = D∂S
∂𝑥

∂μμμ𝑒
∂q𝐵 ∆q𝐵. (110)

Functions for computing μμμ𝑒 and ∂μμμ𝑒/∂q𝐵 based on q𝐵 are provided in the STAS Aeroelastic module.
Now, stress is related to strain by Hooke’s law,

σσσ = E εεε. (111)

So, if we pick a set of points around a particular cross-section at which we would like to compute the
stress, each point has a particular (𝑥, 𝑦, 𝑧) coordinate on the element, and the stress can be computed
by the above equations; or alternatively, a transfer function is obtained,

H𝜎 = ∂σσσ
∂q𝐵 = E D ∂S

∂𝑥
∂μμμ𝑒
∂q𝐵 . (112)

This transfer function is constant, not a function of frequency.
Yielding and fatigue in ductile metals like steel and aluminum are most accurately predicted with

the Von Mises equivalent stress criterion. In thin-walled sections a state of plane stress can be assumed,
with the equivalent stress

𝜎VM = √𝜎2𝑥𝑥 + 𝜎2𝑦𝑦 − 𝜎𝑥𝑥𝜎𝑦𝑦 + 3𝜏2𝑥𝑦. (113)

This is a nonlinear function of the stress components, so the resulting probability distribution is no
longer Gaussian. Pitoiset and Preumont (2000) recommend defining a Von Mises stress spectrum as

𝑆VM = 𝑆𝑥𝑥 + 𝑆𝑦𝑦 − 𝑆𝑥𝑦 + 3𝑆𝜏 . (114)

This approximates the spectrum derived from the nonlinear equation (113), and remains Gaussian.

4.7.2 Material fatigue

Material fatigue is estimated using Miner’s rule, which is based on the presumption of proportional
damage accumulation,

𝐷𝑖 = 1
𝑁𝑖

or 𝐷 = ∑
𝑖

1
𝑁𝑖

(115)

where 𝐷𝑖 is the damage done by the 𝑖th stress cycle, and 𝑁𝑖 is the number of stress cycles of this
amplitude that would cause failure in a specimen of the same material. 𝐷 ≥ 1 implies failure.
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Computations of fatigue damage therefore involve two elements: identification and counting of stress
cycles at critical points in the material (structural details); and estimating the corresponding number
of cycles to failure in a representative specimen.

The rainflow method is used to count cycles. Downing and Socie (1982) provide a useful algorithm
that conducts this counting in real time. Given a time series of stress, this algorithm represents the
“correct” result against which other methods can be compared. However, it isn’t of direct use in the
observer, because we don’t have a complete time series of the stress; remember, we are filling in the
higher frequencies based on an analytical, spectral model.

A linear model with Gaussian inputs, like the one we are using, has Gaussian outputs. The
probability distribution of the stress at any point in the material is thus Gaussian – and the Von
Mises stress is Gaussian, if the approximation (114) is employed. So we are working in the confines of
linear, Gaussian theory.

Dirlik’s method28 provides an estimate of rainflow fatigue cycle counts from a frequency-domain
spectrum of the signal. It is a semi-empirical method, where rainflow cycle counts were generated
in the time domain for a large number of archetypal wide-band Gaussian processes. Based on their
observed form, Dirlik chose to represent the probability of rainflow cycle ranges using a sum of three
distributions: one exponential and two Rayleigh. These are formulated as functions of moments of the
frequency-domain spectra. The parameters in the formula were calibrated to best reproduce, in a least-
squares sense, the time-domain cycle counts. Although it may be possible to improve marginally on
the formula, especially with more complex and esoteric machine-learning algorithms, Dirlik’s method
has repeatedly been found to give accurate results provided that the spectrum represents a Gaussian
process.29

Dirlik’s method defines the probability density function of rainflow cycle amplitudes (half of a
range) as

𝜑(𝜎) = 𝐷1
𝑄√𝑚0

exp (−𝑍
𝑄) + 𝐷2𝑍

𝑅2√𝑚0
exp (− 𝑍2

2𝑅2 ) + 𝐷3𝑍√𝑚0
exp (−𝑍2

2 ) (116)

with the spectral moments

𝑚𝑘 = ∫
∞

−∞
∣𝑓𝑘𝑆(𝑓)∣ 𝑑𝑓 (117)

and other parameters
𝑍 = 𝜎√𝑚0

, 𝑥𝑚 = 𝑚1
𝑚0

√𝑚2
𝑚4

, 𝛾 = 𝑚2√𝑚0𝑚4
,

𝐷1 = 2𝑥𝑚 − 𝛾2

1 + 𝛾2 , 𝐷2 = 1 − 𝛾 − 𝐷1 + 𝐷2
1

1 − 𝑅 , 𝐷3 = 1 − 𝐷1 − 𝐷2,

𝑄 = 1.25𝛾 − 𝐷3 − 𝐷2𝑅
𝐷1

, and 𝑅 = 𝛾 − 𝑥𝑚 − 𝐷2
1

1 − 𝛾 − 𝐷1 + 𝐷2
1
.

The number of cycles in the range 𝜎𝑘 − ∆𝜎/2 ≤ 𝜎 < 𝜎𝑘 + ∆𝜎/2, over a specified bin width ∆𝜎 and
period of time 𝑇 , is obtained by

𝑛(𝜎𝑘) = 𝜑(𝜎𝑘) ∆𝜎 𝑇 √𝑚4
𝑚2

. (118)

For narrow-band processes, 𝐷1 → 0, 𝐷2 → 0, and 𝐷3 → 1, and Dirlik’s method approaches a Rayleigh
distribution,

𝜑(𝜎) = 𝜎
𝑚0

exp (− 𝜎2

2𝑚0
) . (119)

Dirlik’s method is applicable when the spectrum represents a Gaussian process. This is often
a reasonable assumption for a wind turbine that is operating normally, in conditions that are not

28Dirlik (1985)
29Ragan and Manuel (2007), Gao and Moan (2008), Mrsnik et al. (2013), Park et al. (2014), Durodola et al. (2018)
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statistically extreme. There are a couple important exceptions though. First, immediately in the
vicinity of the rated wind speed, the wind turbine transitions between the below-rated (variable-
speed/maximum power-point tracking) and above-rated (constant-power/blade-pitch) control modes.
A spectrum collected under such conditions will reflect the nonlinear switching between the modes,
and many response variables will be non-Gaussian. Second, Dirlik’s method performs poorly when
there are deterministic alternating components like gravity loads in the signal. The reason for this is
simple: an individual, or dominant, sinusoid does not have a Gaussian probability distribution.

The nonlinearity associated with control-mode transitions is not a problem that can be solved,
in the general sense, within the framework of Dirlik’s method. If the signal is not Gaussian, then
both the theory and the calibration on which (116) is based do not apply. Constraints on time and
resources prevent us from pursuing a formal solution to the problem as part of the present memo.
Such a solution would be based on a large number of time-domain simulations near the rated wind
speed, which could be used to calibrate an equation like (116) or, alternatively, a machine-learning
model like a neural network. This is a considerable complication from a design perspective, since it
implies that the calibration is conducted not for a set of generic all-encompassing spectra, like Dirlik
did, but rather for a particular wind turbine and environmental condition. For the present purpose of
designing the state observer, we simply assume the problem away. The observer model is scheduled on
the basis of the reliable and slowly-changing cluster wind speed. According to this scheduling variable,
we adopt either the below-rated or above-rated model, and its corresponding Dirlik fatigue rate. In
other words, the dynamics of the transition, including the saturation of variables like the blade pitch
or generator power, are ignored.

The problem of deterministic alternating stresses, like those due to gravity, wind shear, or tower
shadow, cannot simply be ignored. This is because they are present whenever the turbine is operat-
ing, and they dominate important fatigue-related metrics like stresses at the blade root and in the
driveshaft. An ad-hoc method was developed specifically to handle the fatigue analysis of these com-
ponents.30 Since the method plays a central role in the observer’s fatigue estimates, we will give it a
full description and review here.

Figure 14 shows spectra of nominal stresses (not including stress concentrations or complex geo-
metry) at the root of a wind turbine blade during normal operation in a turbulent wind.31 The plot
at left is for the point on the downwind side of the blade root, which is primarily influenced by out-
of-plane (flapwise) loads; the plot at right is for a point on the cross-wind side of the blade root –
aligned with the direction of rotation – for which in-plane loads, particularly gravity, dominate. Some
of the features seen in the spectra are annotated. It is of particular importance here to distinguish
between the response to stochastic turbulence – the “humps” in the plots – versus periodic effects –
the “spikes”.

The crux of the problem is to count fatigue cycles of a signal with both Gaussian and periodic
components. The total signal in time is simply the sum of the stochastic and periodic processes; they
are independent. Unfortunately the principle of superposition cannot be used directly to establish
cycle counts, for reasons that will be made clear in the following discussion. Rather, we must estimate
the statistics of peaks and troughs in the combined signal. The method we shall use is ad-hoc; yet it
is rational, based on a consideration of the frequency content and relative strengths of the stochastic
and periodic signals.

Provided that the system is linear and the noise Gaussian, the signal may be decomposed into
any number of constituent parts without further assumptions or loss of accuracy. The stress spectra
in rotating coordinates, with pronounced peaks and valleys, lend themselves to decomposition by
frequency band. Let us then decompose the signals in this way:

30Merz (2015b)
31To facilitate the multi-blade coordinate transform, the rotor speed was held constant when generating these spectra;

under variable-speed operation the peaks, and in particular the spikes associated with periodic loads, would smear out
somewhat.
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Figure 14: One-sided stress spectra at the blade root, during normal operation below the rated wind speed. At
left: downwind location, primarily out-of-plane loads. At right: cross-wind location, primarily in-plane loads.
The heavy black curve shows the spectra, and the dashed curve is its integral, this being the variance of the
signal.

1. A low-frequency stochastic signal, such as (a) in Fig. 14.

2. Individual narrow-band stochastic peaks at 𝑛𝑃 , such as (b) in Fig. 14. Only those peaks that
contribute perceptibly to the variance (dashed curves in Fig. 14) need to be considered; in this
example, the 1𝑃 peak is sufficient.

3. Individual components of the periodic signal, such as (c) in Fig. 14. Again, only those peaks
that contribute perceptibly to the variance need to be considered.

4. A high-frequency residual, not bothering to distinguish between stochastic and periodic effects.

Denote these processes as respectively 𝜎𝐿, 𝜎𝑆, 𝜎𝑃 , and 𝜎𝐻. Note that

𝜎(𝑡) = 𝜎𝐿(𝑡) + 𝜎𝑆(𝑡) + 𝜎𝑃 (𝑡) + 𝜎𝐻(𝑡). (120)

We now count cycles for each of these processes independently: (1) and (4) according to Dirlik’s
method, (2) according to a narrow-band approximation (Rayleigh), and (3) by the trivial consideration
of a sinusoidal signal. Denote these cycle counts (low, 1𝑃 stochastic, 1𝑃 periodic, and high) as 𝑛𝐿,
𝑛𝑆, 𝑛𝑃 , and 𝑛𝐻.

The cycles are combined in the following order:

1. Combine 𝑛𝑆 and 𝑛𝑃 , assuming that these are two sinusoidal signals with a random phase offset.

2. Combine 𝑛𝐻 with (𝑛𝑆, 𝑛𝑃 ), based on their relative amplitudes and separation in frequency.

3. Combine (𝑛𝐻, 𝑛𝑆, 𝑛𝑃 ) with 𝑛𝐿, based on their relative amplitudes and separation in frequency.
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Consider 𝜎𝑆 and 𝜎𝑃 , with the corresponding 𝑛𝑆 and 𝑛𝑃 . These are a stochastic process and
a sinusoid, in the vicinity of the same frequency band. The stochastic process is narrow-banded,
which means that over a single oscillation it is approximately sinusoidal, near the 1𝑃 frequency. The
probability distribution of the amplitude is given directly by the cycle count 𝑛𝑆. The relative phase
of the stochastic and periodic sinusoids will drift: it is random and uniformly distributed between 0
and 2𝜋. Say that the amplitude of the 𝑘th stochastic cycle is �̂�𝑆,𝑘. The peak amplitude �̂�𝑚 of the sum
of the periodic and stochastic sinusoids, having the same frequency, is

�̂�𝑚 = |𝐴 cos 𝜃 + 𝐵 sin 𝜃| (121)

where
𝐴 = �̂�𝑆,𝑘 + �̂�𝑃 cos 𝛼, 𝐵 = −�̂�𝑃 sin 𝛼 (122)

and
𝜃 = tan−1 (𝐵

𝐴) . (123)

For a given phase 𝛼, (121) maps the stochastic cycle count of the 𝑘th stress bin into a different stress
bin, the 𝑚th. The computation is repeated for 𝑛 = 181 phase angles, 𝛼 = 0, 𝜋/180, 2𝜋/180, … , 𝜋, each
with probability 1/𝑛.

Define a “cycle count density” 𝜌, such that the number of cycles within a given stress bin can be
computed as

𝑛(𝜎𝑘) = 𝜌(𝜎𝑘)∆𝜎, (124)
where ∆𝜎 is the bin width. Normalizing the cycle counts in this way ensures convergence to a particular
profile, as the bin width is refined; in the limit, 𝑛 goes to zero, while 𝜌 remains finite. It is also
convenient to consider the rates 𝑑𝑛

𝑑𝑡 = 𝑑𝜌
𝑑𝑡 ∆𝜎, (125)

that is, the cycle counts and cycle-count densities accumulated per unit time.
Figures 15 and 16 show cycle-count density rates ̇𝜌 derived from the spectra of Fig. 14. In each

figure the column at left contains sample time-series of the isolated stochastic and periodic signals,
together with the ̇𝜌 for the stochastic signal.32 The column at right shows the equivalent quantities
for the combined signal.

Starting with Fig. 15, from the plot at left it is evident that a Rayleigh distribution provides a
proper estimate of ̇𝜌 for the stochastic signal. In comparison with rainflow counting (and also Dirlik’s
method), the narrow-band approximation neglects some small-amplitude cycles that are not expected
to contribute to fatigue. Combining the stochastic and periodic signals “stretches” the Rayleigh
distribution, and this effect is captured properly by the spectral method. There are some small
oscillations in the spectral method’s curve associated with the discrete binning of stresses and phase
angles. Otherwise, the procedure combining stochastic and periodic cycles works nicely, accurately
capturing the all-important mid- to high-amplitude stress cycles, which are responsible for the majority
of fatigue damage.

Figure 16 displays essentially the same features as Fig. 15, and the comments from the previous
paragraph apply.

Let us now consider the combination of cycles from two random signals of different frequency
bands, say “low” and “high” frequencies. These may each be wide-band processes, or they may
contain a dominant periodic component. When high- and low-frequency signals are combined, some
of the high-frequency cycles may disappear – depending on the relative amplitudes of the signals.
Figure 17 provides an elementary example. Although the high-frequency wave makes the total signal
“bumpy”, it does not alternate throughout the central portion, and therefore does not accumulate
high-frequency cycles in this region.

32The ̇𝜌 for the periodic signal is a delta function – a spike – at the signal’s amplitude, and this does not need to be
plotted.
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Figure 15: Cycle count density rate curves from the stochastic and periodic blade root stress spectra near the
1𝑃 frequency, along with samples of the corresponding time series. Stresses at this location are dominated by
flapwise bending.
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Figure 16: Cycle count density rates and samples of time series, at a location dominated by edgewise bending.

Figure 17: How cycles may be lost when low and high frequency signals are combined.
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Figure 18: A half rainflow cycle A-A′, approximated as part of a sinusoid.

Figure 19: A cycle approximated as a three-level square wave.

A simple and conservative method is offered in order to combine the cycle counts of signals from
different frequency bands. This is based on the three-level approximation described in Merz (2015c)
for which a full derivation will be given here. The peculiarities of rainflow cycle counting make it
difficult to arrive at more elaborate or formal method that is applicable for wide-band, potentially
non-Gaussian signals. The present method can undoubtedly be improved through a more formal
treatment with fewer assumptions,33 and it is recommended to do so when time and resources permit.

Consider any peak of the low-frequency signal. The occurrence of peaks has a characteristic
frequency

𝑓𝐿 = √𝑚4
𝑚2

, (126)

where the moments are given by (117). We conceptually think of the particular low-frequency peak
as being a sine wave with this characteristic frequency, like the red curve in Fig. 18, representing the
half-cycle A-A′. Now we represent this sine wave as a three-level square-wave signal, Fig. 19. On
top of this low-frequency square wave lie some of the high-frequency peaks. How many? Well, the
characteristic peak frequency 𝑓𝐻 for the high-frequency signal can also be computed by (126). Then,
over the period 𝑇𝐿/3 = 1/(3𝑓𝐿) at which the square wave is at its maximum, we can expect 𝑓𝐻/3𝑓𝐿
high-frequency peaks.

33Bishop (1988) provides a clue. He defines a list of criteria that are satisfied when a rainflow cycle is formed, and then
formulates these in terms of transition probabilities, iterating the joint distributions (assumed stationary) to convergence.
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Figure 20: A high-frequency process superposed with the three-level square wave, showing the amplitude 𝜎𝐿 of
the low-frequency rainflow half-cycle.

Figure 20 shows an example, this being a case in which the high-frequency process is wide-band.
A couple of the challenging aspects of rainflow counting are evident. First, the effective amplitude of
the low-frequency half-cycle is taken from the single highest peak of the combined curve, which has
its own statistical distribution, distinct from the distribution of the individual peaks. Second, if the
high-frequency process is wide-band, then there will be many peaks that are irrelevant to the height
of the combined signal: 𝑛𝐻 is misleadingly high.

It is conservative, from the perspective of rainflow counting, to model a wide-band process as a
narrow-band process with the same variance. In the case of the example in Fig. 20, such an approxima-
tion would be quite reasonable, since there is clearly a dominant narrow-band process containing most
of the energy. Making a narrow-band assumption, we define the characteristic frequency according to
the number of zero crossings,

𝑓 ′
𝐻 = √𝑚2

𝑚0
. (127)

The peaks then follow a Rayleigh distribution, (119). A further simplification is possible if we allow for
the fact that adjacent peaks of a narrow-band distribution tend to be correlated, and assume that the
“beating” frequency is of the same order or lower than the characteristic frequency of the low-frequency
signal. Then we do not need to consider the joint probabilities over a number of peaks: we can simply
use the Rayleigh distribution. Note that these assumptions lead to an ad hoc method, one that we
can show to be valid for the particular type of problem at hand, but not of general applicability.

Consider a high-frequency stress bin 𝜎𝑗 occurring at rate �̇�𝐻(𝜎𝑗), and a low-frequency stress bin
𝜎𝑘 occurring at rate �̇�𝐿(𝜎𝑘). These two events are assumed to be uncorrelated, which is implicit in
the nature of a stochastic spectrum, though this does not hold true if the two events are both periodic
signals. Here we can assume that at least one of the two events is stochastic, with a random phase.
For each cycle of the low-frequency signal, one half-cycle of the high-frequency signal will augment the
peak, and a second half-cycle will augment the trough. The remaining high-frequency cycles remain
unchanged.

The rate at which high-frequency cycles augment the low-frequency cycles is 𝑓𝐿: one half-cycle
at the peak, one half-cycle at the trough. The fraction of high-frequency cycles that augment a
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Figure 21: Combined (𝑛𝑆, 𝑛𝑃 , 𝑛𝐻) cycles, expressed as density rate curves. Counts obtained by the rainflow
method are compared with those from Dirlik’s equation and the proposed three-level method. The plot at left
shows a point dominated by flapwise moments, while at the right is a point dominated by edgewise moments.

low-frequency cycle is then
𝛾 = 𝑓𝐿

𝑓𝐻
. (128)

The fraction 𝛾 �̇�𝐻(𝜎𝑗) is subtracted from the original bin 𝜎𝑗 and mapped to a new bin, 𝜎𝑝 = 𝜎𝑗 + 𝜎𝑘,
where 𝜎𝑘 is distributed according to �̇�𝐿(𝜎𝑘). This leaves (1 − 𝛾) �̇�𝐻(𝜎𝑗) in the original bin.

Figure 21 shows results derived from the spectra of Fig. 14, when the approach is used to combine
the high-frequency cycles 𝑛𝐻 with 1𝑃 cycles (𝑛𝑆, 𝑛𝑃 ). Considering first the flapwise stresses (left-hand
plot), the nature of the rainflow and spectral curves differ in the low-amplitude range. Neither of the
spectral methods correctly capture the way in which the periodic component, which here is relatively
mild (Fig. 15), dissipates some of the small-amplitude cycles.34 This is to be expected, since the Dirlik
method has no consideration of periodic effects, while the three-level method conservatively neglects
this dissipation. At high stress amplitudes, the rainflow count follows a Rayleigh distribution in the
tail, which agrees precisely with that of Dirlik’s method. The three-level method overpredicts the
occurrence of extreme cycles by approximately a factor of two. This is also to be expected, since
the three-level square wave extends the time spent at the maximum and minimum values of the low-
frequency signal. Figure 22 provides a different perspective of the high-amplitude tail, here on a linear
scale.

The three-level method is not needed in cases without a strong periodic component; in this case,
Dirlik’s method can be used directly. The purpose of the three-level method is to provide reasonable
predictions in cases such as the one in the right-hand plot of Fig. 21, which has a strong 1𝑃 alternating
stress due to gravity. Here Dirlik’s method fails: one must explicitly incorporate the periodic signal
into the counting algorithm. The three-level approach correctly, albeit slightly conservatively, predicts
the way in which high-frequency stress cycles augment the gravity cycles. The residual small-amplitude
cycles are overpredicted, by design.

The strength of the three-level method is that it provides a reasonable and slightly conservative
estimate when the periodic component is small, and also a reasonable and slightly conservative estimate
when the periodic component is large. Although applying the three-level method is not necessary in
the former case, the method will provide the correct trends as periodic components become more
pronounced, for instance at points on the blade root in between the two extremes of Fig. 14.

The final step in the cycle-counting analysis is to combine (𝑛𝐻, 𝑛𝑆, 𝑛𝑃 ) with 𝑛𝐿; that is, to incor-
porate the low-frequency stochastic signal into that of Fig. 21. To do this we apply the three-phase

34Refer to Fig. 17.
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Figure 22: A close-up of the tail of the left-hand plot in Fig. 21, with a linear scale.

Figure 23: Combined (𝑛𝐿, 𝑛𝑆, 𝑛𝑃 , 𝑛𝐻) cycles, expressed as density rate curves, for the point dominated by
flapwise moments.

assumption yet again. The one catch is that a frequency of 1𝑃 is used for 𝑓𝐻 in (128), as this rep-
resents the rate associated with the major cycles of the combined (𝑛𝐻, 𝑛𝑆, 𝑛𝑃 ) signal; that is, those
cycles that would be likely to augment each peak or trough of the low-frequency signal.

Figure 23 shows the final results of the cycle counting, for the point dominated by flapwise moments.
The errors associated with the Dirlik and 3-level methods are of comparable magnitude, but the 3-
level method has the advantage of being on the conservative side. The two methods agree on the
high-amplitude cycles, which have an important influence on the fatigue life. There is evidently an
advantage to an approach – whether simplified like the 3-level method, or something more elaborate
– that treats the periodic part of the signal explicitly.

The final cycle counts for the case dominated by edgewise moments are indistinguishable from
those in the right-hand plot of Fig. 21.

For non-rotating components like the foundation, where stochastic signals dominate over periodic,
a straightforward application of Dirlik’s method gives a good estimate of the fatigue cycle counts.
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4.7.3 Actuator wear

Constraints on time and scope prevent us from developing a proper model of actuator wear, based
on the physics associated with the potential modes of degradation and failure. As an expedient for
preliminary studies, a surrogate for actuator wear is taken to be the total distance travelled,

𝒟 = ∫
𝑡

0
∣𝑑𝛼
𝑑𝜏 ∣ 𝑑𝜏, (129)

where 𝛼 is the actuator angle: 𝛽 in the case of the pitch actuators, or 𝜒 for yaw. The rate of
accumulation of wear is then

�̇� = ∣𝑑𝛼
𝑑𝑡 ∣ . (130)

The mean speed of the pitch and yaw actuators is zero, so ̇𝛼 is characterized by its variance, which
is also equal to the variance of | ̇𝛼|. A convenient measure of the actuator wear rate is therefore the
standard deviation of ̇𝛼, which can be derived from the spectrum as

𝜎�̇� = ∫
∞

−∞
𝑆�̇�(𝑓) 𝑑𝑓 = (2𝜋)2 ∫

∞

−∞
𝑓2𝑆𝛼(𝑓) 𝑑𝑓. (131)

It is recommended to revisit this in the future, and implement a method for estimating the wear rate
based on a physical model of the damage mechanisms in pitch and yaw actuation systems.

4.8 Tuning and performance

The TotalControl Reference Wind Power Plant35 is adopted as a case to demonstrate the operation
of the state observer. The turbines in this plant are an offshore version of the DTU 10 MW Reference
Wind Turbine; a description of the version used here, including the support structure and electrical
components, can be found in Anaya-Lara et al.36

The model used in this section is linearized about an operating point of a 10 m/s wind speed, and
either maximum power-point tracking (nominal operation), or an operator power command of 6 MW.

4.8.1 Setup for testing the observer

The observer can be tested with a setup like that sketched in Fig. 24. A physical model of the wind
turbine is linked with the observer model. The inputs to the wind turbine are simplified: a power
command, uniform wind speed, wind direction, and waterline ocean wave force. These simplified
inputs make it straightforward to check the observer’s estimates against the “true” values.

The wind turbine model is closed-loop, including the turbine’s controller. It outputs sensor meas-
urements and control commands, as well as a set of additional outputs: the rotor-average induction
factor 𝑎, rotor thrust 𝐹𝑇 , available aerodynamic power 𝑃𝑎, and a set of structural displacements q
at the blade root and foundation. When it comes to the sensor measurements, one simplification has
been made with respect to Fig. 4: the voltage and current measurements have been replaced by a
single value of electric (active) power, and the reactive power is not considered at present.

The sensor measurements from the turbine are fed to the state observer, which outputs the same
quantities. If the observer is functioning as it should, the estimated outputs will match the same
values from the turbine model.

35Andersen et al. (2018), Merz et al. (2019). The wind turbine specification is taken from Bak et al. (2013).
36Anaya-Lara O, et al. (2018). Offshore Wind Energy Technology. Wiley.
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Figure 24: The architecture used to test the observer.

4.8.2 Full and reduced‐order observer models

The observer is based on an open-loop wind turbine model with 296 states. It is feasible to solve for
the Kalman filter gains and implement an observer based on the full model. It is not necessary to
retain all 296 states, though, since many of these are associated with a high-frequency response that
has no impact on the wind plant controller. Better to eliminate some of the unneccesary states. This
is done with the following procedure:

1. Perform a modal transformation of the open-loop matrices. Retain those modes that contribute
to the input-to-sensor transfer functions, following the procedure described in Merz (2020).

2. Perform a Y-transformation37 to make the resulting matrices real.

3. Reduce the order of the resulting model using sequential perturbation approximation,38 pre-
serving the accuracy of the transfer functions up to a given cutoff frequency to within a given
tolerance. Here the cutoff frequency was set to 0.5 Hz.

4. Perform a second modal transformation followed by a Y-transformation, this time of the re-
duced matrices. Make the modes with eigenvalues above the cutoff frequency quasi-steady, by
partitioning the (modal) matrices and solving for the steady-state values of the high-frequency
modes. Specifically,

𝑑x1
𝑑𝑡 = (A11 − A12A−1

22 A21) x1 + (B1 − A12A−1
22 B2) u, (132)

y = (C1 − C2A−1
22 A21) x1 + (D − C2A−1

22 B2) u, (133)

with “1” indicating the retained modes, and “2” the quasi-steady modes.

Note that the reduction procedure does not alter the inputs u or outputs y; the interface variables
are unchanged. The final version of the turbine observer, used to generate the results in this report,
had 26 states.

37Merz (2020), Stevens and Lewis (2003)
38The Octave function spamodred was used; this is based on Sreeram et al. (1995) and other references cited therein.
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Table III: Observer gains along the diagonals; other entries are zero. The variable corresponding to each gain
is noted.

Q R K𝐼
𝑉 1.0 Ω 5 × 10−5 Ω 0.01
𝜃𝑉 0.1 𝑣𝑛,𝑥 0.001 𝑣𝑛,𝑥 0.10
𝐹𝑤 1.0 𝑣𝑛,𝑦 0.001 𝑣𝑛,𝑦 0.10

𝑉 1.0 𝑉 0.10
𝜃𝑉 1 × 10−4 𝜃𝑉 0.10

4.8.3 Tuning and dynamic response

The weights Q and R in (35), as well as the gains K𝐼 in (37), were tuned by trial-and-error. Good
performance was obtained with the gains listed in Table III: good tracking while not being overly
sensitive, and limited overshoot. Of particular note is the large noise placed on the anemometer wind
speed measurement 𝑉 , in the R matrix. This is in effect telling the observer that we do not trust
the anemometer, and the majority of weight should be given to the estimate of wind speed obtained
through the combination of the rotor speed, blade pitch, and electric power sensors. Also of note is the
small noise placed on the anemometer wind direction measurement. This was necessary, because the
misalignment of wind is only marginally observable through the standard sensor measurements. That
is to say, even though the anemometer measurement is noisy, it is nonetheless more reliable than the
estimate obtained from the other sensors. When the anemometer measurement was discounted (via a
higher value in the R matrix), it was found that errant wind-direction changes were predicted, which
degraded some of the other estimates. In view of the comparatively high gain on the anemometer
measurement, it is necessary that this is pre-filtered, say, with a low-pass filter, and calibrated, before
feeding it to the observer. The wind direction measurement can also be improved by a clustering
methodology, taking advantage of measurements collected at multiple wind turbines in the vicinity.39

To illustrate the performance, Figs. 25 through 28 plot the response of the turbine and observer
outputs to step changes in the power command ̂𝑃 and the wind speed 𝑉 . The oscillations seen in many
of the signals are associated with the first resonant modes of the tower, and the active damping of
these using blade pitch and electrical power. The key result is that the observer provides an accurate
estimate of the key non-sensor quantities used in control, in particular the wind speed and rotor thrust.
The integral action on the residual sensor errors is evident as gradual corrections in signals like the
wind speed.

5 Examples of controller tuning and performance

The controller from Section 3, with the observer from Section 4, were linked with a model of the
TotalControl Reference Wind Power Plant, described in Merz et al. (2019). Due to the importance
of nonlinearity to the controller’s function – particularly the saturation of the power-tracking integral
– a special simulation setup was required. Each wind turbine model is linearized about an operating
point, which for the examples of this section is taken to be a wind speed of 10 m/s and power command
of 6 MW. Working with linearized models, both for the turbines and the observers, enables them to be
reduced, and diagonalized, using the algorithm of Section 4.8.2. The matrix multiplications required
to advance the state equations in time are fast for such sparse matrices, which made simulation of the
entire plant feasible in Octave.40

Tuning of the plant controller was conducted on simplified models; the process and final tuning
are described in Section 5.1. Section 5.2 looks at the clustering of wind turbines, estimation of the

39Annoni et al. (2019), op.cit.
40Octave is an interpreted code, which is slow in comparison with compiled codes like C or Julia.
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Figure 25: The response of sensor outputs to a unit step change in the electric power command. Dark lines:
turbine model. Light lines: observed quantities. Ω: rotor speed (rad/s), 𝛽: blade pitch (rad), 𝜒: nacelle yaw
angle (rad), 𝑃𝑒: electric power (MW), 𝑣𝑛,𝑥: nacelle fore-aft velocity (m/s), 𝑣𝑛,𝑦: nacelle side-to-side velocity
(m/s), 𝑉 : wind speed (m/s), 𝜃𝑉 : wind direction (rad).
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Figure 26: The response of auxiliary outputs to a unit step change in the electric power command. 𝑎: axial
aerodynamic induction factor, 𝐹𝑇 : rotor thrust (MN), 𝑃𝑎: available power (MW), 𝑖𝜃

𝑠,𝑞: 𝑞-axis current at the
transformer terminals (kA), 𝜃𝐹,𝑥: elastic side-to-side rotation of the foundation mudline node (rad), 𝜃𝐹,𝑦: elastic
fore-aft rotation of the foundation mudline node (rad), 𝜃𝑏,𝑦: elastic flapwise rotation of the blade root node
(rad), 𝜃𝑏,𝑧: elastic edgewise rotation of the blade root node (rad).
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Figure 27: The response of sensor outputs to a unit step change in the wind speed.
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Figure 28: The response of auxiliary outputs to a unit step change in the wind speed.
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Table IV: Default tuning of the controller, for the analyses in this section.

Variable Value Units Description
𝐾𝑃 1.0 (-) Proportional gain on power tracking
𝐾𝐼 0.4 s−1 Integral gain on power tracking
𝐾𝑇 6.0 m/s Gain on thrust compensation
𝜔𝑇 0.03 Hz Thrust low-pass filter corner frequency
𝑤𝜂 0.10 (-) Normalized width of saturation band on 𝐾𝐼
𝜔𝑐 0.05 Hz Low-pass filter corner frequency for inputs
𝜔𝑛 0.24 Hz Tower notch filter frequency for inputs
𝜁1 0.04 (-) Lower damping ratio on notch filter
𝜁2 0.40 (-) Higher damping ratio on notch filter

cluster-average wind speed, and turbulence cascade. Section 5.3 illustrates how theoretical spectra
are obtained from the turbulence cascade and used to generate an estimate of component wear rate.
Section 5.4 wraps up with a simulation of the Total Control Reference Wind Power Plant, including
aspects of operation as a function of wear rate.

The simulations in Sections 5.2 through 5.4 make use of synthetic wind field data, averaged over
the rotor area, with realistic coherence across the wind plant. This data was generated according to
the empirical spectra of Vigueras-Rodriguez, et al.41 These spectra are representative of offshore sites
in the North Sea, where there is more energy at very low frequencies – that is, the weather is more
variable – than in the standard wind spectra used to design wind turbines (Burton et al. 2001).

5.1 Tuning, frequency response, and step response

Table IV lists the tunable scalar parameters in the controller, along with their values after tuning for
the DTU 10 MW wind turbine. The parameters 𝑤𝜂, 𝜔𝑛, 𝜁1, and 𝜁2 were straightforward to determine,
and require little elaboration. The other parameters have a crucial influence on the controller behavior
and system dynamics, and interact with each other – that is, they cannot be set independently. All the
gains were tuned by trial-and-error using a closed-loop dynamic model consisting of the wind turbine,
plant controller, and a “grid” that fed the power back with a gain of 𝑁𝑡, the number of turbines in
the plant. This then represents the worst-case scenario where a disturbance causes all the turbines to
respond in unison; under normal operation, the feedback mechanism through the grid is more diffuse.
Tuning was first done using a linear transfer-function model, and then nonlinear simulations were run
with elementary inputs (steps, ramps) to see the performance in the time domain, and test features
like saturation.

The low-pass filter frequency 𝜔𝑐 is applied to all the inputs, and sets the upper bound on the
bandwidth of the controller response. The value of 0.05 Hz is a tradeoff between the speed of the
power-tracking response and the desire to reject spurious signals, in particular the degree to which
high-frequency dynamics adjacent to the tower notch frequency are excited by the feed-through and
proportional-gain pathways. The gains 𝐾𝑃 and 𝐾𝐼 were tuned according to the classic criteria, a
rapid rise and slight overshoot to a step response, implying a damping ratio on the control-response
mode of around 0.5. The gain 𝐾𝑇 and low-pass frequency 𝜔𝑇 were set by scanning the (𝐾𝑇 , 𝜔𝑇 ) space,
and finding the highest 𝐾𝑇 that reduced the thrust over the frequency band 0 ≤ 𝑓 < 𝜔𝑇 , without
introducing undesireable resonance in the power-tracking response. Note that the gains 𝐾𝑃 and 𝐾𝐼
are such that, when 𝜆𝑁𝑡 ≈ 1, they dominate 𝐾𝑇 .

Figure 29 illustrates the performance of the controller in terms of transfer functions from windspeed
and power command, to electric power, rotor thrust, rotor speed, and blade pitch. The high-frequency
part of the transfer functions, above 0.1 Hz, is essentially unaffected by the choice of the plant control

41Sørensen et al. (2002, 2008), Vigueras-Rodriguez et al. (2010, 2011)
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Figure 29: Transfer functions between input wind speed and power commands, and output electric power 𝑃𝑒
(MW), rotor thrust 𝐹𝑇 (MN), rotor speed Ω (rad/s), and blade pitch 𝛽 (rad). The upper two plots show
the response under the default gains: full power tracking and thrust rejection. The lower left plot shows the
influence of reducing the power-tracking gains to zero. For reference, the lower-right plot shows the response to
changes in the wind speed, under a constant power command.

tuning; this is due to the low-pass and notch filters on the plant control inputs. The interesting portion
of the curves, for the present purposes, is that below 0.1 Hz.

The two plots at top show the response to fluctuations in wind speed and plant power command,
where the latter has been normalized such that each turbine receives a power command of unit
amplitude. Starting with the power-tracking response (top-right plot), there is a power-control mode
with a frequency of 0.09 Hz and damping ratio of around 0.4. The timescale of the response is on the
order of 10 seconds. The electrical equipment would support a faster, more aggressive response, but
this would come at the cost of exciting tower motions, and would be detrimental to the drivetrain;
then it would be necessary to continually evaluate the tradeoffs between power tracking and structural
fatigue. It is simpler and more appropriate for a baseline controller to avoid such unwanted interactions
through filtering.

As for the response to a perturbation in wind speed, this is seen in the top-left plot. Despite the
fact that the power-tracking controller is acting against the thrust compensation, there is nonetheless a
reduction in thrust over a narrow frequency band around 0.03 to 0.08 Hz; this can be seen by comparing
against the lower-right plot, which shows the response when the power command is held constant.
The thrust compensation obviously comes at the cost of increased power fluctuations; and the integral
effect of the power-tracking controller eventually overwhelms the thrust compensation, such that there
is a negligible reduction in thrust below 0.01 Hz. Given the characteristic timescales of atmospheric
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Figure 30: The response of electrical power (at top) and rotor thrust (at bottom) to unit step inputs in wind
speed (at left) and power command (at right), with different gains.

turbulence, where much of the energy is below 0.01 Hz, it is expected that the default tuning behaves
essentially as a power-tracking controller, without much thrust mitigation. The situation changes if
the power-tracking gains are reduced. The plot at lower left shows the extreme case where power
tracking is disabled. In this case the thrust compensation is effective at low frequencies.

The spike in electrical power at the tower resonant frequency (0.24 Hz) is associated with the
active damping of tower side-to-side vibration, which is part of the turbine’s internal controller, not
influenced by the plant controller.

Figure 30 provides an alternate look at the turbine response, in the time domain. A step in either
wind speed or power command was input at 𝑡 = 30 s. The plots show the response of the electrical
power (upper plots) and rotor thrust (lower plots). Different gains give different responses. The gray
curve (barely visible behind the red in the left-hand plots) is the case where there is no change in the
power command sent to the turbine. The red curve is the case where only power-command tracking is
active, without any thrust compensation. The blue curve, on the other hand, is the case with thrust
compensation and no power-command tracking. Finally, the black curve is the case where all the gains
are set to their nominal values.

Looking at the right-hand plots, it is evident that the introduction of thrust compensation degrades
the power-tracking performance, although not severely. Both tunings are equally responsive, in terms
of rise-time, but the damping of the power-tracking mode is somewhat reduced in the presence of
thrust compensation. This would appear to result in extra thrust cycles, which could be detrimental;
but keep in mind that this is a step function, which excites high-frequency dynamics, whereas a more
usual input would be a gradual ramp. The timescale of ramps in the power command should evidently
be 10 seconds or more, to avoid causing any additional oscillations in thrust.
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Figure 31: An example of the clustering algorithm for separating “turbulence” from “weather”, applied to
simulated data with proper plant-wide correlations. The black line is the cluster wind speed, drawn from the
individual turbine wind speed estimates, shown in gray. The turbine wind speed series, for which the cluster
wind speed is determined, is highlighted in red.

The plots at left show the response to a step change in wind speed. Such a sudden change in the
wind speed excites all sorts of aerodynamic and structural modes in the wind turbine, quite apart
from any effect of the plant controller. In particular the first tower side-to-side frequency is visible
in the plot of electrical power, as this is being used for active damping. In terms of the plant-control
response, the thrust compensation (blue curve) wants to increase the power set-point, in order to keep
the thrust near its original value.42 However, when power tracking is active (black curve), it pulls the
power back to its original level, and the thrust drifts accordingly.

Overall, it can be said that the closed-loop dynamics of the nominal tuning are within performance
envelopes usually considered acceptable for PI controllers. Operation is stable under the combination
of power tracking and thrust compensation, or either extreme: pure power-tracking or pure thrust
compensation. By design, with the nominal tuning, the power-tracking controller dominates the thrust
compensation; this is adjusted by scheduling down the power-tracking gains.

5.2 Clustering, weather, and turbulence cascade

Figure 31 shows the clustering algorithm of Section 4.5 at work. The black line is the cluster wind speed
for the turbine whose local wind speed is shown by the red line. Recall that the cluster wind speed
is not simply the average, but rather the maximum likelihood computed by a simplified Bayesian
method. This makes it robust to sensor errors; Fig. 32 is an example. The figure also shows the
response to a step input in the wind speed; with the current tuning, the characteristic response time
of 𝜇𝑉 is about 1 minute.

The black line in Fig. 31 is the “weather”; the difference between the black and red lines is the
“turbulence”, Fig. 33. The goal is to identify the spectral parameters of Section 4.6 (used further to
derive the instantaneous damage rate), and for this the recent history of turbulenct fluctuations is
stored, called here the “turbulence cascade”. At each timestep43 the value of the turbulence is added
to the top of the turbulence cascade, and the last value removed, advancing one step in time. The
turbulence cascade is therefore a window of a specified length in time on the curve in Fig. 33, the

42It is perhaps counterintuitive that an increase in the wind speed should result, without compensation, in a decrease
in the thrust. This is due to the blade pitch control; indeed, the static thrust-versus-windspeed curve of a wind turbine
has a negative slope in the constant-power, pitch-controlled regime.

43The turbulence cascade may be updated with a timestep that is longer than that of the simulation timestep. In the
present case, the update timestep was 1 s, compared with a simulation timestep of 0.05 s.
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Figure 32: The cluster wind speed estimate with a step input of −5 m/s at 𝑡 = 10 minutes. Two sensors are
faulty and are returning zero; the cluster wind speed (black curve, see Fig. 31 for the legend) is to be compared
with plain averaging of the signals (blue curve).

Figure 33: The time series of turbulence derived from Fig. 31, showing the window (red box) containing the
turbulence cascade at the present time (dashed line).

front edge of which is located at the present time. An example of the window is shown as a red box,
with the present time being the dashed line.

The window should be long enough that a reasonable approximation to the 𝑚0 and 𝑚2 spectral
moments can be derived. On the other hand, the window cannot be too long, because the response
to transient conditions will be too slow. For the present analyses a timestep of 1 s and a window
of 29 = 512 measurements (ca. 8.5 minutes) was chosen, based on the character of the wind speed
fluctuations in Fig. 33. In a real application, a shorter window could be justified, in order to detect
cases where a wind turbine finds itself in partial wake overlap, with a meandering wake from an
upstream turbine causing transient fluctuations in the effective wind speed. Wake effects are not
modelled in the present time series of turbulence, and we leave this as an open question for later
investigation.
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Figure 34: Single-point turbulence intensity and length scale for each turbine, derived from the turbulence
cascade after a 10-minute burn-in period. The error bars indicate the standard deviation.

5.3 Spectra for estimating component wear rate

The parameters describing the single-point turbulence spectrum at each turbine, according to (48)
through (51), are shown in Fig. 34. These are reasonable single-point values, given the nature of the
input wind data. The length scale is larger than the typical design values used with a Von Karman
spectrum, however this is consistent with the spectra from which the wind time series were generated.

A numerical example of the chain of operations from the theoretical wind spectrum to fatigue or
component wear rates was given already in Section 4,44 and need not be repeated here. There is the
question of arriving at a single scalar “damage rate” �̇�∗, for input to the controller, from the wear
rates of various components. We shall side-step the issue here, and leave the details to future work.
Broadly speaking, the problem is similar to design optimization, where a cost or objective function is
defined based on a collection of individual metrics. This is often taken as a weighted sum-of-squares;
the extremum among the individual metrics; or as a more elaborate attempt (often based on dubious
assumptions) to formulate the actual financial cost.

5.4 Controlling the TotalControl Reference Wind Power Plant

It remains to demonstrate how the turbines work in concert to balance the plant power output, while
rejecting low-frequency thrust loads. According to the controller of Section 3, the degree to which a
given turbine contributes to power balancing is set as a function of the damage rate �̇�∗. Here we shall
consider a generic, normalized damage rate that takes a value between 0 (low damage) and 1 (high
damage). Let the relationship between �̇�∗ and 𝛼𝑖 be

𝛼1 = 1 − 0.1�̇�∗ and 𝛼2 = 1 − �̇�∗. (134)

That is, as the damage rate increases from 0 to 1, the nominal share of the turbine’s power, for
determining the target thrust, drops from 1 to 0.9; and the power-tracking gain factor drops from 1
to 0, such that turbines with the highest damage metric do not contribute to balancing plant power.

Four scenarios are considered. The first is without any plant control; simply a uniform power
set-point of 6 MW is sent to each wind turbine. The next scenario is when the plant controller is
operating, and all damage rates are zero. In the third scenario, Turbine 1 is given a damage rate of
1, with the rest being zero. Finally, in the fourth scenario the turbines are initialized with random
damage rates between 0 and 1, which are then held constant throughout the simulation period.

44More details on the turbulence model can be found in Merz (2020).
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Figure 35: The power at the PCC, where the set-point is 192 MW, or 6 MW per turbine on average. Gray
line (flat at 192 MW): constant set-point. Red: zero damage. Blue: Turbine 1 unit damage. Black: random
damage.

The power tracking control is excellent. Figure 35 shows the power at the PCC during the four
scenarios. The generator power controls act quickly, and in the absence of any commands the power is
held steady at 6 MW.45 When the power-tracking and thrust mitigation control strategy is introduced,
the power fluctuations increase, though they do not exceed 0.5%. There is essentially no difference in
the overall power-tracking performance, for different distributions of damage rate among the turbines
in the plant. This is to be expected, since a decrease in the power-tracking gains at one turbine is
counterbalanced by a similar increase at another turbine.

Figure 36 provides another view of the way in which the turbines help to balance each other. These
plots are rainflow-count exceedance curves: guidance on how to read the curves is found in the figure
caption; they provide a nice way to view the statistical aspects of the fluctuations in a time series,
and have a connection with the severity of component wear. The difference between the gray curve
and the other curves illustrates how implementation of a thrust-reducing control strategy reduces the
severity of fluctuations in the thrust, while introducing fluctuations in the electric power. That much
is obvious; what is interesting is how the black and red curves match closely. The black curve shows
the case where the damage rate �̇�∗ at Turbine 1 is set to 0, and for the red curve �̇�∗ is 1; this is the
only difference between the two scenarios. Why does the level of damage at Turbine 1 not affect its
response; that is, why is it not forced to contribute more to power tracking, when its damage is 0?
The answer is that the other turbines in the plant are taking up the slack. Turbine 1 with �̇�∗ = 1
contributes nothing to power tracking; yet there are still 31 other turbines who are contributing,
and the loss of one turbine makes little difference. To state things another way, the thrust-mitigation
function, which for a single turbine appeared to be dominated by the power-tracking function (Figs. 29
and 30), is in fact fully effective when the turbine is operating as part of a plant.

Now the question is: How does the controller work when different turbines have different damage
rates? In Scenario 4, the turbines have been assigned a random value of �̇�∗, between 0 and 1. The
results are nicely summarized in Fig. 37, showing the mean and standard deviation of each turbine’s

45Not all sources of high-frequency noise are included in the electrical model, so the degree of uniformity may be
excessive.
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Figure 36: Rainflow-count exceedance curves of thrust and power for Turbine 1. Gray: constant power command
(Scenario 1). Black: damage = 0 (Scenario 2). Red: Turbine 1 damage = 1 (Scenario 3). The gray curve is near
zero in the right-hand plot. For an example of how to interpret these curves, the gray curve in the left-hand
plot indicates that there are about 100 total cycles; 40 cycles that exceed an amplitude of 0.02; 10 cycles that
exceed an amplitude of 0.11; and so on.

rotor thrust and electric power, plotted according to its damage rate. There is a significant synergy
effect by coordinating the operation of wind turbines in a plant: the severity in rotor thrust fluctuations
can be reduced for over half the turbines, with only a few turbines – those that can best tolerate it –
experiencing an increase in the severity of loading.46

These results, obtained for rotor thrust, could likely be repeated for other types of “load” com-
ponents, like driveshaft torque, blade root moments, or blade pitch actuator usage. An attempt to
simultaneously mitigate several load components, using only the electrical power command, would
require tradeoffs. This would best be handled by a more advanced control algorithm capable of act-
ing according to a cost function, specifying how the different load components should be traded. In
designing such a controller, linear-quadratic (LQR) synthesis about a steady-state operating point
would be the simplest place to start.

6 Conclusions

A supervisory control algorithm for large wind power plants has been designed. It is intended as a
baseline for comparison against more advanced algorithms. The controller tracks a total power com-
mand specified by the plant operator, while compensating for fluctuations in rotor thrust at individual
wind turbines. By taking advantage of the fact that each wind turbine is its own independently-
controlled generating unit, the plant controller is able to reduce thrust fluctuations on highly-stressed
wind turbines, while tightly following the commanded power, provided that this is below the total
power available in the given wind conditions.

The control architecture is simple, based on PI-type algorithms with a filter cascade. However,
this simplicity is attained because the controller acts on physically-meaningful inputs, which are not
available directly from the raw sensor data. A state observer is therefore necessary. A candidate design
for a state observer has been developed, following but one out of a variety of feasible approaches to the
problem. The observer architecture is based on a physical model of the wind turbine. A noteworthy
feature is its ability to provide online predictions of the fatigue damage or component wear rate, using

46These are the low-frequency fluctuations in thrust, based on a rotor-average wind speed input, akin to the frequency
band (a) in Fig. 14. There are additional sources of loading acting at higher frequencies, which are not significantly
affected, positively or negatively, by the plant-level controller.
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Figure 37: Trends in the mean and standard deviation of thrust and power fluctuations, as a function of damage
rate (Scenario 4). Nominal results for the case with a constant power command (Scenario 1) are shown in the
background.

cycle-counts derived from a spectral model of the dynamics. This includes a probabilistic clustering
algorithm to separate local turbulence from larger-scale transients in the atmospheric flow through the
plant, and thereby derive a set of analytical turbulence spectra that represent the conditions seen by
each wind turbine. The observer is well-suited to the design and tuning of plant control algorithms, and
could be useful in an operational setting; however once the system architecture is fixed and a database
of operational data is available,47 data-driven algorithms would likely outperform the proposed one.

The controller, including the observer, was tested on a model of the TotalControl Reference Wind
Power Plant. This demonstrated that the controller satisfies the performance specifications, and
indeed has the potential to provide a significant reduction in the fluctuating thrust loads experienced
by operating wind turbines. On balance, the load reductions on highly-stressed turbines far outweigh
the load increases on low-stressed turbines: there is a definite synergy effect in coordinating the
operation of wind turbines across a large wind power plant.
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