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Abstract: The effect of calcium nitrate (CN) dosages from 0 to 3% (of cement mass) on the properties
of fresh cement paste rheology and hardening processes and on the strength of hardened concrete
with two types of limestone-blended composite cements (CEM II A-LL 42.5 R and 42.5 N) at
different initial (two-day) curing temperatures (-10 °C to +20 °C) is presented. The rheology results
showed that a CN dosage up to 1.5% works as a plasticizing admixture, while higher amounts
demonstrate the effect of increasing viscosity. At higher CN content, the viscosity growth in normal
early strength (N type) cement pastes is much slower than in high early strength (R type) cement
pastes. For both cement-type pastes, shortening the initial and final setting times is more effective
when using 3% at +5 °C and 0 °C. At these temperatures, the use of 3% CN reduces the initial setting
time for high early strength paste by 7.4 and 5.4 times and for normal early strength cement paste
by 3.5 and 3.4 times when compared to a CN-free cement paste. The most efficient use of CN is
achieved at -5 °C for compressive strength enlargement; a 1% CN dosage ensures the compressive
strength of samples at a =5 °C initial curing temperature, with high early strength cement exceeding
3.5 MPa but being less than the required 3.5 MPa in samples with normal early strength cement.

Keywords: calcium nitrate; Portland-limestone cement; low temperature; setting time; compressive
strength

1. Introduction

Concrete is a composite material made up of cement matrix and aggregates. The gel,
which is formed during the reaction between cement and water, solidifies and binds the
aggregates. The most common binders for concrete are various types of Portland cements.
According to the research, the cement industry relates to 5-8% of total human CO2
emissions [1,2] that is responsible for climate change [3]. One ton of cement produces
about 900 kg of CO2 [4]. In this case of blended cements, energy losses and carbon
footprint are reduced [5,6]. In global practice, the partial replacement of Portland cement
with mineral additives in concrete has been used for a long time.

Limestone composite cement production requires less energy and emits less carbon
dioxide, meaning that it has a better environmental performance than other types of
cements [7]. The use of limestone to replace cement has been approved in many standards,
such as the Canadian Standards Association (since 1983) [8], the European standard EN
197-1 (since 2000) [9], and ASTM C150 (since 2004) [10]. The usage of one generally
accepted method allows us to adapt limestone as a partial replacement for clinker to
obtain limestone-Portland cement in which, according to the European standard EN 197-
1:2011, is allowed to replace 6-35% of clinker with limestone. In order to increase the use
of limestone in cement production, cements with up to 65% of limestone [11] have been
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developed according to the limits of EN 197-1 and a concrete modification technology has
been proposed [12]. Replacing 5-10% of cement with limestone provides only a similar or
higher compressive strength than without [13]. The data presented reveal that concrete
samples with up to 20% of limestone CEM II (A-L or A-LL) had similar values of
compressive strength as CEM 142.5 of concrete samples [14]. Studies reveal that, at a given
water/cement ratio, concrete samples containing limestone could achieve a higher
compressive strength and modulus of elasticity than the control samples made of pure
Portland cement (CEM I) [15].

The influence of limestone on cement minerals is based on the delay in hydration of
tricalcium aluminate during the first 16 h of hydration, which is the result of the chemical
interaction between limestone and calcium aluminate hydrate and monosulfate [16],
although some researchers hold opposite views [17]. Such a delay of the hydration process
of Portland cement and possible decrease in the heat of hydration can have a negative
effect on concreting at low temperatures. The use of limestone CEM II (A-LL) for
concreting in low temperatures is problematic because not only do the setting times
become longer but also the strength of the concrete decreases [18].

There are several known methods for concreting at low temperatures, such as heating
the aggregate and water, the use of preventive measures, and insulation and heating of
the concrete site. In contrast, the main danger in the production of concrete in winter
conditions is negative temperature, which slows down the hydration processes, especially
when ice starts to form. As it is pointed out in the research [19], the hydration rate of a
cement sample at -5 °C temperature reaches only 16.7% compared to a sample cured at
+20 °C temperature. As pointed out in [20] at temperatures lower than -5 °C, up to 92% of
water, present in non-solidificated concrete, can transform into ice. As a result of such
conditions, the strength evolution in such concrete was considerably retarded even
considering that there is very little water that can react with cement. Although there is a
gradual increase in strength as the concrete thaws, such concrete generally does not meet
the requirements. In the event that the concrete mixture freezes, the strength properties of
this concrete as well as its resistance to cyclic freezing-thawing decrease by 20—-40% [21].

The use of high-strength cement or chemical admixtures can also be used to
accelerate setting and to increase early strength [18,22]. A technologically simplified
method is to lower the freezing point of the concrete mix. Anti-freezing admixtures for
concreting can be used even at temperatures of —30 °C [23,24]. Set accelerating admixtures
include urea, CN, calcium chloride, sodium nitrite, sodium chloride, potassium, and
calcium chloride—nitrite—nitrate [22,25,26]. Admixtures such as calcium chloride, calcium
nitrite, and CN, containing the same cations as alite and belite, accelerate hydration and
thus activate hydrate crystallization processes [24,26]. CN in the paste [27] increases the
concentration of calcium ions, leading to a faster calcium silicate hydrate (CSH) formation
and reduces ettringite formation. Set accelerating admixtures increase the strength of
concrete, lower the freezing temperature of cement paste, accelerate cement hydration
processes [26,28], increase the surface area of hardened cement paste, and affect the pore
structure of the hardened cement paste [23,28]. According to EN 934 [29], a set accelerating
admixture should reduce the initial setting time by at least 30 min at +20 °C-27 °C and a
maximum of 60% of the initial setting time of the control mix at +5 °C, determined at equal
consistence of mortar. The concrete samples with a hardening accelerating admixture after
1 day at +20 °C-27 °C temperature should achieve a compressive strength of at least 120%
when compared to the reference and a compressive strength of at least 130% when
compared to the reference value after 2 days at +5 °C at equal consistence of mortar (EN
934 [29]). CN and NaNO:s are often used together with CaCl: as setting accelerators and
has an impact on the hydration of Portland cement [27,30-32]. The results from several
investigations demonstrated that the chloride salts accelerate hardening and setting times;
other nitrite salts work as setting accelerators [24]. NaNOs, K2COs, and Na2SOs promote
the hydration of cement; however, they possess different chemical mechanisms of
acceleration [22,32].
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Today, most suppliers of admixtures offer accelerators based on CN [33,34]. CN like
non-chlorine set accelerating salts was patented in 1969 [35]. CN makes an impact on
concrete properties such as multifunctioning admixtures: set accelerator, anti-freeze
admixture, inhibitor, long-term strength enhancer, and counteraction of retardation by
plasticizers while maintaining rheology [34,36-38]. Justnes et al. investigated at +5 °C, +13
°C, and +23 °C the final and initial setting of cement pastes with 1.55% CN. They found
that it works better at lower temperatures [36]. Ramachandran found that CN at low
temperatures and concentrations acted as a setting time accelerator in cement [32].
According to El-Didamony and other researchers, the set acceleration of CN increases
with increasing belite content in cement [39].

Dong et al. investigated the workability and strength increase in concrete when
curing at several temperatures (-5 °C, -10 °C, -15 °C, and —20 °C) and under standard
conditions using different admixtures such as water-reducing accelerators, chlorine-free
antifreeze, and air-entraining admixtures [40]. They argued that admixtures can shorten
setting times, can ensure the sufficient strength of concrete early, can inhibit negative
temperature effects of concrete, and can facilitate thermal storage of concrete. The
researchers studied the use of urea and CN in concreting in cold conditions [23-25].
Concrete samples with 6% CN admixture and without at -5 °C, -10 °C, -15 °C, and 20 °C
were investigated. The CN significantly affected the early age compressive strength
[24,40]. The compressive strength increases with the amount of admixture. It is stated that
CN can be used for cold concreting without any additional measures. Antifreeze admixture
CN influenced the hydration process according to [41]. The best physical and mechanical
properties of the concrete mixtures were obtained when 3% calcium nitrate and 5%
hydroxyethylamine mixtures were used.

The use of limestone CEM II (A-LL) cements for concreting in cold weather is
virtually unexplored and their interaction with CN is insufficiently studied. That is why,
for this study, two limestone cements, CEM II A-LL 42.5R and CEM II A-LL 42.5N, are
studied. This article analyses the influence of CN on the properties of fresh cement paste
hardening processes and hardened concrete properties at different initial curing
temperatures.

2. Materials and Methods

High early strength and ordinary early strength limestone-Portland cements from UAB
AKMENES CEMENTAS (Akmene, Lithuania) were used for the research. Both cements were
produced during the same period, and the same clinker was used in the production of both
cements.

The main properties and mineralogical composition of cements are presented in
Tables 1 and 2.

Table 1. Properties of cement.

Compressive Fineness
Cement Type Marking Strength, MPa ]
Blaine, cm2-g!
7 Days 28 Days
CEMII A-LL425R CEMIIR 29.9 51.1 4400
CEMII A-LL 425N CEMIIN 23.7 51.2 4080

Table 2. Mineralogical composition of cement.

Cement Type Marking GCS, % CS,% GCA, % C4AF, %
CEMII A-LL 42.5R CEM IIR 58.7 12.9 6.3 10.79
CEMII A-LL 42.5N CEM IIN 61.8 8.57 7.1 11.9
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Fine aggregate (sand of 0/4 fraction) and coarse aggregate (gravel of 4/16 fraction)
were used for concrete production. Both aggregates met the requirements for concrete of
the standard EN 12620:2003. The used water complied with the requirements of the
standard EN 1008:2005.

All material used in the studies and the stirring of pastes were carried out at a
temperature of +20 °C. Water for a normal consistency cement paste has been determined
at the temperature of +20 °C too. The w/c ratio in cement pastes was 0.24 for CEM IIN and
0.267 for CEM IIR pastes. The compositions of fresh cement pastes for investigating
viscosity and setting times are presented in Table 3.

Table 3. Compositions of fresh cement pastes for investigating viscosity and setting times.

Batch Materials (in Mass%)
- CEM IIR CEM IIN CN * W/C
RP-0 100 - 0 0.267
RP-0.5 100 - 0.5 0.267
RP-1 100 - 1 0.267
RP-1.5 100 - 1.5 0.267
RP-2 100 - 2 0.267
RP-2.5 100 - 2.5 0.267
RP-3 100 - 3 0.267
NP-0 - 100 0 0.240
NP-0.5 - 100 0.5 0.240
NP-1 - 100 1 0.240
NP-1.5 - 100 1.5 0.240
NP-2 - 100 2 0.240
NP-2.5 - 100 2.5 0.240
NP-3 - 100 3 0.240

* over 100% of cement.

Cement pastes with CN dosages from 0 to 3% (from cement mass) were prepared for
the tests. The CN was dissolved in water before mixing. The effect of CN on the cement
paste setting times (initial and final) were tested using the Vicat device (Controls, Milan,
Italy). The setting was registered by penetrating the cement paste with a needle using
constant force. The sample was tested every 10 min. The initial setting time was recorded
when the needle does not penetrate the entire thickness of the sample, and the final setting
time was recorded when the needle can no longer penetrate the sample. The Vicat device
was stored in a temperature-controlled freezing chamber at +20 °C, +5 °C, 0 °C, -5 °C, and
-10 °C temperatures. For the measurements, the Vicat device with paste sample was
shortly (about 10 s) removed from the chamber and returned back to the chamber
immediately after the measurements. The measurements took place at ambient
temperature (20 + 2 °C).

The dynamic viscosity of cement pastes with different amounts of CN was studied
with an SV-10 vibro-viscometer (from A&D, Tokyo, Japan (SV-10)). The measuring limit
of this device was 12,000 mPa-s; the measuring accuracy reached 0.01 mPa-s. Cuvettes of
45 mL volume were used for the tests. The volume of cement paste sample was 35 mL.
The device measures the resistance of the paste viscosity to constant vibration of gauge
plates at 30 Hz frequency. The proportional to viscosity resistance force was transformed
into an electrical signal and registered. The dynamic viscosity of the prepared pastes was
immediately measured (5 min after the addition of water to the cement) and then after 10,
20, and 30 min. The temperature of the pastes was +20 + 3 °C.

Select concrete mixes were prepared in the laboratory. Before concrete mixing, the
CN was dissolved in water. First, the dry mixture of cement, and fine and coarse
aggregates were mixed in a pan-type laboratory mixer for 1 min. Water with CN or
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without it was then added and stirred for 3 min. The amount of CN varied from 0.5 to 3%
from the cement mass. The amount of water and cement in all mixes was the same. The
v/c for all mixtures was the same: 0.55. In all mixtures, an amount of 0.5% from the cement
mass of the superplasticizer was used. The quantity of raw materials is presented in Table
4.

Table 4. Quantity (in kg) of raw materials necessary to prepare 1 m? of concrete.

Batch CEMIIR CEMIIN Sand Gravel CN  Superplasticizer = Water

RB-0 310 - 925 1005 0 1.55 170
RB-0.5 310 - 925 1005 1.55 1.55 170
RB-1 310 - 925 1005 3.1 1.55 170
RB-2 310 - 925 1005 6.2 1.55 170
RB-3 310 - 925 1005 9.3 1.55 170
NB-0 - 310 925 1005 0 1.55 170
NB-0.5 - 310 925 1005 1.55 1.55 170
NB-1 - 310 925 1005 3.1 1.55 170
NB-2 - 310 925 1005 6.2 1.55 170
NB-3 - 310 925 1005 9.3 1.55 170

The slump and the density of the concrete mixture were evaluated according to EN
12350-2 and EN 12350-6. The entrained air content was measured from the concrete
mixture by EN 12350-7 using the pressure gauge method and equipment. Concrete
samples were placed in molds and cured for 2 days at selected temperatures (—10 °C to
+20 °C) in the freezing chamber, and then for another 26 days, they were cured in water
at +20 °C. Samples (100 mm x 100 mm x 100 mm) molded from the prepared mixture were
kept in molds for 2 days in different conditions in the chamber RUMED 3001 (Controls,
Milan, Italy) (at select temperatures +20 °C, +5 °C, 0 °C, -5 °C, and —10 °C) and, then for 26
days, cured in water at a temperature of +20 °C. The control sample groups after
demolding were held in water curing for 28 days at ambient temperature (+20 + 2 °C).

Hardening of the samples was carried out according to EN 12390-2; density and
compressive strength were measured according to EN 12390-7 and EN 12390-3,
respectively. Each of the 6 samples from each batch was compressed, and their total
average was calculated.

3. Results
3.1. Cement Paste Viscosity Test

The use of a vibro-viscosimeter to measure the viscosity of cement pastes is very
useful because it allows us to observe the changes in cement paste viscosity at any interval
until the viscosity of the paste reaches the limit value of the instrument readings. Changes
in dynamic viscosity represent degradation of rheological properties, loss of workability
during the hydration process, and the development of new phases. The results of the CN
dosage impact on CEM IIR (high early strength) and CEM IIN (ordinary early strength)
cement pastes’ viscosities are presented in Figure 1; Figure 2 during times up to 30 min.

Immediately after paste preparation, the viscosity of control CEM IIR and CEM IIN
pastes differed significantly. CEM IIR paste viscosity is 14.7% lower than the CEM IIN
paste viscosity (Figure 1; Figure 2). This difference is partly due to the higher w/c in the
CEM IIR paste. Another reason is that CEM IIN contains significantly more minerals CzA
and CsS, which are immediately involved in the hydration process and increase the
viscosity of the paste [42]. A similar difference persists after 30 min of measurements.

Increasing the CN amount in CEM IIR from 0.5% to 1.5% immediately after mixing
decreases the viscosity of the paste from 11.3% to 24.6% relative to the reference (LR in
Figure 1). A paste containing 2% CN increases the viscosity of the paste up to 24.2% when
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compared to a paste with 1.5% of a CN admixture. Larger amounts of CN (2.5-3%)
increase the viscosity of a paste by 7.05-12.2% in comparison to the control sample and by
41.9% and 48.8% in comparison to a paste with 1.5% CN. The same tendency remains
when increasing the time after mixing. In pastes with larger amounts of CN (2-3%) after
30 min, the viscosity of pastes is 18.5-38.3% higher than that for the control paste. The
viscosity of pastes with less (0.5-1.5%) CN is higher than in that in the control paste by
4.0-8.0% after 30 min from mixing. We can conclude that higher amounts 2-3% CN
promote the significant growth of viscosity of pastes. It can be supposed that a higher
mixing water content is required to achieve normal consistency of the CEM IIR paste,
which can induce a more active reaction of CN with CsA and CsS.

12,000

[ Jinitial [ 20 min

10,000 | == 10 min I 30 min
8 000-
6 000-
4000+
2000+
0

RP-0 RP-0.5 RP-1 RP-1.5 RP-2 RP-2.5 RP-3

Viscosity (mPa-s)

Composition

Figure 1. Viscosity of CEM IIR paste (LR) with different dosages of CN (0-3%) depending on time
at +20 °C temperature (0—immediately after paste preparation; 10—after 10 min; 20 —after 20 min;
30—after 30 min).

12,000
V77 A initial [ 20 min
10,0004 222 10 min (B8 30 min
’&?
& 8 000+
[a T}
é 6 000+
Z, FA
& 4000+
Q
.4
> 20004
o LA &

NP-0 NP-0.5 NP-1 NP-1.5 NP-2 NP-2.5 NP-3
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Figure 2. Viscosity of CEM IIN paste (LN) with different dosages of CN (0-3%) depending on time
at +20 °C temperature (0—immediately after paste preparation; 10—after 10 min; 20 —after 20 min;
30—after 30 min).

An increase in CN in the CEM IIN paste from 0.5%, 1.0%, 1.5%, and 2.0% decreases
the viscosity of paste by 11.1%; 13.3%, 15.3%, and 10.2%, respectively, immediately after
mixing. When the amount of CN is increased to 2.5% and 3%, viscosity starts to increase
compared to the control sample LN in Figure 2 until 2.4% and 9.4%. Greater differences
in comparison to CEM IIR pastes are observed after 20-30 min, when the viscosity in
pastes with more (2-3%) CN increases until 4.9-22.6% in comparison to the control CEM
IIN-type paste sample. The viscosity of pastes with less (0.5-1.5%) CN is higher by 0.63—
3.2% than that in control pastes.



Materials 2021, 14, 1611

7 of 24

We can conclude that lower amounts up to 2% CN reduces the viscosity of pastes but
that amounts more than 2% demonstrate the effect of increasing viscosity. This may be
due to the increase in paste’s temperature: with an increase in CN amount in the paste,
the temperature of paste increases significantly via high CN dosage. This effect has been
described by Kicaite et al. [43], where the exothermic profile of cement pastes with CN
amounts 0-3% was tested. It was obtained that CN noticeably increases paste temperature
during the first 30 min (up to 31 °C in pastes with 3% CN), reduces the induction period,
and fastens the exothermic reaction (EXO) maximum time. Additionally, higher paste
temperatures also promote faster hydration of cement minerals and result higher
mechanical properties [19,44,45].

The second reason can be granulometry of both cements. For CEM IIR pastes, the
smaller cement particles can induce a more active reaction between CN and the cement
minerals C3A and CsS. We also can see that, in the presence of higher amounts of CN, the
growth of viscosity in CEM IIN pastes is much slower than in the CEM IIR pastes.

3.2. Setting Time of Cement Paste with CN at Different Temperatures

The setting time tests were performed by varying the amount of CN in the paste from
0 to 3% and the test temperature from +20 °C to 0 °C (Figures 3-6).

At +20 °C, CN shortens the initial and final setting times of both cement pastes
(Figures 3-6). Shortening the final setting time is more effective when using large amounts
of CN. The difference between the initial and final setting times is more than 50 min for
control cement pastes (58 min in the case of CEM IIR and 54 min in the case of CEM IIN)
and about 35 min for both type pastes with 3% CN (37 min for CEM IIR and 30 min for
CEMIIN). The relationships, obtained during hydration course, presented in Kicaite et al.
[43] are confirmed. However, the results of the study [25] show that, at temperatures
between +7 and +20 °C, CN works as a set accelerator for cement paste.

The initial and final setting times of cement pastes increase when the temperature of
cement pastes drops to +5 °C. The initial setting time of the control CEM IIR paste and
CEM IIN paste increases by 141 min and 75 min accordingly. It occurs because decreasing
rates of the chemical reaction in lower temperatures are observed, and the initial setting
is delayed [19]. As referred to in [43], most of the chemical reactions, as a rule, accelerated
twice, when the temperature increased by 10 °C. Adding 1% CN into the paste results in
shortening of initial setting time by 64.1% in the case of CEM IIR paste and by 81.3% in
the case of CEM IIN paste when compared to the setting times of both cement control
pastes without CN. In this way, CN dosages of 1.3% (Figure 3; Figure 4) can be used as a
set accelerator for CEM IIR because, according to EN 934-2, a set accelerator is an
admixture that achieves 60% of the initial setting time values of control paste. For the CEM
paste with 1% CN, the paste reaches 64% of the initial setting time of control paste. The
presented results revealed that the set accelerating efficiency of CN depended very much
on the cement type, as is in [30]. The research concluded that, at temperatures of +5-7 °C,
the efficiency of CN as a set accelerator increases with increasing Cz2S in cement. However,
our study shows opposite results because the C2S amount in CEM IIR is 1.5 times greater
than in CEM IIN.

At +5 °C, the final setting times of the control CEM IIR paste and CEM IIN paste
increase by 192 min and 164 min accordingly, in comparison to +20 °C; 1% CN in the paste
results in shortening of the final setting times by 82.2% in the case of CEM IIR paste and
98.4% in the case of CEM IIN type paste when compared to the setting times of control
cement paste. The shortest final setting times are obtained by 3% CN dosage. This amount
shortens the final setting of CEM IIR paste and CEM IIN paste by 326 min and 267 min,
which are 21.4% and 28.4% of control cement paste without CN. The study carried out by
[6,36] shows that the efficiency of CN is more pronounced at lower (+5 °C) temperature.

At 0 °C, the setting times of pastes are further extended. The initial setting times of
control CEM IIR paste and CEM IIN paste increase by 175 min and 77 min compared to
20 °C values. The final setting times for both pastes increase to 384 min and 322 min. When



Materials 2021, 14, 1611 8 of 24

3% CN was added, the final setting times of the CEM IIR and CEM IIN pastes shortened,
respectively, to 21.4% and 28.4% of control cement paste. Other studies on the
investigation of setting times corroborate these findings [46].
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500+ | —=—RP-0|
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= —A—RP-2
§= 400 | —v—RP-3|
N’
2 3001
2 200-’/./4
3
A 100 4J
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0 T T T
20 15 10 5 0

Temperature (°C)
Figure 3. Initial setting times of CEM IIR paste with 0-3% CN at different temperatures.
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Figure 4. Initial setting times of CEM IIN paste with 0-3% CN at different temperatures.
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Figure 5. Final setting times of CEM IIR paste with 0-3% CN at different temperatures.
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Figure 6. Final setting times of CEMIIN paste 0-3% with CN at different temperatures.

At ambient temperatures below 0 °C, water-freezing processes predominate and
cement hydration processes slow down considerably, making it difficult to accurately
distinguish between the binding processes using standard test procedures. In this case, it
is difficult to define the basic “setting”; this process can be called a paste solidification
process. The initial and final solidification times for CEM IIR and CEM IIN cement pastes
at -5 °C and -10 °C are given in Table 5; Table 6.

Table 5. Solidification time (min) at temperature -5 °C and —10 °C for CEM IIR paste.

Initial Solidification Time Final Solidification Time
Dosage of CN at Temperature at Temperature
-5°C -10 °C -5°C -10 °C
0% 154 137 214 163
1% 138 107 198 150
2% 124 95 190 170

3% 100 100 193 160
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Table 6. Solidification time (min) at temperature -5 °C and -10 °C for CEM IIN paste.

Initial Solidification Time Final Solidification Time
Dosage of CN at Temperature at Temperature
=5 °C -10 °C -5°C -10°C
0% 110 122 180 150
1% 132 80 187 123
2% 125 99 180 165
3% 105 100 210 156

With the increase in CN, a decrease in the initial solidification time is observed at -5
°C for CEM IIR paste. Meanwhile, we do not observe such an effect for CEM IIN paste. In
the case of the final solidification time, we also observe that the use of CN for CEM IIR
paste shortens this time. Studies at =10 °C show the same tendencies that the initial
solidification time shortens with an increase in CN amount. Compared to the test results
observed at -5 °C, shortening of the solidification time is more pronounced. However, as
noted, at temperatures below 0 °C, it is difficult to distinguish freezing and setting
processes. The gradual freezing of the mixing water can be more responsible for the needle
penetration reduction than the cement setting processes and obtained freezing-setting
phenomenon. Based on this assumption, it can be concluded that the method used does
not allow for proper testing of cement paste at a temperature below 0 °C.

3.3. Technological Properties of Concrete Mixture with CN

Concrete mixtures with CEM IIR- and CEM IIN-type cement were tested
immediately after mixing and after 1 h (Figure 7). CEM IIR- and CEM IIN-type cement
paste slump test results performed immediately after mixing are marked in Figure 7 as 0
h, and paste slump test results, performed after 1 h, are marked as 1 h. The slump of both
concrete mixes increases when the CN amount is raised from 0% to 1% (Figure 7). The
introduction of 0.5% CN and 1% CN in the concrete mix with CEM IIR increases the slump
by 10-30 mm and by 40-60 mm accordingly, but in Figure 7, the slump values are
presented as the average of four measurements. The introduction of 0.5% CN and 1% CN
in the concrete mix with CEM IIR increases the slump by an average of 20 mm and by an
average of 45 mm, respectively. The same trends were observed in the research of [19];
1.7% CN increases the concrete mix slump up to 30% compared to the reference concrete
mix slump. Meanwhile, 3% CN shows a 10 mm decrease in slump compared to the slump
of the control concrete mix. The above trends are observed immediately after mixing and
correlate well with the CEM IIR paste viscosity tests performed (Figure 1).

Similar trends are observed in the case of concrete mix with CEM IIN cement. The
introduction of 0.5% CN and 1% CN in the concrete with CEM IIN increases the slump of
the concrete mix by 2348 mm and by 33-53 mm accordingly; however, the same slump
values are presented as the average of four measurements in Figure 7. This effect is more
pronounced when compared to the concrete mix containing CEM IIR. Additionally, the
introduction of 3% CN in the concrete increases the slump to 8.84% compared to the slump
of a control concrete mix. The above trends are observed immediately after mixing and
correlate with the viscosity tests presented in Figure 2. We can conclude that up to 2% CN
works as a plasticizer and that higher than 2% CN in the concrete mix reduces the slump.
CEM IIN paste with a CN amount of 3% has been proven to have a lower viscosity than
an analogous CEM IIR paste with the same CN amount.

After one hour, the slump of the both concrete mixes decreased almost 3 times, but
the previously observed trends remaining for —0.5% and 1% CN in the concrete mix
demonstrate the highest slump values. In general, it can be observed that mixes with CN
slumps are higher than CN-free mixes [23,24].
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Figure 7. Slump of concrete mixtures with CEM IIR and CEM IIN dependence of CN content (0
h—measured instantly after mixing, 1 h—measured after 1 h).

The effect of CN on the entrained air content in concrete is plotted in Figure 8. The
tested concrete was mixed with a polycarboxylate ether-based super plasticizing
admixture with reduced content of anti-foaming agents. That type of admixture provides
required quantity of entrained air content (4-6%) for freezing—thawing resistance concrete
without air-entraining admixture. The air content in the concrete produced with CEM IIR
decreases from 5.8% to 4.8% when 1% CN is added. Further increasing the CN amount to
3%, the air content remained virtually unchanged at 5.1%. Different effects of CN amount
are observed when concrete contains CEM IIN cement. It can be seen in Figure 8 that the
control concrete mix entrains 6.6% air and that this is 13.8% more than in the control
concrete with CEM IIR cement mix; 0.5% CN slightly increases the amount of entrained
air to 7.1%. With further increases in CN, the content air entrained decreases
proportionately to 4.4%.
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Figure 8. Entrained air content in concrete with CEM IIR and with CEM IIN dependence of CN
content (0 h-measured after mixing, 1 h-measured after 1 h).

The density of the concrete mixture and the air content are related. The density of the
control concrete mixture was 2336 kg/m?3, and the maximum value was reached at a CN
amount of 1% 2375 kg/m? for CEM IIR. Higher (2 and 3%) CN amounts did not affect the
density of the concrete mixture. The effect of CN amount on the density of a concrete
mixture with CEM IIN is more pronounced. The minimum value for a CN amount of 0.5%
was 2318 kg/m? and the maximum value for a CN amount of 2% was 2366 kg/m3, which
correlates with the results of the air content testing.
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3.4. Compressive Strength of Concrete with CN in Ordinary at Low Temperature

For hardening at initial temperatures +20 °C, the best compressive strength results
for samples with CEM IIR are obtained using 1% CN (Figure 9). In comparison to control
samples after 2 days of hardening, the compressive strength of concrete increases by
17.5%; after 7 days, by 21.5%; and after 28 days, by 19.6%.

Other trends are observed with the addition of CN with ordinary early strength
cement CEM IIN. It can be observed that CN has a smaller effect on the early strength (2
and 7 days) of concrete with CEM IIN (Figure 10). The results reveal that 1% CN alone
acts as an accelerating admixture; however, it has only a minor positive impact on the
long-term growth of mechanical strength, which is confirmed by Polat [18,47]. The most
effective amount in concrete in terms of strength is 3% CN. The compressive strength of
concrete increased by 14.1% after 2 days of hardening, by 12.4% after 7 days, and by
32.47% after 28 days compared to control samples. It can be concluded that, at +20 °C for
concrete with CEM IIR and for concrete with CEM 1IN, 1% and 3% CN, respectively, are
most effective. The CN amount (0-4%) efficiency for different cement types CEM I and
CEM II/A-LL was tested in research [48]. The samples were cured for 7 days under water
and further until testing at +20 °C/65% relative humidity. The compressive strength results
after 28 days of hardening show that, for CEM I samples, increasing amounts of CN increased
by 12.7% until 4% compressive strength of the samples and that, for CEM II/A-LL samples,
compressive strength increased by 22.2%. The same verification of the compressive strength
enhancement was identified in [49]. Additionally, it was pointed out that the compressive
strength enhancement is related to modification in the porosity of samples.
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Figure 9. Compressive strength of concrete with CEM IIR samples at +20 °C curing.
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Figure 10. Compressive strength of concrete with CEM IIN samples at +20 °C curing.
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The influence of the initial curing temperature +5 °C on the compressive strength of
concrete samples with CEM IIR is presented in Figure 11. It can be pointed that, after 2
days of initial hardening at +5 °C, the compressive strength of the reference concrete
sample, cured at temperature +5 °C, is more than 2 times lower than that sample prepared
and cured at +20 °C temperature. Such a difference can be explained by the different
degrees of hydration in cement paste cured at different temperatures. As illustrated by
the research [19], the degree of hydration in cement paste samples significantly depends
on the sample curing temperature: for example, the degree of hydration for the same
samples cured at +20 °C temperature for 1 and 3 days increased from 48% to 68%; for same
time, cured samples at +8 °C increased from 38% to 62% and the samples cured at +5 °C
increased from 35% to 58%.

After 7 days of hardening, the best compressive strength results were established for
concrete samples with 2% CN and the strength values are 18.4% higher compared to the
reference sample. After 28 days of hardening, the best compressive strength results were
obtained, with 3% CN being 28.7% higher compared to the reference.

The same tendencies were observed in [45,50], where it is concluded that cement
pastes without CN, cured at lower +4 °C temperature, have a lower strength than those
cured at higher +20 + 2 °C.

The initial hardening temperature has a very high effect on the early strength of
concrete. It is important to note that samples that were kept at low temperatures for 2 days
and then cured at +20 °C in water show higher compressive strength results after 28 days
of curing than reference concrete samples cured at +20 °C in water at all the time. For the
samples with CN contents of 1, 2, and 3%, the compressive strength results were 6.9, 1.9,
and 12.8% higher, respectively, compared to the samples that were not kept at low
temperatures (reference samples).
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Figure 11. Compressive strength of concrete with CEM IIR samples at +5 °C initial curing (28 days
(+20 °C)—reference samples prepared and cured at +20 °C).

The compressive strength of concrete with CEM IIN is more strongly affected by 2%
and 3% amounts of CN (Figure 12). After 2 days of initial hardening at +5 °C, the
compressive strength of samples with 3% CN is 11.4% higher compared to reference
samples without CN. After 7 days of hardening, the compressive strength with 2% CN
was 9.1% higher and that after 28 days was 4.7% higher than the reference. Studies have
shown that, in all cases, two-day storage gives higher results compared to samples that
were not initially stored at low temperatures.
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Figure 12. Compressive strength of concrete with CEM IIN samples at +5 °C initial curing (28 days
(+20 °C)—reference samples prepared and cured at +20 °C).

The data in Figure 10; Figure 12 show that the effect of CN is more pronounced for
concrete samples with CEM IIR initially hardened at +5 °C compared to reference
hardened at +20 °C. For concrete with CEM IIR and CEM IIN, the most effective CN
dosage seems to be 3% and 2%, respectively. This may be due to the higher belite content
of the CEM IIR (Table 1), which according to El-Didamony et al. [30,39] has accelerated
hydration processes in the presence of CN.

The compressive strength of specimens with CEM IIR after 2 days of initial curing at
0 °C is equal to or exceeds 3.5 MPa, as shown in Figure 13, and meets ACI 306R-10
requirements [41]. After 2 days of initial hardening, the increase in compressive strength
of the samples with 1% CN reaches 302.9% compared to the compressive strength of the
reference samples without CN. After 7 and 28 days of hardening, the increase in
compressive strength reaches 30.9% and 16.9%, respectively, in comparison with reference
samples. However, it should be noted that the best results, reached for samples with 1%
CN after 2 days of initial hardening, is up to 2.5 times lower than the compressive strength
of samples cured at +20 °C for 2 days (Figure 9). The research [50] examined cement
samples, cured for 2 days at (0 °C, -5 °C, -10 °C, -15 °C, and -20 °C) temperature and then
26 days cured in water at +20 + 2 °C temperature. In samples containing 1% CN, the
compressive strength varies from 23.24 MPa to 14.8 MPa with increasing negative curing
temperature. It may be noted that the degree of hydration in cement paste samples cured at 0
°C temperature [19] is not high and reaches 28% after 1 day of curing and 43% after 3 days of
curing.

Meanwhile, after 7 days of hardening, the increase in compressive strength reaches
only 9.3% in comparison to samples cured at 20 °C. Almost in all cases, higher values are
found after 28 days when the samples are stored at low temperature for 2 days and reach
11.5% compared to the samples that have been cured at +20 °C all the time. The best results
are when 0.5 and 1% CN are used.
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Figure 13. Compressive strength of concrete with CEM IIR samples at 0 °C initial curing (28 days
(+20 °C)—reference samples prepared and cured at +20 °C).

When CEM IIN was used in concrete composition, higher compressive strength
results are achieved for concrete specimens when 2% CN is used (Figure 14). After 2 days
of initial curing 0 °C temperature, the compressive strength is 27.5% higher than
compared to the reference without CN and reaches 5.2 MPa. In this case, a lower efficiency
of CN is observed compared to concrete samples with CEM IIR. After 7 days, the highest
compressive strength values are reached with 3% CN and are equal to the compressive
strength of the reference samples. It is important to note that the compressive strength of
samples with 2% CN initially cured at 0 °C for 2 days are 2.8 times lower than for samples
with the same composition cured at +20 °C for 2 days (Figure 10). However, after 7 days
of curing, the compressive strength values in these samples are 9.6% higher than in the
same composition samples cured at +20 °C for 7 days (Figure 10).

Figure 14 demonstrates that, after 28 days, higher compression strength values are
achieved with 0.5—2% CN, but in general, the results obtained are approximately 10%
higher in a comparison with samples hardened 28 days at +20 °C.

It can be concluded tha,t with the addition of CN, additional hardening in water is
necessary to achieve a high compressive strength result. Karagdl [24] came to the same
conclusion after observing concrete with various freezing times and subsequent
immersion and curing in water for up to 28 days. When CN in concrete was used, the
author pointed out that additional water curing was needed for the production of
compressive strength because water curing would vitalize the frozen cement paste,
allowing it to regain its original compressive strength.
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Figure 14. Compressive strength of concrete with CEM IIN samples at 0 °C temperature initial
curing (28 days (+20 °C) —reference samples prepared and cured at +20 °C).

At -5 °C temperature, the reference CN-free samples with CEM IIR and samples with
0.5% CN did not reach the necessary level of strength (Figure 15). The value of
compressive strength after 2 days of initial hardening at -5 °C exceeds 3.5 MPa and
reaches 6.1 MPa even when 1% CN was used. In this case, no additional protective
measures of concrete are needed to achieve the required strength; all that is required is a
sufficiently humid atmosphere for further hardening. After 7 days, the highest
compressive strength values are reached with 3% CN, giving 262,8% higher than the
compressive strength of the reference samples without CN. According to the authors [19],
at negative temperatures, such as -5 °C, the hydration process of cement minerals
continued slowly because mineral ions dissolved in water, such as Ca?, K*, Na*, OH-, and
SO+, prevented ice formation to some extent and lowered the freezing point of water
[51,52]. The authors proved that, in the cement paste samples, cured at -5 °C temperature,
the degree of hydration reaches 16.7% after 1 day and 25.5% after 3 days, although it is
significantly lower in comparison with samples cured for the same duration at +20 °C: 48
and 68%. This is why the compressive strength of cement paste samples cured at negative
temperatures is low. However, at the same time, it indicates that the cement can still
hydrate at -5 °C. However, CN, used in dosage of 6%, at low temperatures has a similar
accelerating effect as pointed out in [24], mostly due to the early formation of portlandite
in cement stone [53]. Higher amounts of CN, 9 wt.% in the cement paste and a combination
of CN 4.5 wt.% with urea 4.5 wt.%, were tested at low temperatures ranging from -5 °C
to =20 °C [54]. The samples with a combined admixture of CN and urea show the highest
compressive strength values after curing at -5 °C temperature after 7 and 28 days: 38.79
MPa and 41.91 MPa. After the same period, for samples with 9% CN, the compressive
strength values are 19.4% and 1.8% lower. The control samples without additives present
just 7.92 MPa and 3.12 MPa at this period. The same composition samples cured at 20 °C
show significantly lower compressive strength values, but the compressive strength of
samples with 9% CN is the highest, 16.01 MPa and 4.63 MPa; that for samples with a
combined admixture of CN and urea is 12.79 MPa and 3.99 MPa; and that for control
samples us 6.55 MPa. In contrast, the study conducted by [18] with 2 parties of concrete
mixes containing 6% CN or 6% urea at —10 °C estimated that, after 28 of curing, the
samples containing 6% CN reached a compressive strength value of 28.05 MPa, while the
samples containing 6% urea reached only 18.32 MPa. The main reason why the CN
admixture improves the development of strength is that CN contains Ca? ions, as in CsS
and C:2S minerals; this is why CN accelerates the hydration process in the early stage with
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faster hydrates forming, and in the later stage, CN can lower the eutectic point, which can
play a significant role in the evolution of strength.
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Figure 15. Compressive strength of concrete with CEM IIR samples at -5 °C initial curing (28 days
(+20 °C)—reference samples prepared and cured at +20 °C).

When comparing the compressive strength results for samples with 0.5% and 1% CN
cured at -5 °C for 2 days with compressive strength of samples cured at +20 °C (Figure 9),
it can be stated that the compressive strength of samples cured at -5 °C is 7.7-8 times
lower than in the equivalent samples cured at +20 °C. However, after 7 days of curing, the
compressive strength values in these samples are 55-10% lower than in samples of the
same composition cured at +20 °C (Figure 9).

After 28 days, a higher compressive strength can be observed with 0.5 and 1% CN,
but these results are significantly lower than those for samples hardened for 28 days at
+20 °C and especially when compared to compositions without CN, where the difference
is almost 2 times.

Concrete specimens with CEM IIN do not reach the required values of 3.5 MPa after
2 days of initial hardening at -5 °C (Figure 16). It is necessary to note that the compressive
strength of the same composition samples cured at +20 °C reached 18-21 MPa after 2 days
(Figure 10). This result may be influenced by a lower amount of C2S in CEM IIN than in
the CEM IIR and suggests that slower hydration responds to slower strength growth.

However, after 7 days of hardening, 1% CN improves the compressive strength
values more than 2 times (up to 35 MPa) compared to the compressive strength values of
the CN-free reference (17 MPa). In comparison to the compressive strength of concrete
with the same composition cured at +20 °C for 7 days, it can be observed that the
compressive strength is the same.

After 28 days of hardening, the most effective dosage is 2% CN, giving a compressive
strength at 88.9% higher than the compressive strength values of the reference CN-free
sample, and it can be observed that these results are equal to the results in samples
hardened for 28 days at +20 °C. After 28 days, higher compressive strength values can be
observed with 0.5, 1, and 3% CN, but these results are noticeably lower than samples
hardened for 28 days at +20 °C. Especially when compared to compositions with 0.5% and
1% CN, this difference is almost 2 times.

Compressive strength results of concrete samples, initially cured at -10 °C
temperature, are presented in Figure 17; Figure 18. The samples with both cements and
0.5-3% CN after hardening for 2 days at —10 °C did not reach the required value of 3.5
MPa. In addition, it is known that the eutectic point of CN ranges between -7.6 °C and
-11.5 °C [55] and that curing at —10 °C temperature is very close to the specified lowest
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eutectic point of CN. It can be assumed that, where the ambient temperature drops by 10
°C, the reaction rate slows down by 2 times [56]; based on the calculations made by [19],
it can be predicted that the degree of hydration will be 10-13% after 1 day of curing at -10
°C temperature. This indicates that the use of CN alone at this temperature is not sufficient
and that additional implements are needed. Another possible method is the use of a larger
amount of CN in the composition. Concrete mixtures with 6% CN [20] ensure 33.21 MPa,
10.76 MPa, 5.35 MPa, and 4.13 MPa compressive strength values for the samples cured for
28 days at -5 °C, -10 °C, -15 °C, and -20 °C. The compressive strength improves by,
respectively, 1.73, 4.92, 9.59, and 11.38 after additional curing of the samples in water for
28 days. In a similar study [53], it was concluded that 6% CN resulted in a compressive
strength of concrete samples in the range of 31.45 MPa-15.53 MPa at -5 and -20 °C
temperatures compared to the compressive strength equal to 7.92-6.57 MPa with CN-free
samples. It was concluded that the addition of CN at 6% increases the compressive
strength of concrete samples by 297% when cured at -5 °C and by 96% when cured at —20
°C.
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Figure 16. Compressive strength of concrete with CEM IIN samples at -5 °C initial curing (28 days
(+20 °C)—reference samples prepared and cured at +20 °C).

However, further storage of these samples in water ensures hydration of the cement,
which significantly increases the compressive strength of the concrete after 7 and 28 days
of hardening in water. After 7 and 28 days of hardening, the best results for concrete
samples with CEM IIR are obtained with CN at 3%. For the concrete samples with CEM
IIN, the best results after 7 days of hardening are obtained with CN at 3%, and after 28
days of hardening, the best results are obtained with CN at 1%. The samples, cured for 7
and 28 days at +20 °C, show approximately 2 times higher compressive strength than
concrete samples initially cured at -10 °C.

In summary, the effect of CN decreased with decreasing initial curing temperature,
but additional water curing (especially for 28 days) significantly increased the
compressive strength of all the samples.
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Figure 17. Compressive strength of concrete with CEM IIR samples at —10 °C initial curing (28
days (+20 °C)—reference samples prepared and cured at +20 °C).
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Figure 18. Compressive strength of concrete with CEM IIN samples at —10 °C initial curing (28
days (+20 °C)—reference samples prepared and cured at +20 °C).

4. Discussion

In order to better evaluate the influence of dosages of CN on concrete compressive
strength development at different temperatures, the obtained compressive strength
results after 2 and 28 days of hardening are summarized in Figures 19-22.

It can be seen that, after 2 days of hardening (Figure 19; Figure 21), the optimal dosage
for concrete with CEM IIR is 1% CN. This amount ensures higher compressive strength
when with samples are initially cured down to -5 °C. For the concrete samples with CEM
IIN, the optimal dosage of 3% CN ensures higher compressive strength down to 0 °C
temperature. At lower temperatures of -5 °C and -10 °C, all tested CN amounts did not
provide sufficient compressive strength of the samples.
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Figure 19. Compressive strength of concrete with CEM IIR after 2 days as a function of initial
curing temperatures (°C) for CN dosages in the range from 0% to 3%.
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Figure 20. Compressive strength of concrete with CEM IIR after 28 days as a function of initial
curing temperatures (°C) for CN dosages in the range from 0% to 3%.

55
504 [—=—RB-0 |
45 —e—RB-0.5
—A—RB-1
40 | —y—RB-2
354 | —®—RB-3 |
30
254
204
151
10
5-
0 T T T T f
20 15 10 5 0 -5 -10

Compressive strength (MPa)

Temperature (°C)

Figure 21. Compressive strength of concrete samples with CEM IIN after 2 days as a function of
initial curing temperatures (°C) for CN at dosages from 0% to 3%.
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Figure 22. Compressive strength of concrete samples with CEM IIN after 28 days as a function of
initial curing temperatures (°C) for CN dosages in the range from 0% to 3%.

The CN admixture forces the water within the sample to remain at least partially
liquid until the temperature falls below the “eutectic point”. It can be supposed that, if
curing of samples occurs in temperatures that are near or below the eutectic point of CN
degree of hydration drops, the compressive strength of the samples significantly falls due
to the formation of ice in pores and it results in microcracks, as is reported in [55]. As it is
pointed in the research [19], at low temperatures (-5 °C), particles in the cement paste did not
interact or bind with others because particles in the cement paste were moved and separated
by ice formed at -5 °C and, as a result, the spaces between particles were not filled by hydrates.

When CN is used in the composition, a denser microstructure of the samples is
achieved, which is confirmed by our sample density studies. When samples with CN are
cured at lower temperatures (-5 °C and -10 °C), more C-S-H gel and portlandite are
formed in the structure [23]. When the duration of the curing time extends, the formed
ettringite gradually decreases and more C-S-H gel is formed, leading to a dense
microstructure [57]. More in-depth insights into the hydration processes of cement and CN
are presented in [26]. The CN solution, in contact with CsS and (S, changes the ionic strength
and pH of the solution and increases the density of the pore solution, resulting in the formation
of hydroxysalts. Hydroxysalts promote densification and a change in microstructure of
cement stone.

For concrete samples based on CEM IIR (Figure 20) hardened for 28 days in the
temperature range 0 °C—(+20 °C), the most effective CN dosage is also 1%. However, at
lower the temperature (-5 °C and -10 °C), the higher amount of CN is necessary to achieve
higher strength values. The efficiency of CN depends directly on its content: the higher
the dosage, the higher the strength values achieved.

For concrete samples with CEM IIN (Figure 22), the optimal 2% dosage of CN ensures
higher compressive strength values down to -5 °C for samples that were hardened for 28
days. At the lowest temperature —10 °C, the efficiency of CN depends directly on its
amount. Additional water curing (especially for 28 days) significantly increases the
compressive strength of all the samples because melting of the ice found in the samples
promotes the hydration of cement minerals.

It can be concluded that in temperature interval 0—(+20 °C), for CEM IIR significantly
lower amount of CN is necessary than for CEM IIN. This is related with significantly
higher increase of viscosity in CEM IIR pastes and faster hydration processes for belite
reaction induced by CN. At -5 °C and -10 °C temperature, the efficiency of CN depends
directly on its dosage and these trends are common in both cements.



Materials 2021, 14, 1611

22 of 24

5. Conclusions

1.

Larger amounts of CN (2 and 3%) increase the viscosity of both CEM IIR and CEM
IIN cement pastes. The effect is more pronounced for CEM IIR cement paste. A CEM
IIN paste with 3% CN exhibiting lower viscosity than an analogous CEM IIR paste
with the same CN amount. The CEM IIR cement granulometry and higher w/c
required to achieve normal consistency caused by smaller cement particles of CEM
IIR compared to CEM IIN can explain the more rapid increase in viscosity.

CN contents at 0.5% and 1% in the cement pastes increases the slump of concrete.
This tendency does not change during the first hour. The slump of concrete mix,
regardless of the type of cement, decreases when the CN amount increase above
1.5%. These slump results for concrete correlates well with viscosity studies on
pastes.

The accelerator efficiency of CN increases with deceasing temperature from +20 °C
to 0 °C. CN is the most effective as an accelerator at +5 °C and 0 °C. At these
temperatures, the use of 3% CN reduces the initial setting times for CEM IIR paste
by 7.4 and 5.4 times, respectively, and for CEM IIN paste by 3.5 and 3.4 times when
compared to a CN-free control paste.

Reductions in the compressive strength of concrete with CN were lower than that of
the control without CN when initially cured at temperatures lower than +20 °C. The
early strength of samples with CEM IIR cured for 2 days at +20 °C, +5 °C, and 0 °C
when 1% dosage of CN was used in the concrete, while 3% dosage of CN was
required for CEM IIN. The most efficient use of CN is achieved at -5 °C, where 1%
CN ensures the compressive strength of samples with a CEM IIR higher than 3.5 MPa
but less than the required 3.5 MPa in the samples with CEM IIN. The samples with
both cement and 0.5-3% CN after hardening for 2 days at =10 °C did not reach the
required value of 3.5 MPa.

According to the procedure where concrete samples are hardened for 2 days in cold
conditions and further hardened at +20 °C for 26 days, the compressive strength of
the concrete samples is higher than that of the samples hardened in water at +20 °C
continuously for 28 days.
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