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A B S T R A C T   

Most model based studies on project uncertainty investigate a single source of uncertainty, with a dominant focus 
on stochastic activity durations. However, another major uncertainty facing engineering projects is that of 
changes in design troughout the project delivery. This may come from uncertainty in the market, technology, or 
regulations, leading to changes in design and implementation paths, with alterations in the project network itself. 
This comes on top of stochastic and correlated activity durations for a given design. In this paper we develop a 
stochastic program to investigate how uncertainty in design and activity durations, together, affect planning, and 
their relationships. The findings suggest that when design uncertainty is modelled by multiple alternatives and 
delayed decisions on the final alternative, stochastic and correlated activity durations have limited impact. In 
situations with alternative and subtitutable solutions available for a given design, correlations drive a certain 
learning behaviour.   

1. Introduction 

This paper treats project uncertainty and planning decision making 
in construction and engineering projects, where frequent changes in the 
scope, outfitting, design and technical specifications (all related) are 
leading to operational adjustments throughout the project delivery. 
Such changes are often driven by external factors like uncertainty in 
market demand, regulatory interventions and technological in
novations. One example is shipbuilding for advanced marine operations 
(Emblemsvåg, 2014), with an exploratory study of a large, dynamically 
changing project in Hansen et al. (2020). This type of uncertainty rep
resents a substantial challenge in an increasing number of projects 
(Böhle et al., 2016; Atkinson et al., 2006). It is difficult to anticipate and 
describe statistically, and it may lead to changes in the work content, 
and subsequently, to changes in requirements with alterations in the 
project network itself, i.e., in the activities to be performed and their 
sequencing (Hazir and Ulusoy, 2019; Vaagen et al., 2017). This comes 
on top of uncertain and usually correlated activity durations, for any 
fixed design. The resulting dependencies in the planning problem are, 
therefore, very complicated. A practical example is related to repur
posing and reoutfitting ships with competing technologies with 

uncertain performance, introduced in Section 5 and discussed in Section 
6. 

The negative impact of disturbances and time delays in design pro
jects (Nichols, 1990) forces developers to consider managerial flexibility 
(Huchzermeier and Loch, 2001), through alternative implementation 
paths and the option to delay the choice into the project delivery (Ibadov 
and Kulejewski, 2019), and alternative technologies producing the same 
result (Creemers et al., 2015). From real option approaches to in
vestments, we know that higher uncertainty in the payoff —for example, 
from design changes, usually with a defined customer value— increases 
the value of flexibility (Dixit et al., 1994). One implication of this insight 
is that the more uncertain the project payoff is, the more efforts should 
be made to develop flexibility to enable changing the direction of the 
project (Huchzermeier and Loch, 2001). But how much flexibility? 
Simchi-Levi (2010) shows that lower levels of flexibility may nearly 
capture the benefits of full flexibility. There is also evidence that higher 
operational uncertainty may reduce the option value, see Creemers et al. 
(2015) for a numerical analysis. In line with this, Vaagen et al. (2017) 
show that flexibility through design and process modularization is less 
valued when a ‘safer’ alternative is available; referring to the situation of 
a less standardized modular architecture. 
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Another insight from real options to investments is that negative 
correlations provide flexibility, by hedging or switching options (e.g. 
switching between alternative technologies)(King and Wallace, 2012). 
When correlations are modelled, the planning strategy shows not to be 
sensitive to the marginal distributions (Vaagen and Wallace, 2008). This 
supports Wall (1997) on the potentially higher impact of correlations on 
project performance over distributions of task duration uncertainties. 
Moreover, due to potential changes in the project network we expect 
uncertainty in design to have higher impact on performance than un
certainty in activity durations (Zhu et al., 2005; Vaagen et al., 2017). 

But what type of uncertainty is critical for prioritization of project 
tasks, and under which circumstances? We have limited understanding 
of the relationships among these types of uncertainties, which we 
consider as a gap in the literature. As a consequence, the relationship 
between operational uncertainty and the value of managerial flexibility 
through the option to delay decisions or switch between alternatives is 
less clear too. For example, we know that buffer manage
ment—commonly used to handle project uncertainty (Van de Vonder 
et al., 2006)—has limited value for design uncertainty (as we do not 
know where and how much buffer is needed), but should we respond to 
uncertainty in activity duration in the same way as to design changes, by 
e.g. postponing some decisions? 

Answers to these questions would help better understand where and 
what type of preventive efforts to allocate. That said, most models 
investigate a single source of uncertainty (Hazir and Ulusoy, 2019), and 
the research efforts on including alternative designs, technologies and 
implementation paths are also limited (Servranckx and Vanhoucke, 
2019). One reason may be the limited scope of traditional project 
management, failing to encompass all phases in the project life cycle 
(Atkinson et al., 2006), this leading to a disconnect between project 
scope, design and planning functions (Gunasekaran and Ngai, 2012). 

Studies on multiple sources of uncertainties are largely limited to 
investigating resource availability with random activity durations 
(Hazir and Ulusoy, 2019). We have found two exceptions of relevance to 
us. One is the Özdamar and Alanya (2001) paper, dealing with activity 
duration and requirement uncertainty simultaneously, in the context of 
software development. There, both sources of uncertainties are repre
sented as fuzzy numbers, and a simple generic heuristic algorithm based 
on four priority rules is proposed to prepare minimal timespan project 
plans. The second is Creemers et al. (2015), investigating project 
scheduling with stochastic activity durations while considering alter
native technologies to reach the project objectives. Technology success 
is presented by a probability assigned to each activity making up a 
particular technology (not unlike the way design uncertainty is pre
sented in Vaagen et al. (2017)). The authors show that managerial 
flexibility may be too costly to handle high operational uncertainty. 
None of those models provide a systematic decision support framework, 
though, to help deepen insight into the relationships among the different 
sources of uncertainties. Nor do they handle critical modelling aspects, 
like the planning dynamics driven by information arrival, and correla
tions, which we discuss in the following sections. 

Given the above, the purpose of our paper is to provide a model that 
helps investigating the combined impact of, and relationships between, 
design changes and stochastic activity durations, including correlations 
between these. 

To achieve our aim, we need a modelling framework that explicitly 
handles the two-level project uncertainty, with stochastic and correlated 
activity durations conditioned by uncertainty in design. The three main 
aspects to deal with simultaneously are arrival of information and future 
decisions, as well as dependencies (we only study correlations) between 
stochastic activities. 

The development of a stochastic programming framework with these 
aspects is our first contribution. The second is insight into the relation
ship between uncertainty that leads to network changes (may this come 
from design or technology uncertainty) and variation in activity dura
tion. This is achieved through numerical experiments. Third, we improve 

understanding on the general effects of correlations on planning. 
The remainder of the paper is organized as follows. The literature on 

modeling the sources of uncertainties under investigation in relation to 
the important modelling aspects are discussed in Section 2. In Section 3 
we provide the justification for the choice of stochastic programming as 
our modelling approach. The modelling approach with the full model is 
described in Section 4. Section 5 is dedicated to the test cases and results. 
Managerial implications are given in Section 6. We conclude in Section 
7. 

2. Literature review 

The distinction between uncertainty in activity duration, where ac
tivity times or resource demands may change, and uncertainty in re
quirements, where new activities or precedence relations may be added 
or deleted in the network, is made in Zhu et al. (2005), and later in the 
review paper of Hazir and Ulusoy (2019). In the latter, distinction is 
made between requirement uncertainty, as internal with a certain 
organisational ability to control it, and uncertainty in market-, techno
logical- and regulatory conditions as external with limited predictability 
and limited ability to control it. As introduced in Section 1, in complex 
engineer-to-order projects these external factors are exactly those 
leading to potentially high impact changes in requirements through 
changes in design and work content, and in the project network itself, in 
order. See Vaagen et al. (2017) for a discussion. As such, in this paper we 
differentiate between (i)uncertainty in activity durations, predictable up 
front and statistically describable, commonly handled by buffering 
around critical path approaches (Van de Vonder et al., 2006), and (ii) 
potentially high impact requirement uncertainty with limited predict
ability, most often handled reactively after a change has been materi
alized (Petit and Hobbs, 2010; Hällgren and Maaninen-Olsson, 2005). 
This distinction is motivated by Simchi-Levi et al. (2015). While that 
discussion is within the context of complex dynamically changing supply 
chains, it applies to projects as well. 

A second uncertainty classification of relevance is that between the 
negative and positive sides of uncertainty (Atkinson et al., 2006), and 
the consequence of this on plans and strategies. Chapman and Ward 
(2011) and Ward and Chapman (2003) argue that traditional project risk 
management is overly focused on the risk or threat (which is primarily 
cost-driver), with limited ability to capture the opportunity (which is 
primarily profit driver) side of uncertainty. Opportunities may arise 
from market demand and technological uncertainty. Regulatory in
terventions (such as new technology standards) are primarily downside 
risks, but that can sometimes be turned into opportunities (Loch et al. 
(2011), e.g. p. 5), such as low-emission technology that may increase 
customer value and may open up for new markets. 

Other classifications can be found in Ward and Chapman (2003), 
with distinction between variability of project estimates, uncertainty 
around the basis for estimates, design and logistics uncertainty, and 
uncertainty related to the relationship between stakeholders. Pich et al. 
(2002) distinguish between variations as random deviations with 
smaller impact, foreseen uncertainty, unforeseen uncertainty, and 
chaos. Chaos happens rarely and has potentially high impact on project 
targets. Hansen et al. (2020) discuss a complex example of ‘chaos’, 
timely handled by team collective intelligence and lean construction 
practices. 

On the more traditional project uncertainty classification approaches 
we mention Hällgren and Maaninen-Olsson (2005), with distinction 
between risks, changes and deviations: risks as known yet unrealized 
situations (managed by traditional risk management approaches), 
changes as realized situations with a significant divergence to the 
project plan (i.e., managed reactively), and deviations as situations, 
regardless of consequence, that deviates from any plan in the project. 

Research on requirement uncertainty and alternative (design) solutions 
in planning is limited and largely based on small case examples devel
oped independently, see for example Servranckx and Vanhoucke (2019). 
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They extend the resource-constrained project scheduling problem to 
allow for flexibility through multiple networks. Traditional 
resource-constrained scheduling problems assume deterministic project 
structure with a fixed set of activities, but there are situations when 
activities can be excluded from the final schedule. This is known as 
resource-constrained project scheduling with alternative subgraphs. The 
authors apply a tabu-search procedure to the selection of alternatives 
and the scheduling of the chosen alternative, and provide a systematic 
theoretical framework to the problem with multiple types of alternative 
subgraphs (nested and linked). 

Ibadov and Kulejewski (2019) propose an alternative network model 
with a fuzzy decision node, to model independent and alternative ac
tivities, when the plan is expected to change in relation to the initial one. 
The plan update is based on choosing a predicted alternative path. This 
approach makes it possible to analyse multiple alternatives, in terms of 
the relevant characteristic of the construction project and the conditions 
for implementation. The computational complexity of including alter
native variants is acknowledged, while also stating that information on 
variant preferences gathered at the decision nodes suggests which 
network variant to solve first. 

Planning modular projects with alternative technologies is found in 
the stochastic programming approach of Creemers et al. (2015), with 
modules assumed to be independent parts, and their alternatives 
possibly active in parallel. Other papers observe that design processes 
include different types of logical relations between activities; e.g., the 
resource constrained project scheduling problem with logical con
straints in Vanhoucke and Coelho (2016). 

Vaagen et al. (2017) propose a stochastic mixed integer optimization 
program to study the impact of design uncertainty on project perfor
mance, under the assumption of deterministic activity durations. They 
show how delaying design decisions plays a role, and report the quan
tified impact of proactive strategies with options, with about 35% 
lowered expected costs as compared to reactive strategies with deter
ministic network plans updated in light of change. That model is 
developed for a principal study of small problem instances of the true 
complexity, and not suited for large applications. 

We also mention early work on modelling design risks and uncertain 
number of design iterations to meet a design criteria (Luh et al., 1999) 
and stochastic project networks (Neumann, 1990). 

Stochastic activity durations is the most frequently studied source of 
uncertainty in classical project scheduling, with PERT network models 
as the dominant approach (Lambrechts et al., 2010; Van de Vonder et al., 
2006). A large share of this research assumes a static environment with 
known project structure (see a discussion in Servranckx and Vanhoucke 
(2019)), but project activities are often subject to substantial uncer
tainty, leading to schedule disruptions. These models do not handle 
alternative solution paths, and design uncertainty cannot be properly 
handled by scaling stochastic activity durations and buffering for fixed 
networks. 

Approaches developed to handle randomness in activity durations 
also fail to properly handle the planning dynamics, information arrival 
and future decisions simultaneously. Two important research streams in 
this direction are proactive-reactive scheduling (Herroelen and Leus, 
2005; Van de Vonder et al., 2006; Artigues et al., 2005) and stochastic 
resource-constrained scheduling (Herroelen et al., 2002). These ap
proaches are dealing with a sequence of decisions from static models and 
are, hence, not flexible, despite the alternatives provided in contingent 
planning. One exception is found in Deblaere et al. (2011). This 
approach uses an optimized decision rule within a simulation model to 
estimate changes in parameter values, and achieves a near optimal 
setting. While it handles the dynamics of the problem, i.e., information 
arrival and future decisions simultaneously, and is shown to outperform 
many alternative approaches, it cannot say how good the optimized 
decision rule is. It can only compare it with others. 

In general, the possibility to have future decisions conditioned on 
new information (e.g., changes in design or the progress of activities) is 

lacking in classical project scheduling models. The major difficulty is 
that there is no arrival of information in these models, and no flexibility 
to adapt changes. Reaction to change, by rerunning deterministic 
models based on new information, is done (Jørgensen and Wallace, 
2000). But such reactive approaches with a sequence of deterministic 
decisions, are not flexible and have potentially very high adaptation 
costs (King and Wallace, 2012; Vaagen et al., 2017). 

Moreover, most scheduling models for stochastic activity durations 
also lack a discussion on correlations. Sequences driven by design and 
engineering constraints are commonly addressed and expressed in 
project networks, but dependencies of the type of correlations are less 
incorporated (Kadane and Wolfson, 1998). In general, correlation 
studies in project management are few and mainly limited to simulation 
(Khodakarami and Abdi, 2014), for example Monte Carlo (Chapman and 
Ward, 2011), but these have theoretical limitations in modelling com
plex cause and effect relationships. Khodakarami and Abdi (2014) pro
pose a quantitative assessment framework that makes it possible to 
incorporate uncertainty and causality in project cost estimation. They 
integrate the inference process of a Bayesian network with the tradi
tional probabilistic risk analysis. Based on simulation, Wall (1997) 
concludes with large errors when models do not consider correlations, 
and claims correlations to be more important than the distributions 
representing task duration uncertainties. The general effect of correla
tions is that positive correlations increase risk, while negative correla
tions reduce risk and are perceived as free hedging. If these are not 
captured, the final project duration distribution will not provide a cor
rect understanding on the true uncertainty. From correlation studies in 
other fields we know that these may have very high impact on planning 
decisions (Vaagen and Wallace, 2008). For sources of project correla
tions see e.g., Schuyler (2001). 

For a comprehensive, although not exhaustive, review on classifi
cation and methods for modeling project uncertainty see Hazir and 
Ulusoy (2019). 

3. The choice of stochastic programming as modelling approach 

As introduced earlier, we need a modelling framework that handles 
arrival of information and future decisions simultaneously, as well as 
correlations between stochastic activities. In this section we argue for 
the choice of stochastic programming as appropriate for this purpose. 

We know that delaying design decisions into the project delivery 
period can add value to a project, but only if the delay allows the 
implementation of a better alternative without disturbing the delivery 
process substantially. To enable this, a planning model where decisions 
have the potential to be changed when new information becomes 
available is needed; i.e., a proactive approach that takes both arrival of 
information and future decisions that might unfold into account. There 
are very few such approaches in the literature. The simulation approach 
with optimized decision rules in Deblaere et al. (2011) handles infor
mation arrival and future decisions simultaneously, but we do not know 
how far the solution is from optimal. Vaagen et al. (2017) applies sto
chastic optimization to handle arrival of design choice information (but 
not the arrival of information about activity durations). This model 
handles the true complexity, but for small problem instances and con
ceptual studies only. Due to complexities involved, the general formu
lation of this stochastic dynamic problem is stated as unsolved in 
Jørgensen and Wallace (2000), and still it is Vaagen et al. (2017). That 
said, conceptual knowledge developed by small stochastic problem in
stances on what makes solutions good, can help finding good solutions 
without actually solving stochastic programs King and Wallace (2012). 

Correlations further complicate the modelling problem, and are hard 
to deal with analytically. Simulation is therefore dominant for project 
correlations studies (Khodakarami and Abdi, 2014). Simulation helps to 
establish understanding on the project risk and on the effects of potential 
decisions, before the decisions are made. But the models do not provide 
explicit suggestions for what decisions to make, and they lack the 
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connection between future and present decisions; hence, not appro
priate for the purpose of this paper. In the fields of stochastic network 
design and product- and assortment planning, King et al. (2012), Vaagen 
et al. (2011b) and Lium et al. (2007) point to numerical stochastic 
programming as the method suited to handle complicated uncertainty 
patterns and correlations. Lium et al. (2009) suggest that by consoli
dating two negatively correlated demands, flexibility and free hedging, 
as well as an effective use of capacities, can be achieved in network 
design. In situations with strong positive correlations among 
high-probability high-demands, flexibility shows to have less value, and 
the authors suggest schedules that accommodate the most probable 
scenarios with most demands being high at the same time, using buffers. 
Vaagen and Wallace (2008) formulate a product-line planning problem 
with bimodal distributions and correlations, and show that flexibility 
and hedging is mainly driven by uncertainty in design with respect to the 
future state in the market as preferred/not preferred (modelled by cor
relations), and not very sensitive to the specific values of the marginal 
demand distributions for a given preference. Moreover, Vaagen et al. 
(2011a) show that there is high value in pairing products that are 
negatively correlated and also substitutable to some extent in the 
product-line (i.e., perceived as alternatives from the customer perspec
tive). This latter research stream in a product-line context, treats a 
problem with two-level uncertainty and complex dependencies. It is 
similar in spirit to the one at hand, with alternative designs on a higher 
level, and on lower level, for a given design, statistically describable 
demand uncertainty (in product portfolios) and activity duration un
certainty (in projects). 

The current paper is founded on the above research efforts to use 
stochastic optimization to handle complex uncertainty patterns with 
correlations, and to model arrival of information and future decisions. 
While computationally demanding for large problems, it is appropriate 
for the purpose of this paper, to develop conceptual learning on the 
combined impact of critical sources of project uncertainties. 

4. Stochastic-programming formulation 

In this section, we describe our stochastic-programming model. 
While we extend the problem in Vaagen et al. (2017) to also handle 
stochastic and correlated activity durations, we devise a new stochastic 
model and use a different way of modelling the activity progress in order 
to reduce the number of binary variables in the model. Before we present 
the model formulation itself, we describe its most challenging part, 
modelling of the stochastic activity durations. 

4.1. Modelling of stochastic activity durations 

Stochastic activity durations are principally different from uncer
tainty usually handled in stochastic optimization models, because we 
have to start an activity in order to learn its duration; information ar
rives as a consequence of decisions, not just because time has passed. In 
other words, we are dealing with endogenous, or decision-dependent, un
certainty (Jonsbråten et al., 1998), specifically the Type-2 endogenous 
uncertainty (Goel and Grossmann, 2006). In the context of scenario 
trees, this would correspond to a tree where the time of the branching 
depends on decision variables in the model. Moreover, this endogenous 
uncertainty has to be combined with any exogenous uncertainty we 
might have; in our case, this means the stochastic design changes. 

As described above, we have two types of uncertainty: ‘standard’ 
exogenous uncertainty related to design choices, modelled by a scenario 
tree, and the endogenous uncertainty of activity durations. To model 
this double uncertainty, we use an approach similar to the one from Goel 
and Grossmann (2004, 2006): the design-choice uncertainty is described 
by the set N of scenario-tree nodes, while the stochastic durations are 
modelled using multiple copies of the this tree, referred to as duration 
scenarios and indexed by s ∈ S . We then add constraints connecting the 
same nodes of different copies of the tree, enforcing equal decision at the 

nodes as long as we have not learned the duration of the corresponding 
activity. These constraints are like the usual non-anticipativity con
straints (NACs), except that they are being switched on and off by the 
decision variables; for this reason, we call them dynamic 
non-anticipativity constraints (DNACs). 

This is illustrated in Fig. 1, for a case of a single activity a with two 
possible durations. There, we start with the standard scenario tree 
(Fig. 1a), describing all the exogenous uncertainty. Since a has two 
possible durations, we duplicate the tree, and add DNACs between all 
corresponding nodes (Fig. 1b). Note that the constraint connecting the 
root nodes is marked as active, since the first-stage decisions are unique 
by definition. Now, let’s assume that a is such that we learn its duration 
in the first period following its start, and that we start it in the node 
marked in Fig. 1c. In that situation, the scenario tree from Fig. 1b will 
take the form shown in Fig. 1d: the DNACs are active in all nodes except 
the two descendants of the (marked) starting node. This means that only 
in those two nodes are we allowed to make different decisions, based on 
duration of a. 

Things get more complicated if we have more activities with sto
chastic durations. As an example, consider the case with 2 activities with 
two possible durations, short (S) and long (L). To model these using our 
approach, we need four copies of the original scenario tree, with the 
following combination of durations: (S,S), (S,L), (L,S), (L,L). Then we 
need to add DNACs for each activity, connecting trees that differ only in 
duration of that activity. This means two constraints for the first activity, 
connecting trees (1,3) and (2,4), and two for the second activity, con
necting trees (1,2) and (3,4). 

In the general case, presented below, this is modelled using the set C 

of scenario pairs connected by a DNAC, and a parameter As1 ,s2 repre
senting the activity that distinguishes the scenarios (s1, s2). In the 
example above, we have C = {(1,2), (1,3), (2,4), (3,4)}, A1,3 = A2,4 =

a1 and A1,2 = A3,4 = a2. 

4.2. Notation 

4.2.1. Sets  

Name Description 

A  set of all activities 
N  set of all scenario-tree nodes 
R  set of all resources 
A I⊂A  indicator activities – no duration 
A R⊂A  real activities (with duration); A R = A \A I  

A U⊂A R  activities that undo/reverse the results of other 
A C(a)⊂A R  activities that conflicts with (must be undone for a to start) 
A P(a)⊂A R  activities that cannot run parallel to a ∈ A R  

D ∩
a  set of activities that a ∈ A depends on; all must be finished  

D ∪
a  set of activities that a ∈ A depends on; at least one must be finished  

N L⊂A  set of leaf nodes, i.e., nodes without children 
N P

l ⊂A  set of nodes on path from the root to leaf node l ∈ N L  

L r  a set of intervals for piecewise-linear costs of resource r ∈ R  

D ∩
a,n  stochastic variant of D ∩

a – value at given node n  
D ∪

a,n  stochastic variant of D ∪
a – value at given node n  

D −
a,n  stochastic dependency of type ‘not’ – conflicting activities 

S  set of scenarios for activity duration 
E  the complete stochastic event: E = N × S  

A s⊂A  activities with stochastic durations 
C  scenario pairs (si, sj) connected by a DNAC   

As described above, we have two types of uncertainty: ‘standard’ 
exogenous uncertainty modelled by a scenario tree, and the endogenous 
uncertainty of activity durations. The former is described by the set N of 
scenario-tree nodes, while the stochastic durations are modelled using 
multiple copies of the this tree, referred to as duration scenarios and 
indexed by s ∈ S . This means that the each node of the combined tree 
E = N × S uses a double-index (n, s) for indexing. 

We allow for increasing resource costs, to be able to use extra re
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sources (tools or people), for an extra cost. This is modelled by a set of 
cost levels L r for each resource r ∈ R , together with the amount Lr,l of 
the resource available in level l ∈ L r, and its cost CR

r,l. 

4.2.2. Parameters  

Name Description 

P(n) Probability of node n ∈ N .  
n ˙− Δt  predecessor of node n, Δt periods before node n  
n ˙− parent node of n; special case of PrednΔt with Δt = 1  
t(n) period of node n 
DP

n  duration of period represented by node n 
T0  the first period 
AF  the final activity – finishing this marks the end of the project 
Lr,l  upper bound of resource r in cost level l ∈ L r  

Ra,r  amount of resource r ∈ R used by activity a ∈ A R per time period  
Rr

a,r  amount of resource r ∈ R used when reverting activity a ∈ A R  

AU(a) ∈ A  for a ∈ A U, this is the activity a undoes/reverts  
Ua  Multiplier for duration of undo-activities 
CR

r,l  cost of using resource r ∈ R with cost level l ∈ L r  

CE
t  cost of finishing the whole project at the end of t 

DA
a,s  duration of activity a in scenario s 

As1 ,s2  activity that distinguishes two scenarios (s1, s2)

α fraction of duration needed to distinguish between two durations  

4.2.3. Variables  

Name Description Range 

pa,n,s  progress of activity a ∈ A R at the end of (n, s) R +
0  

wa,n,s  time spend working on a ∈ A R during period (n, s) R +
0  

ra,n,s  time spend reverting/undoing a ∈ A R during period (n, s) R +
0  

fa,n,s  has activity a ∈ A finished by the end of period (n, s)?  {0, 1}
ga,n,s  is activity a ∈ A ongoing (has non-zero progress) in per. (n, s)?  {0, 1}
ur,l,n,s  amount of resource r at cost-level l used in per. (n, s) R +

0  
ca,n,s  cumulative progress of a at the end of (n, s) R +

0  
da,n,s  indicator for DNAC constraints for a ∈ A s during (n, s) {0, 1}

Unlike the model from Vaagen et al. (2017), which tracks the activity 
using binary indicators, we model the progress of each activity as a 
continuous variable. Even if these have to be connected to binary in
dicators to model dependencies etc, the new model has fewer binary 
variables and is therefore easier to solve. Note that it is also more flex
ible, as it allows for working on an activity for only a fraction of a time 
period, which was not possible with the previous model. However, the 
dependencies are only resolved at the period boundaries: if activity a 
finishes in the middle of period t and activity b depends on a, then b will 
be allowed to begin first at the start of period t+ 1. 

The last two variables (cumulative progress ca,n,s and DNAC-indicator 
da,n,s) are used for modelling of the stochastic durations, as described 
below. 

Fig. 1. Scenario tree for a case with one activity a with two possible durations, denoted by blue and red. Dashed lines in (b) denote all the possible dynamic non- 
anticipativity constraints (DNACs). In (b) and (d), the full and dotted lines denote active and inactive DNACs, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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4.3. The model 

This section presents the objective function and constraints of the 
model. Throughout the section, we simplify the notation by assuming 
that expressions with non-existing values (such as n ˙− in the root node) 
evaluate to zero. 

4.3.1. Objective function 

minimize
∑

(n,s)∈E

P(n)
[
∑

CR
r,lur,l,n,s +CE

t(n)

(
fAF,n,s − fAF,n ˙− ,s

) r ∈ R

l ∈ L r

]

(1) 

The objective is to minimize the expected costs, consisting of the 
resource-usage costs and extra penalty term depending on the finishing 
time of the whole project, i.e., end time of the final activity AF. 

4.3.2. Activity progress constraints 

pa,n,s = pa,n ˙− ,s +wa,n,s − 1
/

Ua ra,n,s a∈A R, (n, s) ∈ E (2)  

ca,n,s = ca,n ˙− ,s +wa,n,s a∈A R, (n, s) ∈ E (3)  

fa,n,s ≤ pa,n,s

/
DA

a,s a∈A R, (n, s) ∈ E (4)  

ga,n,s ≥ pa,n,s

/
DA

a,s a∈A R, (n, s) ∈ E (5)  

fa,n,s ≥ fa,n ˙− ,s a∈A R, (n, s) ∈ E (6)  

fAF ,l,s = 1 l ∈ N L, s ∈ S (7) 

Constraints (2) and (3) model the normal and cumulative progress, 
respectively, while (4) and (5) define indicators for finished and ongoing 
projects, respectively. Constraints (6) ensure that an activity marked as 
finished will remain so to the end. Without this, and activity could be 
marked as finished (and therefore could trigger start of another activity) 
and then reverted. Finally, (7) ensures that the project finishes in all 
scenarios. 

4.3.3. Dependencies and conflicts between activities 

wa,n,s ≤DP
n far ,n ˙− ,s a∈A R, (n, s) ∈E , ar ∈ D

∩

a ∪ D
∩

a,n (8)  

wa,n,s ≤DP
n

∑

ar∈D ∪
a ∪D ∪

a,n

far ,Prevn,s a∈A R :

⃒
⃒
⃒D

∪

a ∪ D
∪

a,n

⃒
⃒
⃒> 0, (n, s) ∈ E (9)  

wa,n,s ≤DP
n

(
1 − gac ,n,s

)
a∈A R, ac ∈A C(a), (n, s) ∈ E (10)  

fa,n,s ≤ far ,n ˙− ,s a∈A I, (n, s) ∈E , ar ∈ D
∩
a ∪ D

∩
a,n (11)  

fa,n,s ≤
∑

ar∈D ∪
a ∪D ∪

a,n

far ,n ˙− ,s a∈A I :

⃒
⃒
⃒D

∪
a ∪ D

∪
a,n

⃒
⃒
⃒> 0, (n, s) ∈ E (12)  

fa,n,s ≤ 1 − gac ,n,s a∈A I, ac ∈D
−
a,n, (n, s) ∈ E (13)  

wa,n,s + ra,n,s +wb,n,s + rb,n,s ≤DP
n a∈A R, b∈A P(a), (n, s) ∈ E (14)  

wa,n,s = 0 a ∈ A R, (n, s) ∈ E :
∑

l∈N L :n∈N P
l

P(l)
⃒
⃒
⃒D

∩
a,n ⊖ D

∩
a,l

⃒
⃒
⃒ > 0 (15)  

fa,n,s = 0 a ∈ A I, (n, s) ∈ E :
∑

l∈N L :n∈N P
l

P(l)
⃒
⃒
⃒D

∩
a,n ⊖ D

∩
a,l

⃒
⃒
⃒ > 0 (16) 

Constraints (8) and (9) model the ‘and’- and ‘or’-type dependencies 
for real activities, i.e., cases where one activity depends on either all, or 
at least one, of a specified set of activities. Constraints (10) model 
conflicting activities (which can be viewed as ‘not’-type dependencies), 

where we cannot work on an activity as long as another one is ingoing. 
Constraints (11)–(13) do the same for indicator activities; since these do 
not have a duration, the constraints work directly on the activity-finish 
indicators. In addition, constraints (14) model the case where some 
activities are forbidden to run in parallel (at the same time). 

Finally, constraints (15) and (16) ensure that an activity with sto
chastic dependencies cannot start before the relevant uncertainty is 
revealed; (15) is for real activities and (16) is for indicators. Inside the 

sum, ‘⊖ ’ denotes the symmetric difference of two sets, so 
⃒
⃒
⃒D

∩
a,n ⊖

D ∩
a,l

⃒
⃒
⃒ > 0 is equivalent to D ∩

a,n ∕= D ∩
a,l. In other words, we allow positive 

progress of activity a in node n only if the dependency does not change 
after node n. 

4.3.4. Resource usage 

ur,l,n,s ≤Lr,l r∈R , l∈L r, (n, s) ∈ E (17)  

∑

a∈A R

(
Ra,r wa,n,s +Rr

a,r ra,n,s

)
=
∑

l∈L r

ur,l,n,s a∈A R, (n, s) ∈ E (18) 

These constraints track the resource usage of all activities. Together 
with upper bounds on ur,l,n,s, they ensure that we only use the resources 
we have. 

4.3.5. Decision-dependent non-anticipativity constraints 

dn,s1 ,s2 ≤
ca,Prevn,s1

α min
(

DA
a,s1

,DA
a,s2

) n∈N , (s1, s2) ∈C , a=As1 ,s2 (19) 

The remaining constraints are all for n ∈ N and (s1, s2) ∈ C , in 
addition to the specified ranges: 

pa,n,s2 − pa,n,s1 ≤max
{

DA
a,s1

,DA
a,s2

}
dn,s1 ,s2 a ∈ A R (20)  

pa,n,s1 − pa,n,s2 ≤max
{

DA
a,s1

,DA
a,s2

}
dn,s1 ,s2 a ∈ A R (21)  

wa,n,s2 − wa,n,s1 ≤ DP
n dn,s1 ,s2 a ∈ A R (22)  

wa,n,s1 − wa,n,s2 ≤ DP
n dn,s1 ,s2 a ∈ A R (23)  

ra,n,s2 − ra,n,s1 ≤ DP
n dn,s1 ,s2 a ∈ A R (24)  

ra,n,s1 − ra,n,s2 ≤ DP
n dn,s1 ,s2 a ∈ A R (25)  

fa,n,s2 − fa,n,s1 ≤ dn,s1 ,s2 a ∈ A (26)  

fa,n,s1 − fa,n,s2 ≤ dn,s1 ,s2 a ∈ A (27) 

Constraints (19) define indicators dn,s1 ,s2 for the dynamic non- 
anticipativity constraints (DNACs): dn,s1 ,s2 = 1 means that we can 
distinguish between s1 and s2 at node n. The constraints ensure that this 
happens only if activities connecting scenarios s1 and s2 have reached at 
least fraction α of the shorter duration. For example, if α = 0.5, DA

a,s1
= 4 

and DA
a,s2

= 6, we have to run the project for 0.5 × 4 = 2 periods before 
we learn the duration and hence can distinguish the two scenarios s1 and 
s2. 

Finally, constraints (20)–(27) enforce the dynamic non- 
anticipativity, pairwise for each set of variables. For example, (20)– 
(21) ensure that pa,n,s2 can differ from pa,n,s1 only if dn,s1 ,s2 = 1. 

5. Test cases 

5.1. Motivating example 

The example for test cases is an extended version of that in Vaagen 
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et al. (2017), where we add stochasticity and correlations to activity 
durations, in addition to the uncertainty in design. 

Consider the example of re-outfitting a vessel with competing engine 
technologies with uncertain performance, electric A or hybrid-electric B. 
It is acknowledged that in such projects one of the technologies turns out 
to be more compatible with the existing solution than the other, but this 
understanding becomes available only after re-opening the vessel. 
Important outfitting decisions are hence made in light of uncertainty, 
and stochastic activity durations connected to the competing technolo
gies are negatively correlated. We may also know that if one task con
nected to one technology (A for instance) takes longer than expected, 
others connected to that technology may also take longer (common 
cause, driving positive correlations). This practical example is discussed 
in relation to the findings in Section 6. 

Assume the project consists of the choice of design alternative, and 
scheduling with three activities P, D and E; depicted in Fig. 2a. There, we 
have introduced an indicator activity F depending on the three activ
ities, P, D and K. The diamond shape shows that the dependency is of 
type ‘and’, i.e., the activity needs all its predecessors to finish in order to 
start. 

Assume activities P and D depend on the design choice, and that the 
customer decision on preferred alternative can be delayed or changed 
during the project duration. I.e., the choice between technologies A and 
B is a stochastic parameter in the model. 

This gives the network in Fig. 2b, where we have introduced three 
new indicator activities A, B, and S. The latter is of a special type, since S 
depends on either A or B, dependent on the customer choice. For 
example, if design A is preferred, this would translate into activity S 
depending on activity A and hence on activities PA and DA. 

Further, assume that the design-dependent activities P and D can be 
run in two substitutable alternatives: specialized from the start (call it 
‘one-step’ version, or integral design), or modularized with a common 
part and a specialized part for the two designs A and B. For the latter, we 
can start with the standardised common part and postpone the 
specialisation1 (call it flexible two-step version, modular or set-based 
engine design). 

For project P, this means replacing nodes PA and PB from Fig. 2b by 
the network of nodes depicted at Fig. 2c. There, activities PA and PB 
become indicator activities with dependencies of type ‘or’, i.e., they can 
start when at least one of their predecessors has finished. Activity D is 
enhanced in the same fashion. The result is a dependency graph used in 
the actual test cases, see Figs. 5 and 6. 

Finally, we add the uncertain durations (two possible values) for four 
selected activities, as follows. 

First, we have the situation with uncertainty on the specialisation 
tasks of the alternative technologies A and B. This means that we have 
stochastic and correlated second-step tasks of the modular versions of 
activities P and D; i.e., stochastic and correlated P2A, P2B, D2A and 
D2B, as shown on Fig. 5. 

Second, we have the situation with uncertainty only on technology B, 
but on both implementation alternatives. Hence, we have activities P0B, 
P2B, D0B and D2B stochastic and correlated, as shown by Fig. 6. Recall 
that the first-step activities of the modular solutions, P1 and D1, are 
made standard for both designs A and B, and are hence deterministic. 
The activities making up design A are also deterministic. For a practical 
illustration in shipbuilding, one situation with major randomness only 
on activities of one of the design variants, is observed for sister vessels. 
By completing a first vessel, shipbuilders develop knowledge and elim
inate uncertainty on the preferred design with preferred implementation 
path. Design changes on the second (sister) vessel (driven by e.g., the 
market and regulatory interventions) generate stochasticity and corre
lations on the new activities. 

For comparability of the results with those presented in Vaagen et al. 

(2017), the stochastic activity durations are built around two data sets 
provided in that paper, as presented in Table 1. The second data set 
reflects higher reactivity to change, by shorter durations on the second 
stage specialisation tasks, and correspondingly longer on the first stage 
standardised tasks. Also note that in both versions, the two-step imple
mentation alternatives of PA, PB, DA, and DB take one period longer 
than the integral one-step paths. 

The planning horizon consists of 11 half-week periods, so the 
maximal duration is 5.5 weeks. We have only one resource r and each 
real activity uses one unit of the resource per period. We can use up to 
four units of the resource in each period, where the first two units cost 
1.0, the third unit 1.5, and the fourth 2.0. Since we want the project to 
finish as soon as possible, we use an increasing penalty for the overall 
finish time. 

In addition, we have to model the design uncertainty. We assume 
that the customer prefers design alternative A, but can change the 
preference to either B or ‘both A and B’ during the duration of the 
project. We allow the change after one, two, and three weeks, i.e., after 
periods 2, 4, and 6. In addition, we study the effect of adding an extra 
week (two periods) to the most challenging scenarios. The resulting 
scenario trees are presented in Figs. 3 and 4. 

We have run the test with an increasing probability of changing 
design from A to B: 1%, 5%, 10% and 20% at each branching. This 
means that the probability of no change decreases from 97% to 85.7%, 
72.9%, and finally 51.2% in the last case. I.e., we cover the range of low 
to nearly full uncertainty in design preference. 

5.2. Test 1: uncertainty on the modular implementation path of both 
design variants A and B 

Here we assume the one-step integral (i.e., non-flexible) paths to 
design alternatives A and B as deterministic. We have stochasticity on 
the flexible two-step paths to both designs; i.e., on activities P2A, P2B, 
D2A, D2B (as shown on Fig. 5), each with 2 values, resulting in 24 = 16 
duration scenarios. Unless specified otherwise, the two values have 
probability 50% for all activities. 

We specify two correlation values:  

• Correlations between alternative versions of the same activity: P2A 
vs. P2B and D2A vs. D2B;  

• Correlations between two activities within one design: P2A vs. D2A 
and P2B vs. D2B. 

The remaining correlations are fixed to zero. The one-step solutions 
of designs A and B, as well as the first-steps in the two-step versions, 
have deterministic durations. The six cases for Test 1 analysis are given 
in Appendix A. 

5.3. Test 2: uncertainty on design variant B 

In these tests we have uncertainty on the substitutable alternative 
paths to design B, i.e., on the integral (non-flexible) and modular 
(flexible) solutions, and pairwise correlation between these alternatives, 
as presented by Fig. 6. 

We have 4 stochastic activities P0B, P2B, D0B, D2B, each with 2 
values, resulting in 24 = 16 duration scenarios. Unless specified other
wise, the two values have probability 50% for all activities. 

We specify two correlation values, as follows:  

• Correlations between substitutable alternatives of the same activity: 
P0B vs. P2B and D0B vs. D2B;  

• Correlations between the corresponding alternatives, non-flexible 
and flexible, of the two activities: P0B vs. D0B and P2B vs. D2B. 

The remaining correlations are fixed to zero. The two cases devel
oped for Test 2 analysis are given in Appendix A. 1 In most cases, this extra flexibility will come at a cost. 
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5.4. Test results 

Detailed test results for the eight cases are given in 5.4. Below we 
summarise the results by stating that when the higher level design un
certainty is described by multiple design alternatives (A and B in our 
case) and delayed decisions on the final choice, randomness in activity 
duration and correlations between activities of alternative designs have 
limited impact on the planning decisions and performance. The planning 
guidelines suggested in Vaagen et al. (2017) to handle design change 
under the assumption of deterministic activity durations, are shown to 
be valid also under stochastic activity durations (with a few exceptions 
which we discuss later): Postponement is preferred whenever possible, 
followed by the design implementation strategy (flexible or 
non-flexible) that enables minimal time and costs. Flexible two-step task 
solutions are preferred under the possibility of quick customisation to 
real-time customer preferences (i.e., when the second step of a flexible 

solution is short relative to the first step), and in situations when extra 
time periods cannot be added. Non-flexible one-step task solutions com
bined with impact-based prioritization are preferred when there is low 
reactivity to real-time customer preferences (i.e., with long second steps 
relative to the first steps of the flexible task solutions), and when extra 
periods can be added to the difficult scenarios. 

Exception to the above results is found in situations with correlations 
between the substitutable implementation paths (flexible and non- 
flexible) of a particular design (i.e., in Test 2 cases). In these situa
tions, it is suggested to start implementing parts of the correlated ac
tivities to learn which one of these will have shortest completion time, 
before the decision on the strategy that minimizes time and costs is 
taken. Whenever possible, postponement is observed before learning. 
This learning behaviour is seen only when there is low reactivity to 
design change; i.e., in case 7 (see Appendix A) with long second-step 
durations compared to the first-step. Learning is most prominent in 
situations when extra time periods cannot be added to the project 

Fig. 2. Step-by-step construction of the motivating example. Real activities are depicted by ellipses, indicator activities with and-dependency by diamonds, or- 
dependency by rectangles, and the stochastic dependency by a combination of the two. 

Table 1 
Deterministic activity durations from Vaagen et al., 2017.  

Activity P0A P0B P1 P2A P2B D0A D0B D1 D2A D2B K 

version 1 4 3 2 3 2 3 4 2 2 3 2 
version 2   3 2 1   3 1 2   

Fig. 3. Scenario tree 11 periods.  

Fig. 4. Scenario tree 11 + 2 periods.  

Fig. 5. The project network for the test with stochastic second steps of flexible 
paths to design A and B. Design dependent stochastic piping activities (P2A, 
P2B) and electro activities (D2A, D2B) are denoted in blue and green, respec
tively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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delivery, and is highest under high values of negative correlations. 

6. Managerial implications and guidelines for planning decision 
making under uncertainty 

In engineering projects, changing market conditions and uncertainty 
in the future performance of a design or technology are leading to 
frequent changes in design and technical specifications. This type of 
uncertainty is difficult to estimate, and is most often not addressed in 
advance but handled reactively after a change has materialized (Petit 
and Hobbs, 2010). Randomness in activity duration, on the other hand, 
is usually addressed early and handled by buffering around the critical 
path. For changes in design, buffering is suboptimal, as we don’t know 
where to put buffers and how much. One way to handle this type of 
change is to consider multiple alternatives in product and process 
design. In flexible design strategies, like set-based or modular design, 
multiple alternatives are described, but it is less clear how to implement 
this flexibly in planning tools. Moreover, while simulation studies point 
to correlations as more impactful than the distribution of activity du
rations, planning approaches with correlations are few. Following, there 
is limited understanding on which one of these sources of uncertainties 
is more important and why, and under which circumstances. As a result, 
project managers may not adequately prepare for them, and preventive 
efforts (such as buffers or flexibility strategies) may be dysfunctionally 
designed and allocated. Our paper attempts to improve understanding 
on these managerial aspects in the following ways. 

Firstly, the results suggest that the most critical uncertainty in plan
ning engineer-to-order projects is the higher level design uncertainty 
(which we perceive as requirement uncertainty), dictating what flexi
bility to develop and under which circumstances. We have implemented 
flexible design strategies in our decision model, and the analyses show 
that when models are extended this way, randomness in activity dura
tions and correlations between activities of alternative designs have 
limited impact. The planning guidelines suggest postponement to be 
followed by flexible implementation versions (we called it two-step 
design), whenever quick specialisation can be achieved by a short sec
ond step relative to the first step (which is what flexible design strategies 
strive for). When flexible task solutions are not available, managerial 
flexibility achieved by two-step design (meaning modularized solution) 
is less valued. In these situations, postponement is to be followed by 
impact-based prioritization. 

Secondly, correlations between substitutable solutions for a given 
design, drive a certain front-end learning behaviour, as follows: First, 
start to implement parts of the correlated activities to learn which one of 
the correlated and substitutable task solutions will have shortest 
completion time, before the decision on the flexibility strategy that 
minimizes time and costs is taken. Thereafter, the implemented activ
ities that enabled learning will be potentially, but not necessarily, 
uninstalled. Postponement is used before learning, whenever possible. 

Learning is more prominent in situations when time is critical and 
extra periods cannot be added to the time horizon, and when there is low 
reactivity to real-time customer preferences (i.e., long second steps 
relative to the first steps of the flexible task solutions). The value of 
learning is highest under high negative correlations, i.e., when the du
rations of alternatives are expected to go in opposite direction. 

One practical situation when starting something to learn makes 
sense, is when re-outfitting existing ships with competing technologies, 
e.g., diesel electric or diesel electric-hybrid propulsion systems. Hybrid 
technology provides high-efficiency alternative applications in some 
cases, by storing electrical energy in rechargeable batteries, but its 
compatibility with existing solutions on one-of-a-kind specialized pro
jects is an acknowledged challenge. It turns out that one solution 
alternative (e.g., fully customized or modular) is better, with shorter 
expected duration than others (i.e., negatively correlated), although 
substitutable. This understanding only becomes available after collect
ing information, in our case after re-opening the ship, often far into the 
re-build process with a chosen solution. We may also know that if a task 
connected to one alternative (e.g., fully customized electro) takes longer 
than expected, other tasks connected to that alternative (e.g., fully 
customized piping) may also take longer (common cause, driving posi
tive correlations). Information is revealed because of decisions, not just 
because time has passed. This means that when a particular solution 
alternative is fixed early (as it is in common practice), rework loops are 
nearly unavoidable on one-of-a-kind re-builds. 

Fig. 7 illustrates a modular solution of Rolls Royce propulsion sys
tem. This enables quick adaptation from diesel-electric (a) to multiple 
variants of diesel electric-hybrid systems (b). The modular solution is 
designed to meet the compatibility challenges involved in re-outfitting 
existing ships and challenges imposed by late design changes in new- 
build ships. 

In conclusion, we suggest to use knowledge of correlations to learn 
early the duration of uncertain activities, and postpone the selection of a 
final alternative (in our case, modular or fully customized) until after 
this learning. Conceptually, this learning behaviour is in line with de
cision making under uncertainty, in that it suggests reducing or elimi
nating uncertainty as early as possible. In our case this involves starting 
stochastic and correlated activities to learn. This may come with some 
extra early costs (as activities may be uninstalled), but enables devel
oping solutions with reduced reworks, hence reduced time and costs. In 
common re-outfitting practice, the decision on a possible solution is 
taken before an activity is started. This leads, eventually, to learning the 
compatibility of the chosen solution, but this type of learning may come 
late and with unreasonably high costs. 

Knowledge on the influence of correlations is particularly important 
in markets where the competitive advantage is built on handling 
changes throughout the project delivery, and where full and highly 
detailed information is not available before the building process starts. 

In our model, the choice of which activity to start first, in order to 
maximize the value of learning, is driven by optimality criteria. The 
activities come from a set of activities with specified correlations. In our 
modelling framework, we may see that starting an activity is done just to 
learn. This situation can in most real cases better be represented by an 
actual activity with the specific purpose of learning. The handling of the 
stochastics would otherwise be as we already outlined. Since ‘investi
gating’ in order to learn might be simpler than starting in order to learn, 
the use of a learning activity is probably better. However, not to make 
our model even more complicated, we have chosen not to include 

Fig. 6. The project network with stochastic design B. Stochastic piping activ
ities (P0B, P2B) and electro activities (D0B, D2B) are denoted in blue and green, 
respectively. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the Web version of this article.) 
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learning activities explicitly. That said, whenever the model shows a 
solution where learning, in fact, can be seen to be the purpose, it may 
make sense to actually carry out a learning activity, and not pretend to 
start the actual activity. 

7. Conclusions 

In this paper we treated decision making in project planning with 
uncertainty at two levels, with stochastic and correlated activity dura
tions conditioned by the higher level design uncertainty, which we 
approached by stochastic dynamic programming. The model we devel
oped is simultaneously treating information arrival and future decisions, 
as well as correlations between stochastic activities. Our main aim was 
to better understand how the different uncertainty elements, together, 
affect the planning process and strategies, and to understand how to use 
real options to switch among design alternatives, to operationalize 
modular or set-based (flexible) design development. The contribution of 
the paper is, therefore, placed within the wider context of management 
of project uncertainty. 

While the stochastic program we provide is not for large applications 
(as that would be very difficult with the complex uncertainty and de
pendency patterns at hand), it enables conceptual learning through 
small problem instances of the complexity, and exemplifies how to 
operationalize design alternatives in project planning. The learning is 

threefold: 1)insight into the impact hierarchy of the different sources of 
uncertainty, 2)learning about the influence of correlations and into the 
decision behaviour driven by these, and 3) increased insight into the 
structure of planning solutions under multiple sources of uncertainties. 
We anticipate these to be valuable for project management approaches 
suited for large applications, such as advanced simulation, and less 
tangible project management processes associated with organisational 
learning. 

On a final note, we believe our findings together with earlier results 
on correlations in assortment planning (discussed in Section 3), 
contribute to improved knowledge on the general effects of correlations. 
Concretely, from assortment planning we know that pairing negatively 
correlated items that are also substitutable (to some extent) reduces the 
monetary portfolio risk. Our findings point to similar insight within 
project planning decision making, i.e., preparing with negatively 
correlated and substitutable alternatives of uncertain activities, can 
reduce project risk. 
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Appendix A. Test cases 

The following six test cases are developed for Test 1 analysis: 
Case 1 uses the two data versions from the deterministic case on Table 1 as the two scenarios. Here, the flexible two-step versions of tasks P and D 

are made shorter in expectation, compared to the deterministic case; a less realistic situation.   

activity P0A P0B P1 P2A P2B D0A D0B D1 D2A D2B 

value 1 4 3 2 3 2 3 4 2 2 3 
value 2    2 1    1 2 

mean 4 3 2 2.5 1.5 3 4 2 1.5 2.5  

Case 2 uses the first data version from Table 1, with stochastic durations equal to the mean ±1. That is, long second-steps are made uncertain.   

activity P0A P0B P1 P2A P2B D0A D0B D1 D2A D2B 

value 1 4 3 2 2 1 3 4 2 1 2 
value 2    4 3    3 4 

mean 4 3 2 3 2 3 4 2 2 3  

Case 3 uses the same values as Case 2, but the longer variants get probability 2/3, resulting in longer expected duration of the flexible variants. 
Case 4 uses the same values as Case 2, but the longer variants get probability 1/3, resulting in shorter expected duration of the flexible variants. 
With respect to the second data version in Table 1, we observe that we cannot use the same logic as for the first data variant (with stochastic 

duration equal to the mean ±1), since we would end up with duration equal to zero. Hence, we change the definition to be the mean ± 50%. This 
allows to formulate the following two new cases: 

Case 5 is like Case 2, but using the new stochastic durations with mean ±50% (i.e., higher uncertainty), resulting in long and highly uncertain 

Fig. 7. Rolls Royce propulsion systems. Figures with permission from Kongsberg Maritime, © 2018 Kongsberg Maritime.  
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second-steps.   

activity P0A P0B P1 P2A P2B D0A D0B D1 D2A D2B 

value 1 4 3 2 1.5 1 3 4 2 1 1.5 
value 2    4.5 3    3 4.5 

mean 4 3 2 3 2 3 4 2 2 3  

Case 6 is analogous to Case 5, but uses the second data version (with short second stages) from Table 1:   

activity P0A P0B P1 P2A P2B D0A D0B D1 D2A D2B 

value 1 4 3 3 1 0.5 3 4 3 0.5 1 
value 2    3 1.5    1.5 3 

mean 4 3 3 2 1 3 4 3 1 2  

The following two cases are developed for Test 2 analysis. 
Case 7 Activity durations are based on the first data variant from Table 1 (long second steps of flexible versions, i.e., low reactivity to changes), 

with stochastic durations equal to the mean ±50%. 
Case 8 is like Case 7, but based on the second data variant from Table 1 (short second steps, i.e., high reactivity to changes). 

Appendix B. Results 

Appendix B.1. Test 1, Cases 1-6 

In these cases we have randomness on both designs A and B, with stochastic and correlated second-step durations of the flexible alternatives of 
activities P (P2A, P2B) and D (D2A, D2B), denoted in blue and green on Fig. 5. 

In Case 1 the flexible two-step versions of tasks P and D are used, but this is because we have made the two-step solutions shorter (on average), 
compared to the deterministic one-step versions. 

In Case 2, the findings support results from the model with deterministic task durations in Vaagen et al. (2017). Flexible two-step versions are less 
preferred when there is low reactivity to real-time customer preferences (i.e., long second step specialisation tasks). Postponement is used before 
impact-based prioritization of one-step task solutions. We do not see any clear impact of the correlations. 

In Case 3 flexibility is even less attractive as the flexible versions are now made even longer in expectation, as compared to Case 2. 
Case 4 is similar to Case 1, where flexible task solutions are used because we have made the stochastic second steps shorter in expectation. 
In Case 5 the findings are in line with the Case 2 findings. Postponement is preferred before impact-based prioritization of one-step solutions. The 

benefits of design flexibility are even less attractive when there is high uncertainty connected to the long second-step specialisation tasks. 
In Case 6 flexible two-step versions are preferred when the second step specialisation tasks are short, relative to the first steps of the flexible task 

solutions. Postponement and flexibility is observed in all tested data variants. 

Appendix B.2. Test 2, Cases 7-8 

In Test 2 cases we only have randomness on design B, with stochastic and correlated durations of tasks P0B, P2B, D0B, D2B, denoted in blue and 
green on Fig. 6. 

In Case 7, with long second steps of the flexible task solutions of design B (i.e., low reactivity), in situations where we allow 20% increase in time (2 
periods) for the most challenging scenarios and for data variants with zero correlations, postponement is followed by nonflexible (one-step) task 
solutions. In tests without extra periods, we observe increased use of flexible solutions. This confirms previous findings in Vaagen et al. (2017) and 
findings from Section Appendix B.1. 

Under data variants with correlations, a certain learning behaviour is observed before the optimal strategy that minimizes duration and costs (as a 
combination of flexible and non-flexible task solutions) is taken. Learning is enabled by starting the one-step versions D0B and P0B until we learn their 
durations. From this and knowledge on correlations we learn the duration of correlated activities, before actually starting them. For example, from 
learning the duration of P0B and negative correlations between P0B and P2B it then follows that if P0B is long, P2B will probably be short. A second 
example, from learning D0B, knowledge on positive correlations between D0B and P0B, and negative correlations between P0B and P2B, it then 
follows that if D0B is long, P2B will probably be short. This learning cannot be achieved if starting with the flexible two-step version of P, as in that case 
we have had to start with the first-step common tasks P1 and D1, which are deterministic and not correlated with P0B and D0B. After learning, the 
optimal strategy that minimizes duration and costs is chosen. This learning behaviour is most seen in situations when extra periods are not allowed to 
be added. Postponement is used when possible. 

In Case 8 we have high reactivity to design change (through short second step customisation tasks of the flexible solutions), and more uncertain 
one-step non-flexible versions of design B. For all data variants with and without correlations, flexible two-step task solutions are preferred. The 
learning behaviour described for Case 7 is not detected here, and we also see less postponement. In line with our earlier findings, high reactivity to 
changes through short customisation tasks drives flexibility. 
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