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Abstract—This article introduces a modulation technique6
for modular multilevel converter (MMC) in variable speed7
traction drives for electrical transportation referred as win-8
dowed pulsewidth modulation (W-PWM). The windowed PWM9
(W-PWM) is derived by blending the principles of operation of10
conventional modulation schemes for MMC based on the nearest11
level control (NLC) and on PWM with the aim of combining12
their inherent strengths and offering a higher degree of flexibil-13
ity. This can reduce switching losses compared to classical PWM14
schemes and lower the current harmonic distortion compared to15
NLC schemes. The window in which the PWM is applied can be16
seen as an additional degree of freedom that allows a dynamic17
optimization of the performance of the traction drive depending18
on its operating characteristics. The performance of the W-PWM19
technique is assessed in this article for several operating conditions20
and compared with conventional schemes based on NLC and on the21
phase opposition disposition PWM with both numerical simulation22
and experimental verification on a small-scale prototype. Results23
demonstrate the flexibility of the W-PWM and its potential for24
applications in electrical traction drives.25

Index Terms—AC motor drives, traction motor drives, power26
converter, road vehicle electric propulsion, pulsewidth-modulated27
power converters.28

I. INTRODUCTION29

IN THE last few decades, private transport has become one30

of the main source of pollutants and it is now clear that the31

technical improvements on conventional internal combustion32

engines (ICE) will not be sufficient to reduce the global CO233

emissions. Battery electric vehicles (BEVs) are a valid alterna-34

tive to ICE vehicles and although the sales are now accelerating,35

battery electric vehicles (BEVs) still represent only 1% of the36

consumer market. Main factors slowing the penetration of BEV37
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Fig. 1. Typical BEV powertrain.

are arguably the perceived limitations of the technology as the 38

limited vehicle range and the long battery recharge time [1]. 39

A typical power train of a BEV includes several power con- 40

verters, as represented in Fig. 1. The battery pack is composed 41

by connecting in series a large number of low voltage cells [2]. 42

Due to unavoidable differences between the cells, a battery 43

management system is required to ensure that each individual 44

cell remains within its voltage limits [3]. The traction inverter 45

is responsible to supply and control the motor, while a separate 46

on-board battery charger could be added to charge the battery 47

pack from the utility grid. In many vehicles, the on-board battery 48

charger has a low power rating, typically up to 7 kW, leading 49

to long charging times when an external dc rapid charger is not 50

available. 51

In [4], D’Arco et al. proposed a configuration for BEVs based 52

on a double star chopper cell (DSCC) converter, belonging to 53

the family of modular multilevel converter (MMC). This DSCC- 54

based configuration embeds in a single converter the functions of 55

the traction inverter [5], the battery management system (BMS) 56

[6], [7], and the battery charger [8]. Multilevel topologies as the 57

cascaded H-bridge (CHB), the single-star bridge-cell (SSBC), 58

and the single-delta bridge-cell (SDBC) topologies also can 59

control the power supplied by the individual battery modules, 60

thereby allowing the integration of both traction drive and BMS 61

functionalities. However, the DSCC offers more flexibility than 62
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CHB, SSBC, and SDBC configurations, as the direct, inverse,63

and zero sequence of the circulating currents can be used for64

cell balancing. Additionally, the DSCC can be connected to an65

external dc source for charging the batteries as an alternative to66

ac charging. For this reason, in this article, the DSCC will be67

addressed.68

Using the same converter for different tasks leads to a higher69

global efficiency in comparison with standard two-level invert-70

ers [9] with consequent more range of the BEV. This is also71

supported by the fact that balancing is achieved using the load72

current rather than transferring energy between the cells. The73

single converter does not influence negatively the reliability of74

the system since, as demonstrated in [10], the proposed topology75

presents a high redundancy. As DSCCs can handle the rated76

power also for charging operations, rapid charging is allowed77

without the need of extra hardware on-board.78

The efficiency of motor drives with DSCCs could be further79

increased by adopting new modulation strategies with lower80

switching losses. However, any modulation strategy has to81

consider the impact on the total harmonic distortion (THD) of82

the current, as harmonics increase the losses of the motor and83

generate torque ripples that lead to mechanical vibrations and84

faster wear of the transmission. In the automotive industry, the85

drive system efficiency and the injected THD are a major concern86

since it might affect the lifespan of insulation systems [11] and87

the general driving performance. As harmonics depend on load88

parameters and, hence, are not constant for all the operating89

conditions, the comparison between different modulation tech-90

niques is usually based on the voltage weighted total harmonic91

distortion (WTHD).92

Two main families of MMC modulation techniques can be93

identified in the technical literature: modulation schemes based94

on nearest level control (NLC) [12], [13] and schemes based95

on pulsewidth modulation (PWM) [14]–[16]. NLC techniques96

present the lowest switching losses but relatively high WTHD of97

the phase voltage and motor losses, whereas PWM has opposite98

characteristics. In this article, the authors propose a modulation99

technique called windowed-PWM (W-PWM) that applies PWM100

only at specific angular intervals of the reference waveform101

to achieve the optimal compromise between power losses and102

WTHD. Therefore, the angles in which PWM is applied can103

be controlled dynamically and continuously and adapted to the104

different operating conditions of the traction drive. Even if not105

explicitly addressed in this article, the proposed technique can106

be also easily extended to any electrical drives with multilevel107

converters and especially medium voltage drives for which108

switching losses are particularly critical.109

The article is organized as follows. Section II summarizes110

the application of the DSCC topology for traction drives.111

Section III reviews the state of the art of modulation techniques112

and control strategies for multilevel inverters. The W-PWM and113

its main characteristics are described in Section IV. A detailed114

description of the simulation and test rig is given in Section V.115

Section VI shows the main numerical and experimental results.116

Section VIII summarizes the main outcomes and draws the117

conclusion of this article.118

II. REFERENCE SYSTEM CONFIGURATION119

The reference system configuration assumed for this article is120

a traction drive composed by an induction machine connected to121

Fig. 2. Double star chopped cell converter topology.

a DSCC converter embedding an energy storage cell with voltage 122

vm in each module as represented in Fig. 2. As in standard 123

MMCs, the arm inductors can be mutually coupled to reduce 124

the weight of the converter and to reduce the output voltage 125

drop. To generate the output phase voltage, the following voltage 126

references are sent to the upper and lower arm of each phase 127{
vlower,k = vdc,bus

2 + vphase,k + vk,circ

vupper,k = vdc,bus

2 − vphase,k + vk,circ
(1)

where vdc,bus is the dc bus voltage, vphase,k is the phase voltage 128

reference of a generic converter leg “k” [17], and vk,circ is the 129

cell balancing control voltage referred to the same converter 130

leg [4], [18]. From upper and lower arm voltages (1), the ex- 131

pression of the output phase voltage vphase,k is obtained as 132

vphase,k =
1

2
[vlower,k − vupper,k] . (2)

If the per unit impedance of the leg inductors is low and/or 133

if the output frequency is low, vupper,k and vlower,k must be 134

generated so that the total number of inserted modules is equal 135

across the three converter legs. If this condition is not met, the 136

difference between the instantaneous voltage of the legs give 137

rise to circulating currents. 138

DSCCs can use circulating currents between legs acting on 139

vk,circ of (1) to exchange energy between battery cells, acting 140

effectively as a BMS. The energy stored in a battery can be 141

quantified by the state of charge (SOC), which is the ratio 142

between the available energy and the total battery capacity. Since 143

the estimation of the SOC is not the main focus of this article, 144

a simple Coulomb-counting method was considered for sake of 145

simplicity [10] 146

SOCh(t) = SOCh(t0)− 1

3600 ·Qmax

(∫ t

t0

ih(t)dt

)
(3)

This is the accepted version of an article published in IEEE transactions on power electronics 
http://dx.doi.org/10.1109/TPEL.2020.2969375

"© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." 



IEE
E P

ro
of

DE SIMONE et al.: WINDOWED PWM: A CONFIGURABLE MODULATION SCHEME FOR MODULAR MULTILEVEL CONVERTER 3

with SOCh(t0) the hth cell SOC at initial time, and Qmax147

the total module battery capacity in Ah. Moreover, ih(t) is148

the battery current, which was estimated knowing the current149

flowing in the arm in which the module is installed and the150

conduction state (ON or OFF) of the module itself. A positive151

current discharges the battery reducing its SOC.152

The balancing process is achieved through three control153

loops [19], namely leg balancing, arm balancing, and module154

balancing. The leg balancing algorithm operates on the dc volt-155

age reference of each leg to impose a dc circulating current. This156

current transfers energy between the phases of the converter so157

that the average SOC is the same for all the phases. The arm158

balancing algorithm balances the average SOCs of the upper159

and lower arms of each phase. The exchange of energy within160

the arms of the same leg is achieved by imposing a negative161

and positive sequence current synchronized with the output162

phase voltage [18]. The circulating currents cannot be accurately163

controlled with an NLC modulation technique in converters with164

a limited number of modules or at low frequency. This could lead165

to high circulating currents and risks of damaging the converter.166

Therefore, if cells belonging to different legs and phases are167

strongly unbalanced, a PWM modulation technique is necessary.168

Once the balancing is completed, NLC or W-PWM modulation169

techniques can be applied.170

The module balance algorithm equalizes the SOC of all the171

cells included in each arm. This is achieved by controlling the172

modules to activate using a sorting algorithm: if the current173

charges the cells of the arm, the modules with the lowest SOC174

are turned ON first; if, instead, the current discharges the cells,175

the modules with the higher SOC are used first.176

When used as battery chargers, DSCC converters can be con-177

nected to either single-phase, three-phase, and dc power sources178

with no modification of the hardware and, therefore, they are179

a versatile choice for automotive applications. As DSCCs have180

typically a high number of voltage levels, they can be connected181

to the power source with no or very small filters, reducing the182

curb weight of the BEVs on which they are installed.183

III. DSCCs MODULATION TECHNIQUES184

This section reviews the most widely used modulation tech-185

niques for DSCCs [10], [14], i.e., the NLC, the carrier phase186

shifted PWM, the phase disposition PWM (PD-PWM), the phase187

opposition disposition PWM (POD-PWM), the alternate phase188

opposition disposition PWM (APOD-PWM) and the last level189

PWM (LLPWM), which are shown in a qualitative way in Fig. 3190

in the case of four modules per arm converter.191

A. Nearest Level Control192

In the NLC modulation technique, the modules are activated193

or deactivated to minimize the error ev = v∗phase,k − vphase,k,194

where v∗phase,k represents the reference of the phase k output195

voltage, and vphase,k represents the actual phasek voltage. When196

the error is above a specified threshold, the related module is197

activated [12]. In accordance with [13], the NLC algorithm has198

been implemented considering the mean voltage of the modules199

vth(n) = (n− 1) · V m +
1

2
V m (4)

Fig. 3. Carrier and arm references of different modulation techniques.

where vth(n) is the threshold voltage of the nth module and V m 200

is the module mean voltage. 201

B. Phase Shifted Carrier Pulsewidth Modulation 202

This modulation technique is the extension of the tra- 203

ditional sinusoidal PWM strategy to multilevel convert- 204

ers [20], [15], [21], [22]. If the converter has N modules per 205

arm, the output voltage is generated by comparing 2 ·N equally 206

shifted triangle carrier signals with the arms modulation signals. 207

With this modulation technique, all the modules are switched 208

in each carrier period, removing the need of the inner arms 209

balancing algorithm (see Section II) and, hence, simplifying the 210

control of the converter. The generated output phase voltages are 211

characterized by N + 1 levels. In this modulation, the carrier 212

frequency applied to the modules fcarrier is N times smaller 213

than the desired output switching frequency fsw: fcarrier =
fsw
N . 214

Thus, each module is subjected to lower frequency harmonics. 215

C. Phase Disposition Pulsewidth Modulation 216

In this modulation technique, an individual carrier signal 217

with amplitude equal to the module voltage is assigned to each 218
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module [20], [23], [21]. The offset given by (4) is added to each219

carrier. The carrier signals are shifted by the module sorting220

algorithm. For example, if the current is charging, the modules221

with the lower SOC are shifted at the bottom to keep them222

turned ON for the maximum possible time. The total number223

of active modules for each leg differs by ±1 module. This224

leads to 2 ·N + 1 levels on the output phase voltage, but also225

introduces additional voltage ripple across the arm inductors226

with consequent increase of the circulating currents.227

D. Phase Opposition Disposition Pulsewidth Modulation228

This modulation technique is based upon the same princi-229

ples of PD-PWM, with the difference that the carriers of the230

upper arm are delayed by half a period of those of the lower231

arm [20], [21], [23]. With this modification, the total number232

of active modules per leg is always the same, independently on233

the modulation index, thus, the internal circulating currents are234

minimized. The output phase voltage is obtained changing the235

distribution of active modules between the upper and the lower236

arms within a converter leg. This modulation strategy generates237

an output phase voltage with N + 1 levels.238

E. Alternate Phase Opposition Disposition239

Pulsewidth Modulation240

The APOD-PWM is based upon the same principle of POD-241

PWM, but the carrier signals of odd modules have a 180◦ shift242

in respect to the even modules [21], [23]. In the POD-PWM,243

this modulation technique generates N + 1 levels and presents244

no theoretical voltage ripples across the dc bus.245

F. Last Level Pulsewidth Modulation246

LLPWM is a hybrid NLC-PWM modulation strategy pro-247

posed in [24]. LLPWM generally activates the components of the248

converter using NLC. At each module activation, the controller249

checks the peak value of the reference, if the module in activation250

will be the last one (top and bottom point of the reference) PWM251

will be applied on that particular module.252

IV. WINDOWED PULSEWIDTH MODULATION253

The W-PWM applies PWM around the peak value of the254

sinusoidal reference signals to reduce the harmonic distortion255

of the generated voltages. For operations with variable voltage256

amplitude and frequency like EV applications, it is necessary toQ2 257

identify the correct position of the peak values, as the signals258

are not strictly sinusoidal. To do so, the modulation is switched259

between NLC and POD-PWM in relation of the phase angle260

of the reference space vector. By choosing appropriate space261

vector phase intervals, NLC can be applied to the steepest areas262

of the output waveforms while PWM can be applied where the263

derivative of the reference is relatively small. W-PWM carrier264

signals are generated following (5), x(t) represents a triangle265

wave with average value of zero and peak values of ±1, u266

represents the control variable that turns ON and OFF the PWM267

signal and Vi is the nth module voltage268

vth(n, t) =
n−1∑
i=1

Vi + (1 + u · x(t))) · 1
2
Vn. (5)

TABLE I
W-PWM ACTIVATION ANGLES AS FUNCTION OF

φ = WINDOW, θ = SPACE VECTOR ANGLE

Fig. 4. Qualitative W-PWM arm voltages at NLC, W-PWM 60◦, 120◦ and
POD-PWM.

Starting from a three-phase voltage reference, the related 269

space vector is calculated according to 270

v∗ =
2

3

[
v∗a(t) + v∗b(t) · ej

2
3π + v∗c(t) · ej

4
3π

]
(6)

where v∗a(t), v
∗
b(t), and v∗c(t) are the three-phase output voltage 271

references. The phase of the space vector is, then, compared with 272

the intervals of Table I. In each period of the waveform, there 273

are two PWM intervals, around the positive and the negative 274

peaks, respectively. If the phase does not fall within one of the 275

two intervals, the control variable u is set to zero, thus the carrier 276

signal is replaced by its average value and the W-PWM reduces 277

to the NLC modulation. On the contrary, if the phase of the space 278

vector falls in one of the two intervals, u is set to one enabling 279

the PWM. 280

Fig. 4 shows the output converter arm voltages with different 281

W-PWM windows sizes. 282

The W-PWM enables a precise control of the PWM window 283

and the length of this window is effectively a new degree of 284
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TABLE II
TESTED MMC MAIN PARAMETERS

Fig. 5. WTHD as a function of output voltage and W-PWM window of a
generic four modules per arm MMC.

freedom for the control system. It is worth noting that for285

certain values of φ that depends on the number of modules of286

the converter and on the magnitude of the voltage reference,287

W-PWM reduces to LLPWM modulation [24].288

V. SIMULATION AND EXPERIMENTAL SET-UP289

To study the W-PWM characteristics, a Simulink model has290

been developed to obtain a relation between the harmonic291

distortion, quantified with the WTHD of the output voltage,292

the amplitude of the output voltage, the output frequency, and293

the PWM window size. The WTHD has been calculated in294

accordance with [25] as295

WTHD =
1

V1

[ ∞∑
n=2,3..

(
Vn

n

)2
]1/2

(7)

where V1 is the amplitude of the first harmonic, Vn is the296

amplitude of the nth harmonic, and n is the harmonic order.297

A switching model with the same characteristics of the small298

scale prototype whose main components are summarized in299

Table II has been used. Conduction losses were considered using300

the Simscape library blocks and matching switches and induc-301

tances parameters with the ones of the prototype. To estimate302

switching losses, the current and the voltages across each solid303

state switch were measured. Every time a change in the control304

signal is experienced, the procedures described in [26] were used305

to calculate the switching losses.306

In Fig. 5, the variation of the output voltage WTHD as a func-307

tion of the reference voltage amplitude and the PWM window308

angle is illustrated. The results have been obtained by means of309

several simulations using a V/Hz constant control law with base310

Fig. 6. Difference between the WTHDw-pwm and the WTHDNLC for a four
modules per arm MMC.

speed reached at 50 Hz and 8.4 V. It is worth noting that, when 311

the output voltage reference is below 0.25 p.u. (2.1 V), NLC does 312

not generate any signal and, hence, the WTHD of the waveform 313

cannot be calculated. Moreover, the WTHD for NLC changes 314

from 12.8% to 3.34% when the reference voltage increases from 315

2.2 to 2.5 V. However, for a clearer data representation, the vph 316

axis of Fig. 5 starts from 2.5 V since the color mapping would 317

become too flat in the zone of more interest if the minimum 318

voltage is set to lower values (e.g., 2.1 V). 319

In order to better visualize which PWM windows improve 320

the WTHD with respect to the NLC at each output volt- 321

age/frequency, the difference between the WTHD for the W- 322

PWM and the NLC is shown in Fig. 6. All the negative results 323

are represented with a color gradient where the lowest values are 324

blue and the highest values are yellow. The more negative is the 325

differential WTHD, the more the selected window is improving 326

the WTHD with respect to NLC. All the positive differences 327

instead are represented with a gray scale; those values imply 328

that the introduction of W-PWM with the corresponding window 329

leads to a worse WTHD. 330

From the analysis of Fig. 6, it is possible to determine that 331

84◦ is the smallest window ensuring a WTHD lower than NLC 332

for every value of the desired output voltage. Since the results 333

obtained by simulation (Figs. 5 and 6) could not be obtained 334

experimentally with the same detail level, the aim of the compar- 335

ison between simulation and experimental results is to validate 336

the simulation results measuring the converter performance in a 337

reduced set of operating regions. 338

The experimental tests have been carried out on a DSCC 339

prototype with four modules per arm, each one including a 340

4.2 V 10 Ah LiPo battery, as shown in Fig. 7. The main converter 341

parameters are summarized in Table II. The controller has been 342

implemented on a NI CompactRio FPGA system. From (2), it is 343

possible to state that the maximum phase voltage is one half of 344

the maximum arm voltage, thus, the maximum output voltage 345

is 8.4 V with this configuration. The converter is connected to 346

a variable load consisting of a 12–400 V step-up transformer, a 347

variac, and a resistive load, as reported in Fig. 8. In the laboratory 348

configuration, low voltage battery cells and a transformer have 349

been used both due hardware availability and safety reasons even 350

though higher voltage battery modules would be preferable in 351

a real application. With this set-up, it is possible to regulate the 352
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Fig. 7. Experimental set-up.

Fig. 8. Schematic overview of the test setup.

output current while changing the converter output voltage and353

frequency.354

The efficiency of the converter has been estimated by extrap-355

olating the measurement from a single module, as the average356

power losses are the same if the cells are well balanced.357

VI. NUMERICAL AND EXPERIMENTAL RESULTS ON A358

DOWN-SCALED SYSTEM359

The proposed W-PWM has been compared with NLC and360

POD-PWM in terms of output harmonic distortion and converter361

efficiency. The simulation and experimental tests have been362

undertaken with a load drawing 10 A rms and using a V/Hz363

constant law in the range 0 to–Hz (0 to 8.4 V) and a constantQ3 364

voltage over 50 Hz. The Simulink model used to perform the365

simulations reported in this chapter is a detailed reproduction of366

the converter described in Section V.367

Simulation results are, then, compared with experimental data368

to ensure that the detailed behavior in terms of WTHD reported369

in Fig. 6. In theory, the test rig in Fig. 7 should change only370

the equivalent resistance seen by the converter. In practice,371

also the load inductance is affected by the nonlinearity of the372

two transformers. Therefore, the equivalent load parameters373

were estimated from the experimental data and, then, used in374

the detailed simulation. The estimation of the load parameters375

was obtained starting from the first harmonics phasors of the376

measured voltage and current waveforms. The measured load377

parameters were independent from the modulation technique,378

the resultant load parameters obtained from this analysis are379

summarized in Fig. 9.380

A. WTHD Evaluation381

The voltage WTHDs are measured for different output volt-382

ages. For what concerns W-PWM, window angles multiple of383

60◦ are tested. Fig. 10 compares the voltage WTHD produced384

by the different W-PWM windows, whereby the values of 0◦ and385

180◦ are equivalent to NLC and POD-PWM, respectively. As a386

general rule, the wider the PWM window, the lower the WTHD.387

For specific values of W-PWM windows, output voltage and388

Fig. 9. Load resistance (top) and reactance (bottom) measured with
POD-PWM.

Fig. 10. Simulated output voltage WTHD when controlled with a V/Hz
constant strategy. Circles identifies points in which a new module is added to
generate the output.

output frequency, the harmonic distortion obtained by W-PWM 389

becomes higher than the NLC. 390

The NLC and the PWM follow a different approach for 391

activating additional cells. The PWM-based techniques activate 392

new modules when reaching a voltage equivalent to an integer 393

number of voltage cells while the NLC activates new modules 394

when passing values in the middle of the voltage cell. This means 395

that a diagram of the number of levels will jump from 1 to 2 at 396

6.3 V for the NLC while the same happens at 4.2 V for the PWM. 397

As a V per Hz constant control algorithm has been applied, the 398

voltage levels are proportional to the fundamental frequency of 399

the output. Additionally, as the carriers are all the same, the type 400

of PWM technique will not affect where there is the change of 401

number of levels. Changes in the number of active levels are 402

highlighted in Fig. 10 with circles. 403
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Fig. 11. Simulated (continuous line) versus measured (markers) converter
WTHDs when controlled with a V/Hz constant strategy.

Fig. 12. Simulated converter efficiency when controlled with a V/Hz
constant strategy.

The experimental data on the test rig are compared with the404

simulations in Fig. 11: the peaks of the NLC voltage WTHD405

due to the activation of a new module can be clearly seen also406

from the measurements. For the W-PWM at 120◦ and for the407

POD-PWM, this is not visible because the angle of PWM is408

sufficiently large to include the instant when an extra module409

is activated. Since the converter has four modules per arm, just410

two modules are triggered over the whole output voltage range.411

At 20 Hz, 3.36 V (on the first NLC WTHD peak), it is clear412

that W-PWM windows larger than 60◦ improve significantly413

the output WTHD. When a 60◦ window is considered, a poor414

performance is experienced, as predicted by the preliminary415

analysis shown in Fig. 6. At higher frequencies (at converter416

nominal voltage), W-PWM with 60◦ gives a very limited WTHD417

improvement with respect to NLC. W-PWM reduces the out-418

put voltage WTHD in a good agreement with the theoretical419

analysis.420

Fig. 13. Simulated (continuous line) versus measured (markers) converter
efficiency when controlled with a V/Hz constant strategy.

B. Efficiency Evaluation 421

In the simulations, the converter efficiency was calculated as 422

the ratio between the load power and the total battery injected 423

power over a predefined time period. In the experiments, the 424

efficiency was measured as the ratio of the output and input 425

energy of one module of the converter. To ensure that the data 426

extrapolated from one module represent accurately the global 427

converter efficiency, it is extremely important that each module 428

remained perfectly balanced with the others. Under this con- 429

dition, all the modules have the same voltage and contribute 430

equally to the generated power. Moreover, if the gate signals 431

are all synchronized, when the cells are balanced there is no 432

net power exchange between the three phases. To ensure this 433

assumption was met, before each test, all the cells were charged 434

an average of 30 min to restore a 100% SOC. Additionally, it 435

is important that the module selected for the measurement was 436

used as much as the others during the observation. To meet this 437

condition, the sorting algorithm that balances the module SOCs 438

[18], [19] was replaced with a function that sets the module 439

priority with a fixed periodic pattern with period 1 s. The logging 440

time interval of the instruments was set accordingly to 1 s. 441

In V/Hz constant tests, 11 points between the frequency range 442

10–100 Hz were taken for each investigated W-PWM window. 443

The load current was kept constant at 10 A below 50 Hz. For 444

NLC and some W-PWM windows, 10 A load current was not 445

reachable at low voltage references. In these conditions, the 446

maximum achievable current was set. Due to the approximations 447

introduced to measure the efficiency, the longer are the tests, the 448

higher is the unbalance level between the modules introduced 449

by unavoidable differences among the storage system, leading 450

to less reliable results. From the analysis of Fig. 13 in which 451

experimental and theoretical data are reported on the same 452

diagram, it is reasonable to state that there is a good matching 453

between theoretical and experimental results. 454

Looking at the NLC curve reported in Fig. 12, the global 455

efficiency is higher than all the other modulation schemes. 456

An efficiency drop can be seen when the second module is 457

turned ON. The phenomenon is related to the increase of the 458
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TABLE III
INDUCTION MOTOR PARAMETERS

harmonic distortion of the load that reduces the active power459

transferred, and to the short duration of module on-time that460

increases switching losses without increasing significantly the461

load active power. The efficiency of the W-PWM is always462

between the NLC and the POD-PWM. In general, the longer the463

PWM window, the higher the switching losses and, hence, the464

lower the efficiency. As expected, the POD-PWM has the lowest465

efficiency for the highest number of device commutations per466

period.467

It is worth noting that the NLC seems to be always preferable468

when looking only at the converter efficiency. However, the NLC469

increases the WTHD resulting in higher harmonics of the motor470

current and, thus, lower motor efficiency. Therefore, the global471

efficiency of the drive system is optimized with a combination472

of NLC and PWM. Moreover, increasing the WTHD could473

imply additional problems like accelerated ageing of insulation474

materials [27] and increase of torque ripple that could be not475

acceptable for several applications [28]. Finally, for EVs where476

a variable output voltage is required, NLC cannot be used at477

low voltage (i.e., at low speed) for the issues in controlling the478

circulating currents. This article demonstrates that by regulating479

the window length of the modulation, it is possible to smoothly480

increase the motor efficiency by reducing the WTHD, although481

at the expenses of a lower converter efficiency. This degree482

of freedom can be used to find a global maximum for a cost483

function accounting for overall efficiency and optimal operating484

conditions of the drive. However, this is beyond the scope of the485

article and is left for further analyses.486

VII. NUMERICAL RESULTS ON A FULL-SCALE MODEL487

In this section, the performance of the proposed modulation488

technique has been simulated numerically for further validation489

on a more realistic scale scenario. A full-scale simulation model490

has been developed to calculate the converter WTHD and effi-491

ciency when driving an automotive induction motor following492

a V/Hz constant algorithm. Motor parameters, taken from [29],493

are summarized in Table III. The converter has been sized in494

order to comply with the motor specifications with parameters495

summarized in Table IV. The simulations have been performed496

from 5 to 70 Hz with a constant load torque equal to half of the497

rated below the rated frequency, and a constant power equal to498

half of the rated over the rated frequency.499

Simulation results for the WTHD of the converter are reported500

in Fig. 16. As expected, the WTHD of the NLC is the highest for501

almost all the frequencies. Moreover, every time a new module502

is activated, a discontinuity in the derivative of the WTHD is503

TABLE IV
FULL-SCALE MMC PARAMETERS

Fig. 14. Simulated full-scale converter efficiency.

Fig. 15. Simulated full-scale converter and motor efficiency.

visible (marked with circles in the figure); this discontinuity is 504

due to the change in the shape of the output voltages. 505

The efficiency has been calculated for the converter only and 506

for the whole system (converter and induction motor) in order 507

to include in the analysis the effect of losses due to current 508

harmonics with results displayed in Figs. 14 and 15, respectively. 509

In this full scale model, similarly to what was observed in the 510

down-scaled model, at high frequency (speed), the greater is the 511
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Fig. 16. Simulated full-scale converter WTHD.

PWM window, the lower the efficiency tends to be since conduc-512

tion losses are equal for all the modulations and switching losses513

increase with the PWM window. Current harmonics are more514

relevant at low frequency (speed) since they are not strongly515

filtered by the induction motor. Thus, conduction losses of NLC516

become more relevant and the NLC efficiency is the lowest for517

several frequencies. This phenomenon is not evidenced in the518

down-scale prototype for the low number of modules making the519

switching losses more relevant with respect to the conduction520

losses.521

In an electrical drive, even more relevant than the converter522

efficiency is the global efficiency in the conversion of stored523

energy to mechanical power. The efficiency of the traction drive524

(motor plus converter) is reported in Fig. 15. From the figure, it is525

clear that the NLC modulation at low speed is almost always the526

least efficient due to the increased current harmonics implying527

additional conduction losses. In the flux weakening zone (i.e.,528

for frequencies higher than 50 Hz), the efficiency decreases for529

the more relevant effect of the viscous friction, accentuated by530

the reduction of the load torque.531

VIII. CONCLUSION532

This article proposes the windowed PWM as a modulation533

technique for double star chopped cells converters operated534

as variable frequency motor drives. The proposed modulation535

technique is compared with the NLC and the phase opposition536

disposition PWM. In comparison to the NLC, the windowed537

PWM reduces the current harmonic distortion while limiting538

the average switching frequency of the semiconductor devices.539

As predicted by simulations on a model of the converter, ex-540

perimental data show that the W-PWM presents an efficiency541

higher that POD-PWM and, hence, it would increase the range542

of battery electric vehicles.543

The introduced modulation technique adds a new degree of544

freedom, which allows a dynamic control of the output harmonic545

distortion and converter efficiency, leaving to the final user the546

flexibility to choose that is the most important factor to be547

optimized in the design. The possibility of changing the window548

angle allows variable speed drives to adapt the modulation tech- 549

nique dynamically with the speed at which the motor is rotating. 550

Although this article is proposed for BEVs, the principle on 551

which it is based can be applied also to a generic electrical drive. 552

Numerical and experimental WTHD analysis (Figs. 10 and 553

11) shows that the best window that ensures an output volt- 554

age WTHD reduction is dependent on the reference voltage 555

and on the selected frequency. Due to these factors, a field 556

implementation of that modulation technique should modify 557

W-PWM window dynamically with the working condition. 558

Although efficiency measurements in this article are affected 559

by the uncertainties of the parameters of the test rig, the experi- 560

mental results show that the efficiency achieved by the windowed 561

PWM falls between the values of the NLC and POD-PWM as 562

predicted by the numerical models. The increase in angle of the 563

window of the W-PWM reduces both the output WTHD and the 564

converter efficiency. 565

Depending on the specific application requirements, the pro- 566

posed modulation technique can be used to achieve the optimal 567

balance between efficiency and WTHD. In future works, an 568

adaptive algorithm, changing the window length as function of 569

the vehicle speed and torque, will be studied. 570
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Abstract—This article introduces a modulation technique6
for modular multilevel converter (MMC) in variable speed7
traction drives for electrical transportation referred as win-8
dowed pulsewidth modulation (W-PWM). The windowed PWM9
(W-PWM) is derived by blending the principles of operation of10
conventional modulation schemes for MMC based on the nearest11
level control (NLC) and on PWM with the aim of combining12
their inherent strengths and offering a higher degree of flexibil-13
ity. This can reduce switching losses compared to classical PWM14
schemes and lower the current harmonic distortion compared to15
NLC schemes. The window in which the PWM is applied can be16
seen as an additional degree of freedom that allows a dynamic17
optimization of the performance of the traction drive depending18
on its operating characteristics. The performance of the W-PWM19
technique is assessed in this article for several operating conditions20
and compared with conventional schemes based on NLC and on the21
phase opposition disposition PWM with both numerical simulation22
and experimental verification on a small-scale prototype. Results23
demonstrate the flexibility of the W-PWM and its potential for24
applications in electrical traction drives.25

Index Terms—AC motor drives, traction motor drives, power26
converter, road vehicle electric propulsion, pulsewidth-modulated27
power converters.28

I. INTRODUCTION29

IN THE last few decades, private transport has become one30

of the main source of pollutants and it is now clear that the31

technical improvements on conventional internal combustion32

engines (ICE) will not be sufficient to reduce the global CO233

emissions. Battery electric vehicles (BEVs) are a valid alterna-34

tive to ICE vehicles and although the sales are now accelerating,35

battery electric vehicles (BEVs) still represent only 1% of the36

consumer market. Main factors slowing the penetration of BEV37
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Fig. 1. Typical BEV powertrain.

are arguably the perceived limitations of the technology as the 38

limited vehicle range and the long battery recharge time [1]. 39

A typical power train of a BEV includes several power con- 40

verters, as represented in Fig. 1. The battery pack is composed 41

by connecting in series a large number of low voltage cells [2]. 42

Due to unavoidable differences between the cells, a battery 43

management system is required to ensure that each individual 44

cell remains within its voltage limits [3]. The traction inverter 45

is responsible to supply and control the motor, while a separate 46

on-board battery charger could be added to charge the battery 47

pack from the utility grid. In many vehicles, the on-board battery 48

charger has a low power rating, typically up to 7 kW, leading 49

to long charging times when an external dc rapid charger is not 50

available. 51

In [4], D’Arco et al. proposed a configuration for BEVs based 52

on a double star chopper cell (DSCC) converter, belonging to 53

the family of modular multilevel converter (MMC). This DSCC- 54

based configuration embeds in a single converter the functions of 55

the traction inverter [5], the battery management system (BMS) 56

[6], [7], and the battery charger [8]. Multilevel topologies as the 57

cascaded H-bridge (CHB), the single-star bridge-cell (SSBC), 58

and the single-delta bridge-cell (SDBC) topologies also can 59

control the power supplied by the individual battery modules, 60

thereby allowing the integration of both traction drive and BMS 61

functionalities. However, the DSCC offers more flexibility than 62
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CHB, SSBC, and SDBC configurations, as the direct, inverse,63

and zero sequence of the circulating currents can be used for64

cell balancing. Additionally, the DSCC can be connected to an65

external dc source for charging the batteries as an alternative to66

ac charging. For this reason, in this article, the DSCC will be67

addressed.68

Using the same converter for different tasks leads to a higher69

global efficiency in comparison with standard two-level invert-70

ers [9] with consequent more range of the BEV. This is also71

supported by the fact that balancing is achieved using the load72

current rather than transferring energy between the cells. The73

single converter does not influence negatively the reliability of74

the system since, as demonstrated in [10], the proposed topology75

presents a high redundancy. As DSCCs can handle the rated76

power also for charging operations, rapid charging is allowed77

without the need of extra hardware on-board.78

The efficiency of motor drives with DSCCs could be further79

increased by adopting new modulation strategies with lower80

switching losses. However, any modulation strategy has to81

consider the impact on the total harmonic distortion (THD) of82

the current, as harmonics increase the losses of the motor and83

generate torque ripples that lead to mechanical vibrations and84

faster wear of the transmission. In the automotive industry, the85

drive system efficiency and the injected THD are a major concern86

since it might affect the lifespan of insulation systems [11] and87

the general driving performance. As harmonics depend on load88

parameters and, hence, are not constant for all the operating89

conditions, the comparison between different modulation tech-90

niques is usually based on the voltage weighted total harmonic91

distortion (WTHD).92

Two main families of MMC modulation techniques can be93

identified in the technical literature: modulation schemes based94

on nearest level control (NLC) [12], [13] and schemes based95

on pulsewidth modulation (PWM) [14]–[16]. NLC techniques96

present the lowest switching losses but relatively high WTHD of97

the phase voltage and motor losses, whereas PWM has opposite98

characteristics. In this article, the authors propose a modulation99

technique called windowed-PWM (W-PWM) that applies PWM100

only at specific angular intervals of the reference waveform101

to achieve the optimal compromise between power losses and102

WTHD. Therefore, the angles in which PWM is applied can103

be controlled dynamically and continuously and adapted to the104

different operating conditions of the traction drive. Even if not105

explicitly addressed in this article, the proposed technique can106

be also easily extended to any electrical drives with multilevel107

converters and especially medium voltage drives for which108

switching losses are particularly critical.109

The article is organized as follows. Section II summarizes110

the application of the DSCC topology for traction drives.111

Section III reviews the state of the art of modulation techniques112

and control strategies for multilevel inverters. The W-PWM and113

its main characteristics are described in Section IV. A detailed114

description of the simulation and test rig is given in Section V.115

Section VI shows the main numerical and experimental results.116

Section VIII summarizes the main outcomes and draws the117

conclusion of this article.118

II. REFERENCE SYSTEM CONFIGURATION119

The reference system configuration assumed for this article is120

a traction drive composed by an induction machine connected to121

Fig. 2. Double star chopped cell converter topology.

a DSCC converter embedding an energy storage cell with voltage 122

vm in each module as represented in Fig. 2. As in standard 123

MMCs, the arm inductors can be mutually coupled to reduce 124

the weight of the converter and to reduce the output voltage 125

drop. To generate the output phase voltage, the following voltage 126

references are sent to the upper and lower arm of each phase 127{
vlower,k = vdc,bus

2 + vphase,k + vk,circ

vupper,k = vdc,bus

2 − vphase,k + vk,circ
(1)

where vdc,bus is the dc bus voltage, vphase,k is the phase voltage 128

reference of a generic converter leg “k” [17], and vk,circ is the 129

cell balancing control voltage referred to the same converter 130

leg [4], [18]. From upper and lower arm voltages (1), the ex- 131

pression of the output phase voltage vphase,k is obtained as 132

vphase,k =
1

2
[vlower,k − vupper,k] . (2)

If the per unit impedance of the leg inductors is low and/or 133

if the output frequency is low, vupper,k and vlower,k must be 134

generated so that the total number of inserted modules is equal 135

across the three converter legs. If this condition is not met, the 136

difference between the instantaneous voltage of the legs give 137

rise to circulating currents. 138

DSCCs can use circulating currents between legs acting on 139

vk,circ of (1) to exchange energy between battery cells, acting 140

effectively as a BMS. The energy stored in a battery can be 141

quantified by the state of charge (SOC), which is the ratio 142

between the available energy and the total battery capacity. Since 143

the estimation of the SOC is not the main focus of this article, 144

a simple Coulomb-counting method was considered for sake of 145

simplicity [10] 146

SOCh(t) = SOCh(t0)− 1

3600 ·Qmax

(∫ t

t0

ih(t)dt

)
(3)

This is the accepted version of an article published in IEEE transactions on power electronics 
http://dx.doi.org/10.1109/TPEL.2020.2969375

"© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, 

creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." 



IEE
E P

ro
of

DE SIMONE et al.: WINDOWED PWM: A CONFIGURABLE MODULATION SCHEME FOR MODULAR MULTILEVEL CONVERTER 3

with SOCh(t0) the hth cell SOC at initial time, and Qmax147

the total module battery capacity in Ah. Moreover, ih(t) is148

the battery current, which was estimated knowing the current149

flowing in the arm in which the module is installed and the150

conduction state (ON or OFF) of the module itself. A positive151

current discharges the battery reducing its SOC.152

The balancing process is achieved through three control153

loops [19], namely leg balancing, arm balancing, and module154

balancing. The leg balancing algorithm operates on the dc volt-155

age reference of each leg to impose a dc circulating current. This156

current transfers energy between the phases of the converter so157

that the average SOC is the same for all the phases. The arm158

balancing algorithm balances the average SOCs of the upper159

and lower arms of each phase. The exchange of energy within160

the arms of the same leg is achieved by imposing a negative161

and positive sequence current synchronized with the output162

phase voltage [18]. The circulating currents cannot be accurately163

controlled with an NLC modulation technique in converters with164

a limited number of modules or at low frequency. This could lead165

to high circulating currents and risks of damaging the converter.166

Therefore, if cells belonging to different legs and phases are167

strongly unbalanced, a PWM modulation technique is necessary.168

Once the balancing is completed, NLC or W-PWM modulation169

techniques can be applied.170

The module balance algorithm equalizes the SOC of all the171

cells included in each arm. This is achieved by controlling the172

modules to activate using a sorting algorithm: if the current173

charges the cells of the arm, the modules with the lowest SOC174

are turned ON first; if, instead, the current discharges the cells,175

the modules with the higher SOC are used first.176

When used as battery chargers, DSCC converters can be con-177

nected to either single-phase, three-phase, and dc power sources178

with no modification of the hardware and, therefore, they are179

a versatile choice for automotive applications. As DSCCs have180

typically a high number of voltage levels, they can be connected181

to the power source with no or very small filters, reducing the182

curb weight of the BEVs on which they are installed.183

III. DSCCs MODULATION TECHNIQUES184

This section reviews the most widely used modulation tech-185

niques for DSCCs [10], [14], i.e., the NLC, the carrier phase186

shifted PWM, the phase disposition PWM (PD-PWM), the phase187

opposition disposition PWM (POD-PWM), the alternate phase188

opposition disposition PWM (APOD-PWM) and the last level189

PWM (LLPWM), which are shown in a qualitative way in Fig. 3190

in the case of four modules per arm converter.191

A. Nearest Level Control192

In the NLC modulation technique, the modules are activated193

or deactivated to minimize the error ev = v∗phase,k − vphase,k,194

where v∗phase,k represents the reference of the phase k output195

voltage, and vphase,k represents the actual phasek voltage. When196

the error is above a specified threshold, the related module is197

activated [12]. In accordance with [13], the NLC algorithm has198

been implemented considering the mean voltage of the modules199

vth(n) = (n− 1) · V m +
1

2
V m (4)

Fig. 3. Carrier and arm references of different modulation techniques.

where vth(n) is the threshold voltage of the nth module and V m 200

is the module mean voltage. 201

B. Phase Shifted Carrier Pulsewidth Modulation 202

This modulation technique is the extension of the tra- 203

ditional sinusoidal PWM strategy to multilevel convert- 204

ers [20], [15], [21], [22]. If the converter has N modules per 205

arm, the output voltage is generated by comparing 2 ·N equally 206

shifted triangle carrier signals with the arms modulation signals. 207

With this modulation technique, all the modules are switched 208

in each carrier period, removing the need of the inner arms 209

balancing algorithm (see Section II) and, hence, simplifying the 210

control of the converter. The generated output phase voltages are 211

characterized by N + 1 levels. In this modulation, the carrier 212

frequency applied to the modules fcarrier is N times smaller 213

than the desired output switching frequency fsw: fcarrier =
fsw
N . 214

Thus, each module is subjected to lower frequency harmonics. 215

C. Phase Disposition Pulsewidth Modulation 216

In this modulation technique, an individual carrier signal 217

with amplitude equal to the module voltage is assigned to each 218
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module [20], [23], [21]. The offset given by (4) is added to each219

carrier. The carrier signals are shifted by the module sorting220

algorithm. For example, if the current is charging, the modules221

with the lower SOC are shifted at the bottom to keep them222

turned ON for the maximum possible time. The total number223

of active modules for each leg differs by ±1 module. This224

leads to 2 ·N + 1 levels on the output phase voltage, but also225

introduces additional voltage ripple across the arm inductors226

with consequent increase of the circulating currents.227

D. Phase Opposition Disposition Pulsewidth Modulation228

This modulation technique is based upon the same princi-229

ples of PD-PWM, with the difference that the carriers of the230

upper arm are delayed by half a period of those of the lower231

arm [20], [21], [23]. With this modification, the total number232

of active modules per leg is always the same, independently on233

the modulation index, thus, the internal circulating currents are234

minimized. The output phase voltage is obtained changing the235

distribution of active modules between the upper and the lower236

arms within a converter leg. This modulation strategy generates237

an output phase voltage with N + 1 levels.238

E. Alternate Phase Opposition Disposition239

Pulsewidth Modulation240

The APOD-PWM is based upon the same principle of POD-241

PWM, but the carrier signals of odd modules have a 180◦ shift242

in respect to the even modules [21], [23]. In the POD-PWM,243

this modulation technique generates N + 1 levels and presents244

no theoretical voltage ripples across the dc bus.245

F. Last Level Pulsewidth Modulation246

LLPWM is a hybrid NLC-PWM modulation strategy pro-247

posed in [24]. LLPWM generally activates the components of the248

converter using NLC. At each module activation, the controller249

checks the peak value of the reference, if the module in activation250

will be the last one (top and bottom point of the reference) PWM251

will be applied on that particular module.252

IV. WINDOWED PULSEWIDTH MODULATION253

The W-PWM applies PWM around the peak value of the254

sinusoidal reference signals to reduce the harmonic distortion255

of the generated voltages. For operations with variable voltage256

amplitude and frequency like EV applications, it is necessary toQ2 257

identify the correct position of the peak values, as the signals258

are not strictly sinusoidal. To do so, the modulation is switched259

between NLC and POD-PWM in relation of the phase angle260

of the reference space vector. By choosing appropriate space261

vector phase intervals, NLC can be applied to the steepest areas262

of the output waveforms while PWM can be applied where the263

derivative of the reference is relatively small. W-PWM carrier264

signals are generated following (5), x(t) represents a triangle265

wave with average value of zero and peak values of ±1, u266

represents the control variable that turns ON and OFF the PWM267

signal and Vi is the nth module voltage268

vth(n, t) =
n−1∑
i=1

Vi + (1 + u · x(t))) · 1
2
Vn. (5)

TABLE I
W-PWM ACTIVATION ANGLES AS FUNCTION OF

φ = WINDOW, θ = SPACE VECTOR ANGLE

Fig. 4. Qualitative W-PWM arm voltages at NLC, W-PWM 60◦, 120◦ and
POD-PWM.

Starting from a three-phase voltage reference, the related 269

space vector is calculated according to 270

v∗ =
2

3

[
v∗a(t) + v∗b(t) · ej

2
3π + v∗c(t) · ej

4
3π

]
(6)

where v∗a(t), v
∗
b(t), and v∗c(t) are the three-phase output voltage 271

references. The phase of the space vector is, then, compared with 272

the intervals of Table I. In each period of the waveform, there 273

are two PWM intervals, around the positive and the negative 274

peaks, respectively. If the phase does not fall within one of the 275

two intervals, the control variable u is set to zero, thus the carrier 276

signal is replaced by its average value and the W-PWM reduces 277

to the NLC modulation. On the contrary, if the phase of the space 278

vector falls in one of the two intervals, u is set to one enabling 279

the PWM. 280

Fig. 4 shows the output converter arm voltages with different 281

W-PWM windows sizes. 282

The W-PWM enables a precise control of the PWM window 283

and the length of this window is effectively a new degree of 284
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TABLE II
TESTED MMC MAIN PARAMETERS

Fig. 5. WTHD as a function of output voltage and W-PWM window of a
generic four modules per arm MMC.

freedom for the control system. It is worth noting that for285

certain values of φ that depends on the number of modules of286

the converter and on the magnitude of the voltage reference,287

W-PWM reduces to LLPWM modulation [24].288

V. SIMULATION AND EXPERIMENTAL SET-UP289

To study the W-PWM characteristics, a Simulink model has290

been developed to obtain a relation between the harmonic291

distortion, quantified with the WTHD of the output voltage,292

the amplitude of the output voltage, the output frequency, and293

the PWM window size. The WTHD has been calculated in294

accordance with [25] as295

WTHD =
1

V1

[ ∞∑
n=2,3..

(
Vn

n

)2
]1/2

(7)

where V1 is the amplitude of the first harmonic, Vn is the296

amplitude of the nth harmonic, and n is the harmonic order.297

A switching model with the same characteristics of the small298

scale prototype whose main components are summarized in299

Table II has been used. Conduction losses were considered using300

the Simscape library blocks and matching switches and induc-301

tances parameters with the ones of the prototype. To estimate302

switching losses, the current and the voltages across each solid303

state switch were measured. Every time a change in the control304

signal is experienced, the procedures described in [26] were used305

to calculate the switching losses.306

In Fig. 5, the variation of the output voltage WTHD as a func-307

tion of the reference voltage amplitude and the PWM window308

angle is illustrated. The results have been obtained by means of309

several simulations using a V/Hz constant control law with base310

Fig. 6. Difference between the WTHDw-pwm and the WTHDNLC for a four
modules per arm MMC.

speed reached at 50 Hz and 8.4 V. It is worth noting that, when 311

the output voltage reference is below 0.25 p.u. (2.1 V), NLC does 312

not generate any signal and, hence, the WTHD of the waveform 313

cannot be calculated. Moreover, the WTHD for NLC changes 314

from 12.8% to 3.34% when the reference voltage increases from 315

2.2 to 2.5 V. However, for a clearer data representation, the vph 316

axis of Fig. 5 starts from 2.5 V since the color mapping would 317

become too flat in the zone of more interest if the minimum 318

voltage is set to lower values (e.g., 2.1 V). 319

In order to better visualize which PWM windows improve 320

the WTHD with respect to the NLC at each output volt- 321

age/frequency, the difference between the WTHD for the W- 322

PWM and the NLC is shown in Fig. 6. All the negative results 323

are represented with a color gradient where the lowest values are 324

blue and the highest values are yellow. The more negative is the 325

differential WTHD, the more the selected window is improving 326

the WTHD with respect to NLC. All the positive differences 327

instead are represented with a gray scale; those values imply 328

that the introduction of W-PWM with the corresponding window 329

leads to a worse WTHD. 330

From the analysis of Fig. 6, it is possible to determine that 331

84◦ is the smallest window ensuring a WTHD lower than NLC 332

for every value of the desired output voltage. Since the results 333

obtained by simulation (Figs. 5 and 6) could not be obtained 334

experimentally with the same detail level, the aim of the compar- 335

ison between simulation and experimental results is to validate 336

the simulation results measuring the converter performance in a 337

reduced set of operating regions. 338

The experimental tests have been carried out on a DSCC 339

prototype with four modules per arm, each one including a 340

4.2 V 10 Ah LiPo battery, as shown in Fig. 7. The main converter 341

parameters are summarized in Table II. The controller has been 342

implemented on a NI CompactRio FPGA system. From (2), it is 343

possible to state that the maximum phase voltage is one half of 344

the maximum arm voltage, thus, the maximum output voltage 345

is 8.4 V with this configuration. The converter is connected to 346

a variable load consisting of a 12–400 V step-up transformer, a 347

variac, and a resistive load, as reported in Fig. 8. In the laboratory 348

configuration, low voltage battery cells and a transformer have 349

been used both due hardware availability and safety reasons even 350

though higher voltage battery modules would be preferable in 351

a real application. With this set-up, it is possible to regulate the 352
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Fig. 7. Experimental set-up.

Fig. 8. Schematic overview of the test setup.

output current while changing the converter output voltage and353

frequency.354

The efficiency of the converter has been estimated by extrap-355

olating the measurement from a single module, as the average356

power losses are the same if the cells are well balanced.357

VI. NUMERICAL AND EXPERIMENTAL RESULTS ON A358

DOWN-SCALED SYSTEM359

The proposed W-PWM has been compared with NLC and360

POD-PWM in terms of output harmonic distortion and converter361

efficiency. The simulation and experimental tests have been362

undertaken with a load drawing 10 A rms and using a V/Hz363

constant law in the range 0 to–Hz (0 to 8.4 V) and a constantQ3 364

voltage over 50 Hz. The Simulink model used to perform the365

simulations reported in this chapter is a detailed reproduction of366

the converter described in Section V.367

Simulation results are, then, compared with experimental data368

to ensure that the detailed behavior in terms of WTHD reported369

in Fig. 6. In theory, the test rig in Fig. 7 should change only370

the equivalent resistance seen by the converter. In practice,371

also the load inductance is affected by the nonlinearity of the372

two transformers. Therefore, the equivalent load parameters373

were estimated from the experimental data and, then, used in374

the detailed simulation. The estimation of the load parameters375

was obtained starting from the first harmonics phasors of the376

measured voltage and current waveforms. The measured load377

parameters were independent from the modulation technique,378

the resultant load parameters obtained from this analysis are379

summarized in Fig. 9.380

A. WTHD Evaluation381

The voltage WTHDs are measured for different output volt-382

ages. For what concerns W-PWM, window angles multiple of383

60◦ are tested. Fig. 10 compares the voltage WTHD produced384

by the different W-PWM windows, whereby the values of 0◦ and385

180◦ are equivalent to NLC and POD-PWM, respectively. As a386

general rule, the wider the PWM window, the lower the WTHD.387

For specific values of W-PWM windows, output voltage and388

Fig. 9. Load resistance (top) and reactance (bottom) measured with
POD-PWM.

Fig. 10. Simulated output voltage WTHD when controlled with a V/Hz
constant strategy. Circles identifies points in which a new module is added to
generate the output.

output frequency, the harmonic distortion obtained by W-PWM 389

becomes higher than the NLC. 390

The NLC and the PWM follow a different approach for 391

activating additional cells. The PWM-based techniques activate 392

new modules when reaching a voltage equivalent to an integer 393

number of voltage cells while the NLC activates new modules 394

when passing values in the middle of the voltage cell. This means 395

that a diagram of the number of levels will jump from 1 to 2 at 396

6.3 V for the NLC while the same happens at 4.2 V for the PWM. 397

As a V per Hz constant control algorithm has been applied, the 398

voltage levels are proportional to the fundamental frequency of 399

the output. Additionally, as the carriers are all the same, the type 400

of PWM technique will not affect where there is the change of 401

number of levels. Changes in the number of active levels are 402

highlighted in Fig. 10 with circles. 403
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Fig. 11. Simulated (continuous line) versus measured (markers) converter
WTHDs when controlled with a V/Hz constant strategy.

Fig. 12. Simulated converter efficiency when controlled with a V/Hz
constant strategy.

The experimental data on the test rig are compared with the404

simulations in Fig. 11: the peaks of the NLC voltage WTHD405

due to the activation of a new module can be clearly seen also406

from the measurements. For the W-PWM at 120◦ and for the407

POD-PWM, this is not visible because the angle of PWM is408

sufficiently large to include the instant when an extra module409

is activated. Since the converter has four modules per arm, just410

two modules are triggered over the whole output voltage range.411

At 20 Hz, 3.36 V (on the first NLC WTHD peak), it is clear412

that W-PWM windows larger than 60◦ improve significantly413

the output WTHD. When a 60◦ window is considered, a poor414

performance is experienced, as predicted by the preliminary415

analysis shown in Fig. 6. At higher frequencies (at converter416

nominal voltage), W-PWM with 60◦ gives a very limited WTHD417

improvement with respect to NLC. W-PWM reduces the out-418

put voltage WTHD in a good agreement with the theoretical419

analysis.420

Fig. 13. Simulated (continuous line) versus measured (markers) converter
efficiency when controlled with a V/Hz constant strategy.

B. Efficiency Evaluation 421

In the simulations, the converter efficiency was calculated as 422

the ratio between the load power and the total battery injected 423

power over a predefined time period. In the experiments, the 424

efficiency was measured as the ratio of the output and input 425

energy of one module of the converter. To ensure that the data 426

extrapolated from one module represent accurately the global 427

converter efficiency, it is extremely important that each module 428

remained perfectly balanced with the others. Under this con- 429

dition, all the modules have the same voltage and contribute 430

equally to the generated power. Moreover, if the gate signals 431

are all synchronized, when the cells are balanced there is no 432

net power exchange between the three phases. To ensure this 433

assumption was met, before each test, all the cells were charged 434

an average of 30 min to restore a 100% SOC. Additionally, it 435

is important that the module selected for the measurement was 436

used as much as the others during the observation. To meet this 437

condition, the sorting algorithm that balances the module SOCs 438

[18], [19] was replaced with a function that sets the module 439

priority with a fixed periodic pattern with period 1 s. The logging 440

time interval of the instruments was set accordingly to 1 s. 441

In V/Hz constant tests, 11 points between the frequency range 442

10–100 Hz were taken for each investigated W-PWM window. 443

The load current was kept constant at 10 A below 50 Hz. For 444

NLC and some W-PWM windows, 10 A load current was not 445

reachable at low voltage references. In these conditions, the 446

maximum achievable current was set. Due to the approximations 447

introduced to measure the efficiency, the longer are the tests, the 448

higher is the unbalance level between the modules introduced 449

by unavoidable differences among the storage system, leading 450

to less reliable results. From the analysis of Fig. 13 in which 451

experimental and theoretical data are reported on the same 452

diagram, it is reasonable to state that there is a good matching 453

between theoretical and experimental results. 454

Looking at the NLC curve reported in Fig. 12, the global 455

efficiency is higher than all the other modulation schemes. 456

An efficiency drop can be seen when the second module is 457

turned ON. The phenomenon is related to the increase of the 458
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TABLE III
INDUCTION MOTOR PARAMETERS

harmonic distortion of the load that reduces the active power459

transferred, and to the short duration of module on-time that460

increases switching losses without increasing significantly the461

load active power. The efficiency of the W-PWM is always462

between the NLC and the POD-PWM. In general, the longer the463

PWM window, the higher the switching losses and, hence, the464

lower the efficiency. As expected, the POD-PWM has the lowest465

efficiency for the highest number of device commutations per466

period.467

It is worth noting that the NLC seems to be always preferable468

when looking only at the converter efficiency. However, the NLC469

increases the WTHD resulting in higher harmonics of the motor470

current and, thus, lower motor efficiency. Therefore, the global471

efficiency of the drive system is optimized with a combination472

of NLC and PWM. Moreover, increasing the WTHD could473

imply additional problems like accelerated ageing of insulation474

materials [27] and increase of torque ripple that could be not475

acceptable for several applications [28]. Finally, for EVs where476

a variable output voltage is required, NLC cannot be used at477

low voltage (i.e., at low speed) for the issues in controlling the478

circulating currents. This article demonstrates that by regulating479

the window length of the modulation, it is possible to smoothly480

increase the motor efficiency by reducing the WTHD, although481

at the expenses of a lower converter efficiency. This degree482

of freedom can be used to find a global maximum for a cost483

function accounting for overall efficiency and optimal operating484

conditions of the drive. However, this is beyond the scope of the485

article and is left for further analyses.486

VII. NUMERICAL RESULTS ON A FULL-SCALE MODEL487

In this section, the performance of the proposed modulation488

technique has been simulated numerically for further validation489

on a more realistic scale scenario. A full-scale simulation model490

has been developed to calculate the converter WTHD and effi-491

ciency when driving an automotive induction motor following492

a V/Hz constant algorithm. Motor parameters, taken from [29],493

are summarized in Table III. The converter has been sized in494

order to comply with the motor specifications with parameters495

summarized in Table IV. The simulations have been performed496

from 5 to 70 Hz with a constant load torque equal to half of the497

rated below the rated frequency, and a constant power equal to498

half of the rated over the rated frequency.499

Simulation results for the WTHD of the converter are reported500

in Fig. 16. As expected, the WTHD of the NLC is the highest for501

almost all the frequencies. Moreover, every time a new module502

is activated, a discontinuity in the derivative of the WTHD is503

TABLE IV
FULL-SCALE MMC PARAMETERS

Fig. 14. Simulated full-scale converter efficiency.

Fig. 15. Simulated full-scale converter and motor efficiency.

visible (marked with circles in the figure); this discontinuity is 504

due to the change in the shape of the output voltages. 505

The efficiency has been calculated for the converter only and 506

for the whole system (converter and induction motor) in order 507

to include in the analysis the effect of losses due to current 508

harmonics with results displayed in Figs. 14 and 15, respectively. 509

In this full scale model, similarly to what was observed in the 510

down-scaled model, at high frequency (speed), the greater is the 511
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Fig. 16. Simulated full-scale converter WTHD.

PWM window, the lower the efficiency tends to be since conduc-512

tion losses are equal for all the modulations and switching losses513

increase with the PWM window. Current harmonics are more514

relevant at low frequency (speed) since they are not strongly515

filtered by the induction motor. Thus, conduction losses of NLC516

become more relevant and the NLC efficiency is the lowest for517

several frequencies. This phenomenon is not evidenced in the518

down-scale prototype for the low number of modules making the519

switching losses more relevant with respect to the conduction520

losses.521

In an electrical drive, even more relevant than the converter522

efficiency is the global efficiency in the conversion of stored523

energy to mechanical power. The efficiency of the traction drive524

(motor plus converter) is reported in Fig. 15. From the figure, it is525

clear that the NLC modulation at low speed is almost always the526

least efficient due to the increased current harmonics implying527

additional conduction losses. In the flux weakening zone (i.e.,528

for frequencies higher than 50 Hz), the efficiency decreases for529

the more relevant effect of the viscous friction, accentuated by530

the reduction of the load torque.531

VIII. CONCLUSION532

This article proposes the windowed PWM as a modulation533

technique for double star chopped cells converters operated534

as variable frequency motor drives. The proposed modulation535

technique is compared with the NLC and the phase opposition536

disposition PWM. In comparison to the NLC, the windowed537

PWM reduces the current harmonic distortion while limiting538

the average switching frequency of the semiconductor devices.539

As predicted by simulations on a model of the converter, ex-540

perimental data show that the W-PWM presents an efficiency541

higher that POD-PWM and, hence, it would increase the range542

of battery electric vehicles.543

The introduced modulation technique adds a new degree of544

freedom, which allows a dynamic control of the output harmonic545

distortion and converter efficiency, leaving to the final user the546

flexibility to choose that is the most important factor to be547

optimized in the design. The possibility of changing the window548

angle allows variable speed drives to adapt the modulation tech- 549

nique dynamically with the speed at which the motor is rotating. 550

Although this article is proposed for BEVs, the principle on 551

which it is based can be applied also to a generic electrical drive. 552

Numerical and experimental WTHD analysis (Figs. 10 and 553

11) shows that the best window that ensures an output volt- 554

age WTHD reduction is dependent on the reference voltage 555

and on the selected frequency. Due to these factors, a field 556

implementation of that modulation technique should modify 557

W-PWM window dynamically with the working condition. 558

Although efficiency measurements in this article are affected 559

by the uncertainties of the parameters of the test rig, the experi- 560

mental results show that the efficiency achieved by the windowed 561

PWM falls between the values of the NLC and POD-PWM as 562

predicted by the numerical models. The increase in angle of the 563

window of the W-PWM reduces both the output WTHD and the 564

converter efficiency. 565

Depending on the specific application requirements, the pro- 566

posed modulation technique can be used to achieve the optimal 567

balance between efficiency and WTHD. In future works, an 568

adaptive algorithm, changing the window length as function of 569

the vehicle speed and torque, will be studied. 570
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