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Abstract The fully implicit method is the most com-

monly used approach to solve black-oil problems in reser-

voir simulation. The method requires repeated lineariza-

tion of large nonlinear systems and produces ill-condi-

tioned linear systems. We present a strategy to reduce

computational time that relies on two key ideas: (i) a

sequential formulation that decouples flow and trans-

port into separate subproblems, and (ii) a highly ef-

ficient Gauss–Seidel solver for the transport problems.

This solver uses intercell fluxes to reorder the grid cells

according to their upstream neighbors, and groups cells

that are mutually dependent because of counter-current

flow into local clusters. The cells and local clusters can

then be solved in sequence, starting from the inflow and

moving gradually downstream, since each new cell or lo-

cal cluster will only depend on upstream neighbors that
have already been computed. Altogether, this gives op-

timal localization and control of the nonlinear solution

process.

This method has been successfully applied to real-

field problems using the standard first-order finite vol-
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ume discretization. Here, we extend the idea to first-

order dG methods on fully unstructured grids. We also

demonstrate proof of concept for the reordering idea by

applying it to the full simulation model of the Norne oil

field, using a prototype variant of the open-source OPM

Flow simulator.

1 Introduction

Reservoir simulation requires the solution of large sys-

tems of nonlinear partial differential equations to com-

pute fluid pressure, phase saturations, and component

concentrations/mass fractions. In industry-grade simu-

lations, it is most common to use implicit temporal dis-

cretization to overcome severe CFL restrictions arising

because of grids with high aspect ratios, orders of mag-

nitude variations in petrophysical properties, and large

variations in fluid velocities from stagnant and slow-

moving flow regions to high-flow regions around wells.

For cases with weak coupling between the fluid pres-

sure and the transport of conserved quantities, one can

observe significant reduction in computational costs by

splitting the flow model into a pressure equation and

a set of transport equations and solve them sequen-

tially [32, 34]. To this end, it is common to use special-

ized solvers since the two subproblems typically have

very different mathematical character: pressure equa-

tions are often close to elliptic, whereas transport equa-

tions have a strong hyperbolic character; see e.g., Bell

et al. [2] and Lie [18].

The pressure equation is usually discretized by a

first-order, two-point flux-approximation scheme, giv-

ing a discrete problem that can be efficiently solved

by a multigrid [33, 11] or multiscale method [22]. For

the transport equations, a number of methods aim to
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accelerate computations by utilizing inherent locality

and co-current flow properties of hyperbolic equations.

Examples include streamline simulation [9, 4], a priori

estimation of nonzero update regions [30], and use of

interface-localized trust regions to determine safe satu-

ration updates [23, 15].

Reordering methods rely on the important observa-

tion that the transport of fluid phases is always uni-

directional along streamlines in the absence of gravity

and capillary forces. Consequently, it is possible to or-

der the grid cells so that the discretization matrix for

the transport equations becomes lower triangular and

can be solved very efficiently in a cell-by-cell manner.

A branch of these methods builds upon the Cascade

method [1] and reorders grid cells based on the fluid po-

tential [17, 29]. Another branch uses topological traver-

sal of the intercell flux graph [25, 20, 21]. The latter has

the advantage that it is easy to implement using meth-

ods from standard graph theory. When gravity and cap-

illary forces are present, the flow field will have regions

of counter-current flow, which show up as cycles of mu-

tually connected cells in the discretized flow equations.

If the cells in these cycles are grouped into supernodes

and solved for simultaneously, we can still use the same

reordering idea.

Numerical smearing and grid-orientation effects are

well-known problems in reservoir simulation. These ef-

fects are particularly evident for displacement fronts

with little or no self-sharpening effects, as are often

found in multicomponent models describing various mech-

anisms for enhanced oil recovery, e.g., polymer injection

and miscible flooding. We can mitigate these effects by

increasing the grid resolution and/or the formal order

of the spatial discretization. Both approaches increase

the computational cost by increasing the number of un-

knowns and/or the nonlinearity of the discretized equa-

tions, and it is therefore even more important to have a

nonlinear solver with high efficacy. Most high-resolution

methods—i.e., methods that deliver high formal order

on smooth parts of the solution and stable propagation

of discontinuities—rely on some kind of spatial recon-

struction using cell-based averaged quantities from a

ring of immediate cell neighbors. The resulting sten-

cils involve cells both in the upstream and downstream

direction. This means that the resulting discretization

graph does not reflect the same unidirectional proper-

ties as the underlying flow equations for co-current flow.

Alternatively, one can use discontinuous Galerkin

methods (dG), which were first extended to general

systems of hyperbolic conservation laws by Cockburn

and Shu [7, 8]. When combined with a single-point up-

stream mobility scheme for flux evaluation, these meth-

ods preserve the causality of the continuous flow equa-

tions. That is, the corresponding stencil is restricted to

cells in the upstream direction in regions of co-current

flow. After application of flux-based reordering, the dis-

crete nonlinear flow equations are permuted to block-

triangular form, with small blocks representing indi-

vidual cells from regions of co-current flow and larger

blocks representing regions of counter-current flow. This

gives a natural localization: You start at the inflow loca-

tions and solve the nonlinear equations block-by-block

toward the location of outflow. For blocks consisting

of multiple cells, you can either solve for all mutually

dependent unknowns simultaneously, or you can use an

effective Gauss–Seidel solver that decomposes the prob-

lem to an iteration over a sequence of single-cell prob-

lems [21]. The advantage of the Gauss–Seidel approach

is that it relies entirely on single-cell nonlinear solvers,

which are simpler to optimize.

In this work, we combine intercell flux reordering

methods with higher-order dG methods. This idea has

previously been studied by Natvig et al. [26] and Eikemo

et al. [10] for passive advection problems and by Natvig

and Lie [25] for incompressible problems in two-phase,

three-phase, and two-phase–three-component flow with-

out gravity and capillary forces. Later, the first-order

variant of the method was extended to include gravity

[20] and to polymer flooding [21] with compressibility

and gravity effects. Herein, we study the widely used

family of black-oil equations and present a method that

can handle all relevant flow effects including hysteresis

and capillary forces as seen in the simulation model of

the Norne oil field [31]. We also discuss how to for-

mulate high-order dG discretization for general polyhe-

dral grids, introduce a simple order-reduction method

to prevent creating spurious oscillations, and present

a new method based on blocks of cells, which is more

parallel and cache efficient than solving for a single cell

at a time.

2 Governing equations

The black-oil model describes conservation of three pseudo-

components (water, oil, and gas), which at reservoir

conditions can distribute in three phases (aqueous, oleic,

and gaseous):

∂t (φbwSw) +∇ · (bwvw)− bwqw = 0,

∂t (φ [boSo + bgrvSg])

+∇ · (bovo + bgrvvg)− (boqo + bgrvqg) = 0,

∂t (φ [bgSg + borsSo])

+∇ · (bgvg + borsvo)− (bgqg + borsqo) = 0.

(1)

Here, Sα denotes saturation, vα the macroscopic Darcy

velocity, and qα sources and sinks of phase α. Shrinkage
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factors bα model pressure-dependent densities ρα, and

the gas-oil and oil-gas ratios rs and rv model the volume

of gas dissolved in oil and oil vaporized in gas, respec-

tively, both at standard conditions. The phase velocity

vα is given by the multiphase extension of Darcy’s law:

vα = −λαK (∇pα − ραg∇z) ,

where λα = krα/µα is the mobility of phase α; relative

permeability krα models the reduced mobility of one

phase in the presence of another, whereas µα as usual

denotes the viscosity of phase α. The model is closed

by assuming that the fluid phases fill up the entire pore

space, Sw + So + Sg = 1, and that the phase pressures

are related through capillary pressures:

po = pw + Pcow(Sw, So), pg = po + Pcgo(So, Sg).

3 Sequential splitting

We use backward Euler to discretize in time. On semi-

discrete form, the equation describing conservation of

mass for water (1) at time n+ 1 then reads

Rw =
1

∆t

(
[φbwSw]

n+1 − [φbwSw]
n
)

+∇ · (bwvw)
n+1 − (bwqw)n+1 = 0,

(2)

where we have introduced the time-step length ∆t =

tn+1−tn, and superscripts n and n+1 refer to the time

step. Semi-discrete forms for the oil (Ro) and gas (Rg)
equations are analogous. We multiply each equation by

the following factors

ωw =
1

bn+1
w

,

ωo =
1

1− rn+1
s rn+1

v

(
1

bn+1
o

− rn+1
s

bn+1
g

)
,

ωg =
1

1− rn+1
s rn+1

v

(
1

bn+1
g

− rn+1
v

bn+1
o

)
,

and sum to eliminate all terms involving saturations at

time step n+ 1. This gives us a pressure equation

Rp = ωwRw + ωoRo + ωgRg. (3)

To obtain a fully discrete formulation, we introduce a

grid covering our computational domain with N non-

overlapping polyhedral cells {Ωi}Ni=1. We denote the

common interface of cell i and j by Γij and the vol-

umetric flux from cell i to cell j by

vα,ij =

∫

Γij

vα · nij dσ.

Here, nij is the unit normal from cell i to cell j. Notice

that conservation of mass requires that vα,ij = −vα,ji.

In the following, we assume that we have a pressure

solver that can solve the fully discrete version of (3) to

yield a total velocity field v = vw + vo + vg, given as

a set of constant fluxes vij = vw,ij + vo,ij + vg,ij over

each cell interface. In the numerical experiments, unless

otherwise noted, we use the standard black-oil pressure

solver from the open-source MATLAB Reservoir Simu-

lation Toolbox [18].

In a sequential solution procedure, we solve (3) with

fixed saturations to obtain pressures and the total Darcy

velocity v. Given the total flux, we compute new phase

fluxes using a fractional flow formulation. These are de-

fined from the following formula in the semi-continuous

case (neglecting capillary effects)

vα = fα


v + K

∑

β 6=α

λβ (ρα − ρβ) g∇z


 , (4)

where we have introduced the fractional flow function

fα(Sw, So, Sg) =
λα(Sα)

λw(Sw) + λo(So) + λg(Sg)
.

Capillary pressure differences are accounted for with a

term similar to the gravity term in (4). Using this, we

solve the transport equations (1) with fixed pressure

to obtain new saturations (or solution ratios). This in-

troduces a splitting error proportional to the time step

∆t that can be significant for cases with strong cou-

pling between pressure and saturation. One can also

make the solution converge towards the fully implicit

solution by adding outer iterations, as described by e.g,

Jenny et al. [12].

4 Discontinuous Galerkin discretization

For simplicity, we only describe the weak formulation

for the water equation without capillary and gravity ef-

fects, even though gravity effects are included in our

solver. Capillary effects are also included, but currently

only supported in our first-order transport solver. More-

over, we drop the phase subscript w and the time su-

perscript n+ 1. Equation (2) now reads

Rw = 1
∆t ([φbS]− [φbS]

n
) +∇ · (bfv)− (bq) = 0, (5)

where we recall that the fractional flow function f de-

pends on all phase saturations. We multiply by a test

function ψ in a function space V of arbitrarily smooth

functions and integrate (by parts) over cell Ωi:

1

∆t

∫

Ωi

(
(φbS)− (φbS)n

)
ψ dV−

∫

Ωi

bfv · ∇ψ dV

+

∫

∂Ωi

[bfψ] v · n dσ−
∫

Ωi

(bq)ψ dV = 0.
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Here, the square brackets in the surface integral signify

that the integrand is possibly discontinuous across the

cell boundary. Note that we can express the surface

integral as
∫

∂Ωi

[bfψ] v · n dσ =
∑

j∈N (i)

∫

Γij

[bfψ] v · nij dσ,

whereN (i) denotes the set of all cells sharing a common

interface with cell i. We define the upwind operator

u[y,vα · nij ;x] =

{
yijvα · nij , if vα · nij > 0,

yjivα · nij , if vα · nij ≤ 0,

where yij = lim
x′→x

y(x′) for x′ ∈ Ωi.

Subscripts ij and ji denote the limiting interface value

of y(x′) for x ∈ Γij as x′ approaches x from inside cell i

or cell j, respectively. If the coordinate is not important,

we simply write u[y,vα · nij ]. Using this, we write
∫

∂Ωi

[bfψ] v · n dσ =
∑

j∈N(i)

∫

Γij

u [b, fv · nij ]ψ dσ.

Since the fractional flow function is always non-negative,

v and vα = fαv will point in the same direction in the

absence of gravity and capillary effects, and the up-

wind definition is explicit. However, referring back to

(4), we see that the upwind definition is generally im-

plicit in the presence of gravity/capillary effects, since

quantities in the parenthesis depend on the mobilities

λα. An equivalent explicit upwind definition has been

derived by Brenier and Jaffré [5] for finite-volume meth-

ods. Herein, we employ this definition at each cubature

point involved in evaluating the surface integrals.

With this notation, we define the following weak

form of the residual equation (5) in cell i

Rw,i(Sw, So, Sg, ψ)

= 1
∆tAw,i(Sw, ψ) + Fw,i(Sw, So, Sg, ψ)−Qw,i(ψ),

(6)

where the accumulation, flux and source/sink function-

als are defined as

Aw,i(Sw, ψ) =

∫

Ωi

(
(φbwSw)− (φbwSw)n

)
ψ dV,

Fw,i(Sw, Sg, So, ψ)

=
∑

j∈N(i)

∫

Γij

u [bw, fw(Sw, So, Sg)v · nij ]ψ dσ

−
∫

Ωi

bwfw(Sw, So, Sg)v · ∇ψ dV,

Qw,i(ψ) =

∫

Ωi

bwqwψ dV.

Weak form residuals for the oil (Ro,i) and gas (Rg,i)
can be derived in a similar fashion. To obtain a discrete

weak formulation, we replace the function space V with

a finite-dimensional subspace Vh consisting of functions

that are smooth on each cell Ωi, but possibly discontin-

uous across cell interfaces. We replace the saturations

and the test function ψ with approximations Sα,h ∈ Vh
and ψh ∈ Vh, and arrive at the following discrete weak

formulation:

Find Sw,h,So,h, Sg,h ∈ Vh such that

Rα,i(Sw,h, So,h, Sg,h, ψh) = 0 for all ψh ∈ Vh.

If we introduce the basis {ψk}ndof

k=1 for Vh, we may ex-

press the saturations as Sα,h =
∑ndof

k=1 Sα,kψk, where

Sα,k ∈ R is referred to as the kth degree of freedom of

Sα. The discrete weak formulation then takes the form

Find (Sα,1, . . . , Sα,ndof
) ∈ Rndof , α = w, o, g, such that

Rα,i
(
ndof∑

k=1

Sw,kψk,

ndof∑

k=1

So,kψk,

ndof∑

k=1

Sg,kψk, ψ`

)
= 0

for all ` = 1, . . . , ndof .

Note that we typically use the closure relation Sw +

So +Sg = 1 to eliminate one variable and one equation

from the above.

There are several important factors that need care-

ful consideration to implement the above discretization.

In the following, we briefly discuss the most important

of these. A more detailed analysis is subject of further

research.

4.1 Basis functions

In finite-element methods, it is common to use orthogo-

nal basis functions {ψk}ndof

k=1 , i.e.,
∫
Ωi
ψkψ` = δk,`. The

main reason for this choice is that it typically results in

a significantly less dense discretization matrix. Defin-

ing orthogonal basis functions for general polyhedral

grids is not a trivial problem. For the types of prob-

lems we are interested in, however, the weak form resid-

ual (6) will generally depend nonlinearly on the satura-

tions (and thus the basis functions) due to the fractional

flow function fα in the flux terms Fα,i. Effectively, or-

thogonal basis functions will generally not lead to less

dense discretization matrices. Herein, we will therefore

simply use tensor products of Legendre polynomials as

our basis functions. These form a convenient basis for

the space of polynomials and are orthogonal for cuboid

grid cells. The first two Legendre basis functions are

`0(x) = 1 and `1(x) = x, and higher-order basis func-

tions are defined in our dG implementation by exploit-

ing Bonnet’s recursion formula,

(k + 1)`k+1(x)− (2k + 1)x`k(x) + k`k−1(x) = 0.
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Fig. 1 Dimensions of bounding boxes used to define the dG
basis functions for a polygon in 2D and a polyhedron in 3D.

Basis function j of polynomial order r + s+ t for cell i

is then defined as

ψj(x) =

{
`r

(
x−xi

∆xi/2

)
`s

(
y−yi
∆yi/2

)
`t

(
z−zi
∆zi/2

)
, x ∈ Ωi,

0, x 6∈ Ωi,

where

x = (x, y, z), xi = (xi, yi, zi), ∆x = (∆xi, ∆yi, ∆zi)

denote the spatial coordinate, cell centroid and the di-

mensions of the smallest cuboid aligned with the coor-

dinate axes that completely contains cell i, as shown

in Figure 1. For a dG method of degree k, the basis

consists of all tensor products on this form such that

0 ≤ r+s+t ≤ k, with r, s, t ≥ 0. In d space dimensions,

this gives a total number of basis functions

ndof =

(
k + d

d

)
=

(k + d)!

d!k!
.

We use the notation dG(k) to refer to a dG method

of degree k. The error of a method of degree k will for

smooth solutions decay with order k+1, so that a dG(k)

method is of formal order k + 1.

4.2 Cubature rules

The integrals in (6) must be numerically evaluated. Ef-

ficient cubature rules for general polyhedral grid cells

are crucial to obtain an efficient implementation. A

straightforward approach to numerically evaluate inte-

grals over polyhedral cells is to partition the cell into

non-overlapping simplices and apply a known cubature

rule for these. This uses significantly more cubature

points than strictly needed for the cubature to be cor-

rect and is thus highly inefficient from a computational

point of view. Instead, we apply an approach based on

moment-fitting, see e.g., [24]. This approach defines the

quadrature rule for a cell Ω (omitting subscript i) as the

solution to a small linear system



ψ1(x1) . . . ψ1(xndof

)
...

. . .
...

ψndof
(x1) . . . ψndof

(xndof
)






w1

...

wndof




=
1

|Ω|




∫
Ω
ψ1 dV
...∫

Ω
ψndof

dV


 , or Ψw = b.

The integrals (or moments) on the right-hand side can

be evaluated using a sub-optimal cubature rule. If we

pick the cubature points x0, . . .xndof
so that the matrix

Ψ is invertible, we can solve for the quadrature weights

w1, . . . wndof
to obtain a cubature rule with ndof points

for each cell. Note that it is possible to construct a

quadrature rule of precision k with less than ndof points

by eliminating points with marginal significance. This

computation can be done once for each grid cell in a

preprocessing step.

In 3D, the surface integrals in the second term of

F in (6) are evaluated in the same way as areal in-

tegrals in 2D, using the moment-fitting approach de-

scribed above. In 2D, the surface integrals are simple

line integrals, for which a standard Gauss cubature rule

is employed.

4.3 Velocity interpolation

As stated above, we assume that the solution to the

pressure equation yields a total velocity as a set of fluxes

that are constant on each interface. We see from (6)

that for linear and higher-order basis functions, we need

information about the velocity v also inside the cell,

meaning that we must interpolate from the interface

fluxes. Herein, we apply a simple scheme inspired by

the mimetic finite difference method [19]. This gives

a constant velocity inside the cell, consistent with the

volumetric interface fluxes vij :

vi =
1

|Ωi|
∑

j∈N(i)

vij(xij − xi).

Here, xi and xij refer to the centroid of cell i and inter-

face ij, respectively. The velocity on an interface is as-

sumed to be constant. More sophisticated interpolation

schemes like the extended corner-velocity interpolation

scheme (ECVI) [13] have earlier been investigated for

dG methods for flow diagnostics [28], but will for sim-

plicity not be applied herein.
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4.4 Order reduction

Higher-order methods usually require a slope limiter, or

some other means to prevent the creation of over- and

under-shoots or other types of nonphysical oscillations

near spatial discontinuities in the solution. Natvig et al.

[26] previously showed that order reduction followed by

local and dynamic grid refinement could be used as an

alternative strategy to avoid oscillations and give high-

resolution in a robust and cost-efficient manner. Herein,

we use a simplified version: Whenever the jump across

an intercell interface exceeds a prescribed tolerance, we

reduce the local approximation space to dG(0). The

same is done when the solution exceeds its domain of

definition by a small factor ε.

5 Localized nonlinear solvers

This section discusses how we can utilize certain unidi-

rectional flow properties to formulate efficient nonlinear

solution strategies that localize the Newton procedure

to avoid spending unnecessary iterations in regions of

the reservoir where many iterations are not needed.

5.1 Reordering based on intercell fluxes

An important physical property of the transport (1) is

that the flow is unidirectional along streamlines if no

gravity or capillary effects are present. Each dG basis

function is restricted to a single cell only, and hence

the only intercell interactions in the weak form Rw,i
in (6) are due to the upwind operator. We split the

neighboring cells N (i) of i into upstream cells U(i) and

downstream cells D(i) based on the total flux v · nij :
∑

j∈N (i)

∫

Γij

u [b, fv · nij ]ψ dσ

=
∑

j∈U(i)

∫

Γij

(bf)j v · nijψ dσ (Upstream)

+
∑

j∈D(i)

∫

Γij

(bf)i v · nijψ dσ, (Downstream)

where (·)i indicates that quantities inside the paren-

theses should be evaluated from cell i. Recall that all

other unknowns in the weak-form residual Rw,i have

support limited to cell i, and hence the inherent uni-

directional property of the continuous equations (1) is

preserved by the discretization. In practice, this means

that if we know the solution in all upstream cells U(i),

the only unknowns in Rw,i are the ones associated with

cell i. That is, if we now perform a topological sort of

the directed, acyclic graph (DAG) induced by the in-

tercell fluxes and use this to reorder the cells, we can

solve the transport equations cell-by-cell by traversing

the sorted graph. The algebraic interpretation of this

is the following: If we linearize the nonlinear transport

equations for all cells simultaneously, and permute the

system according to the topological order, we obtain a

lower-triangular matrix. Note, however, that we never

assemble the discretization matrix for the full system

in the reordering solution procedure. Instead we solve

the nonlinear transport equations Rα,i = 0 cell-by-cell.

This way, we avoid expensive linearizations of large sys-

tems of nonlinear equations.

Figure 2 illustrates the reordering principle applied

to a dG(0) scheme for a quarter-five spot test case for-

mulated on a 2D Voronoi grid. In the original grid, the

cells are ordered almost, but not entirely, by the x-

coordinate of their centroids, giving an irregular spar-

sity pattern with entries both above and below the di-

agonal. After reordering, the cells are ordered such that

if j ∈ N (i), then j ∈ U(i) for j < i and j ∈ D(i) for

j > i, where we recall that N (i) denotes neighbors and

U(i) and D(i) are cells that lie upstream/downstream

of cell i.

Figure 3 similarly illustrates the difference between

a dG(0) and a dG(1) discretization on a Cartesian grid.

The two matrices have exactly the same flux graph, and

thus obtain the same cell ordering. However, whereas

dG(0) gives a nonlinear scalar problem in each cell,

dG(1) gives a 3× 3 nonlinear system.

When gravity and capillary effects are included, the

flow will no longer be unidirectional along streamlines.

As a result, the intercell flux graph may contain cy-

cles, so that the reordering method cannot be applied

directly. However, we may construct a DAG from the

intercell flux graph by grouping cells that are part of

the same cycle into a single supernode. By topologically

sorting this DAG, we end up with a block-triangular

system in which each block consists of degrees of free-

dom that are mutually coupled and must be solved for

simultaneously. Note that as explained above, we evalu-

ate the upstream direction for each quadrature point at

the interface. For a higher-order method, the upstream

direction may thus vary along a single interface when

gravity/capillary effects are included, particularly when

we use high polynomial order and/or cells with large

vertical extent. This means that each quadrature point

on interfaces with changing upstream direction must be

treated as an edge in the original intercell flux graph,

and such interfaces will automatically introduce a local

cycle and require the neighboring cells to be grouped

into a supernode. In general, the reordering procedure

will result in a DAG with nc nodes, where nc equals the
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U(35)

D(35)

Fig. 2 Sparsity pattern for a dG(0) method formulated on a Voronoi grid with original (left) and reordered (right) numbering
of cells. The inset shows grid cell 35 and its upstream U(35) and downstream D(35) neighbors.

number of connected components of the original inter-

cell flux graph. Topologically sorting this graph gives

us an ordering

P = (P1, . . . ,Pnc) , Pk = (i1, . . . , ink
),

where each Pk is a set of cell indices, and nk is the

number of cells in connected component k. The num-

ber of connected components nc may vary from one in

the worst case, where all cells are connected in a single

cycle, to the total number of cells N in the best case,

where the problem can be solved cell by cell without

the need of any supernodes. Given two connected com-
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Fig. 3 Sparsity pattern after reordering for dG(0)/dG(1) for
a five-spot problem on a rectangular grid.

ponents Pk and P`, we will then have that if i > j for

a cell i ∈ Pk and a cell j ∈ P` then i > j for all cells

i ∈ Pk, j ∈ P`. Figure 4 illustrates different scenarios of

coupling, from an almost completely reordered system,

to a system where all cells belong to a single cycle.

5.2 Block-wise processing

For test cases with only viscous forces, the reordered

system can be solved cell-by-cell in a single pass. This

is optimal in the sense that it minimizes the number

of cell-wise nonlinear solves over the simulation. How-

ever, it is not necessarily optimal in terms of runtime;

most modern workstations contain several CPU cores,

as well as any number of SIMD-type registers. In this

setting, feeding sufficient computations to the CPU is

often a large bottleneck and a barrier to rapid execu-

tion time. For this reason, our solver has an optional

block-wise algorithm that solves a prescribed number

of cells simultaneously. If the largest ordering index of

the previous solve was i, this algorithm then solves for

indices i+ 1 to i+ nb, where nb is the block size. This

gives a larger system, and individual cells can follow

a sub-optimal solution path when solved by a multi-

cell Newton–Raphson solver. On the other hand, the

startup cost is incurred only once per block of cells and

not for every cell, and the block solve utilizes cache bet-

ter and leaves less computational resources idle. Hence,
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Fig. 4 Examples of different degrees of coupling, where the cycles can be seen as blocks on the diagonal of the dG(0)
discretization matrix. In the first sparsity pattern, the system is almost completely reorderable with only two small cycles; in
the second, a small fraction of the cells belongs to four small cycles; the third patterns shows an example where almost all
cells belongs to eight larger cycles; finally the last pattern shows a case where all cells belong to one huge cycle. All cells in
the same cycle must be solved simultaneously. Figure from [21].

simultaneous solve of nb cells will typically be signifi-

cantly faster than nb single-cell solvers.

5.3 Nonlinear Gauss–Seidel solvers

As explained above, gravity will result in a block-triangular

system in which each block consists of degrees of free-

dom that are mutually coupled and must be solved

for simultaneously. The size of each block depends on

whether the block represents degrees of freedom that

are part of a co-current or counter-current flow region.

Blocks in co-current regions represent the discrete sys-

tem posed inside a single cell and are treated as de-

scribed above. Blocks in counter-current regions consist

of multiple cells that are coupled in cycles. In principle,

each of these cycles of cells should be solved by a lo-

calized Newton iteration. Another possibility is to first

solve the water equations cell-by-cell in the order of de-

scending water phase potential, and then solve the oil

equations in the order of descending oil phase potential

[17]. This method requires that the oil component equa-

tion only depends on water and oil saturation, which is

the case for black-oil models. Herein, we use a non-

linear Gauss–Seidel strategy instead that simply loops

through all the cells of a cycle and solves them one at a

time, using the values in all neighboring cells as if they

were all known upstream values. This will typically not

give the correct solution after a single iteration through

the loop, but a large number of numerical experiments

indicate that the process converges after only a few rep-

etitions. Capillary forces will in the worst case couple all

cells in one big cycle, as seen in the rightmost sparsity

pattern in Figure 4. However, the coupling is oftentimes

so weak that a Gauss–Seidel type iteration is still very

effective.

6 Solution procedure

The entire procedure to evolve the solution one time

step can now be summarized as follows: (i) Solve the

pressure equation (3) to obtain intercell fluxes vij and

oil phase pressure po; (ii) construct a DAG from the in-

tercell flux graph by grouping cells that are part of the

same cycle into a single supernode; (iii) starting from

the first node in the sorted graph, solve the transport

equations (6) cell-by-cell or cycle-by-cycle in topological

order. The procedure is summarized in Figure 5. Notice

the important property that if the residual of a cell or

cycle is converged at the beginning of the time step, and

none of the upstream neighbors were updated in this

step, we do not need to call the nonlinear Gauss–Seidel

solver and can proceed to the next component. Effec-

tively, we thus avoid solving for a large number of zeros,

and can instead focus our computational resources on

parts of the domain where updates are nonzero.

7 Numerical examples

We have implemented our reordering approach in two

different open-source simulator platforms. The MAT-

LAB Reservoir Simulation Toolbox (MRST) [18] is a

general toolbox aimed at rapid development of proof-

of-concept simulators and workflow tools. We have used

MRST to develop a combined dG–reordering method

that allows for cell-based refinement. The solver uses

automatic differentiation to linearize the localized sys-

tems and is as such applicable to a wide variety of mul-

tiphase flow models. At the time of writing, the imple-

mentation in MRST has only been tested for two-phase

models with varying degrees of compressibility.

OPM Flow [27] is developed with the goal of pro-

viding industry-grade simulations and generally offers

single-core computational performance that is compa-
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Solve pressure equation
Rp(p) = 0

Pressure step

Reorder

Given directed graph ({Ωi}, {vij})

1. Group cells that are part of same cycle
into single supernode → DAG

2. Perform tolopogical sort of DAG

P =
(
P1, . . . ,Pnc

)
, Pk = (i1, . . . , ink )

U(35)

D(35)

Reordering

Reorder grid cells → cell ordering P

r =
(
Rt,1(S), . . .Rt,N (S)

)

for all components k = 1, . . . , nc do
if any ‖rj‖ > εt, j ∈ Pk then

Solve component k
else if any U(j), j ∈ Pk

changed then
Solve component k

else
Do nothing

end

N
ex

t
ti
m
es
te
p

Transport step

r =
(
Rt,i1(S), . . .Rt,ink

(S)
)

while any ‖rj‖ > εt do
for all cells j ∈ Pk do

Solve Rt,j(Sj) = 0
end

r =
(
Rt,i1(S), . . .Rt,ink

(S)
)

end

Newton-Raphson:

1. Linearize problem:
−J∆Sj = Rt,j(Sj)

2. Solve and update:
Sj = Sj + ∆Sj

Nonlinear Gauss-Seidel solver

Fig. 5 Schematic overview of the solution procedure. The pressure equation is solved with a suitable solver, resulting in
intercell fluxes vij , which we may interpret as a directed graph with grid cells as nodes, and intercell fluxes as edge weights. By
grouping all cells that are part of the same cycle into a (super)node, we obtain a directed, acyclic graph (DAG). A topological
sort of this graph gives us a node (or component) ordering P. By traversing the nodes in this order, we can solve the transport
problem Rt(S) = 0 node by node, since the cells in each node in the DAG only depend on each other and cells from upstream
(and already resolved) nodes.

rable with contemporary commercial simulators. We

have used this as a platform to implement dG(0) with

reordering for a general three-phase black-oil model with

compressibility, dissolution and vaporization, gravity

and capillary forces, and hysteresis. Our implementa-

tion uses a simple, global nonlinear Gauss–Seidel method

that traverses all cells repeatedly until the residual of

the transport equations are below a prescribed toler-

ance in all cells.

7.1 The Norne oil field

The Norne oil field in the Norwegian Sea is one of the

few real assets for which simulation models and other

data have been made openly available [31]. Over the

3,312 days of production history, 36 wells are active.

We study a water-alternating-gas (WAG) injection sce-

nario, in which the wells are controlled by reservoir-

volume rates to match the historical rates to obtain a

reasonable pressure development. The purpose of the

example is to demonstrate that the sequential splitting

method is capable of capturing the correct behavior of

an industry-grade simulation run in history-matching

mode.

We ran the case with two simulators from OPM:

the fully implicit Flow simulator and the experimental

Flow-reorder simulator, which uses sequential split-

ting and reordering of the transport equations. We note

that these simulators both support a slightly more com-

plex fluid model than that described in the introduc-

tion, incorporating hysteresis effects for relative per-

meability. Both simulators are available from OPM in

source and binary form [27].

We highlight the behavior of two different wells to

compare the fully implicit to the sequential/reordering

solution. Well “D-3AH” is a typical producer and shows

good match between the fully implicit and reordering

solutions for both bottom-hole pressure and rates; see

the upper row in Figure 6. Well “B-2H” is also a pro-

ducer, which we have chosen to highlight because it

shows the worst match between the two solutions. As

can be seen in the lower row of Figure 6, gas and oil
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Fig. 6 Simulation responses for two of the many wells in the Norne field model. We plot the bottom-hole-pressure and
production rates for water, oil and gas at surface conditions.
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Fig. 7 Initial fluid saturations and wells (left); aggregate statistics for the number of cycles (right) for the Norne field model
in Example 7.1.

production rates match well, but water-production rate

and bottom-hole pressure show significant deviation some

time after water breakthrough. There are two main fac-

tors that contribute to the difference: First of all, the

sequential splitting in Flow-reorder does not use outer

iterations. The overall solution algorithm is thus not

guaranteed to reduce the overall residual at the end of

each time step to the same tolerance as the fully im-

plicit method in Flow. Moreover, convergence is mea-

sured somewhat differently in the global Gauss–Seidel

and the Newton–Raphson methods.

In our opinion, this simulation is proof of concept

for the reordering idea in a production-grade code run-

ning a full simulation of a real field in history mode.

This is a first step, and there are several ways in which

this implementation can be improved. The important

observation is that we made no simplifications in the

description of geology, fluid behavior, and well and pro-

duction facilities.

Figure 7 shows the fluids in place and reports the

occurrence of cycles throughout the simulation. Alto-

gether, the model has approximately 44,000 active cells.

The number of cycles and the average number of cells in

each cycle vary largely throughout the simulation be-

cause of significant changes in well controls and fluid

composition. In any time step, the number of cells be-

longing to cycles only represents a fraction of the total

cells. This shows the inherent locality and the speedup
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Permeability Porosity Cell index

Fig. 8 Petrophysical properties for Layer 50 from the SPE10
Benchmark. The right plot shows the cell index after reorder-
ing.

potential, since most of the cells can be solved indepen-

dently.

7.2 Subset of the SPE10 Model 2

Next, we consider a 2D simulation model with petro-

physical properties sampled from Layer 50 from the

SPE10 Model 2 Benchmark [6]. This layer is part of

a fluvial formation and consists of an intertwined pat-

tern of high-permeable sand channels on a background

of low-permeable mudstone. We inject 0.2 pore volumes

of water at a constant rate in one end of a channel, and

produce at a fixed bottom-hole pressure of 275 bars

at the opposite end of the same channel. The reser-

voir is initially filled with a mixture of water and oil,

and the rock and fluids are weakly compressible. Wa-

ter and oil have quadratic relative permeabilities with

residual saturations of 0.2, and viscosities of 2.85 and

3.0 cP, respectively. Permeability and porosity are de-

picted in Figure 8. The figure also shows the cell index

after reordering. As expected, the cell number increases

from the injector and along the high-flow channels to

the producer. Interestingly, the model contains cycles

of cells that are not connected to the injector–producer

pair by nonzero fluxes. This is an effect of fluid com-

pressibility, and the reordering algorithm assigns lower

indices to cells which essentially should remain inactive

throughout the transport time step.

We simulate using dG(0) and dG(1) with reordering

implemented in MRST. Figure 9 shows the resulting

water saturation at selected time steps, whereas Fig-

ure 10 shows the iterations used per active cell in the

corresponding time steps. By active cells, we mean cells

in which the water saturation was updated during the

time step either because the residual at the beginning of

the time step was above the nonlinear tolerance, or be-

cause one or more of the cell’s upstream neighbors were

updated during the time step. Notice that iterations are

performed only in a small fraction of the cells in each

time step and that the updates are chiefly located to

the fluvial channel. We also see that the higher-order

solution profile is much less diffuse. Effectively, the wa-

ter channel fills faster, so that dG(1) predicts earlier

water breakthrough than dG(0).

For comparison, Figure 11 also reports the (average)

number of nonlinear Newton–Raphson iterations used

to solve each time step. For the reordered solver, we

report the average number of nonlinear iterations used

per cell, defined over all cells, and the maximum number

of iterations observed in the cell with slowest nonlinear

convergence. Because large fractions of the cells remain

inactive in most of the time steps, the average num-

ber of cellwise nonlinear iterations is far below one in

all time steps. This confirms previous observations by

Natvig and Lie [25]. Interestingly, we see that the max-

imum number of nonlinear iterations for the reordered

solver in most time steps is less than the number of

Newton–Raphson solves used when solving for all cells

simultaneously for the same time step. This indicates

that the iteration path followed by individual cells in

a Newton–Raphson solve of all cells simultaneously is

not necessarily optimal.

7.3 3D Voronoi grid

In this example, we study the effect of using higher-

order dG methods and reordering to simulate a case

posed on a 3D, fully unstructured PEBI/Voronoi grid
generated using the upr module in MRST [3, 14]. The

domain is comprised of a rectangular box of dimensions

300× 100× 100 m3 with approximately 20, 10, and 10

cells in each of the axial directions, respectively. Poros-

ity and permeability are sampled from the top layers of

Model 2 from SPE10 [6]. The injector is placed in a cell

at the center of the left boundary. We inject water at

constant bottom-hole pressure of 600 bars. A producer

operated at a fixed bottom-hole pressure of 50 bars is

placed at the center of the right boundary. Figure 12

shows petrophysical properties and well positions.

We simulate the case using the dG(0) and dG(1)

solvers from MRST with and without reordering. For

the reordering algorithm, we use the block version with

a block size nb of 100 cells. Figure 13 reports saturation

profiles at three selected time steps. Compared with

dG(1), the dG(0) saturation profiles are more diffusive

and fill more of the reservoir cross-section. As a result,

dG(1) predicts a higher water-cut in the producer, as

reported in Figure 15.
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dG(1) dG(1) dG(1)

Fig. 9 Evolution of the water saturation for three different times in the channelized reservoir in Example 7.2. The upper row
is for dG(0) and the lower row for dG(1).
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Fig. 10 Number of nonlinear iterations per cell at three instances in time corresponding to the solution profiles shown in
Figure 9. Zero iterations were performed for cells in white. The upper row is for dG(0) and the lower row for dG(1).
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Efficient Reordered Nonlinear Gauss–Seidel Solvers With Higher Order For Black-Oil Models 13

Permeability Porosity Well positions

Fig. 12 Petrophysical properties and well setup for the Voronoi-example.
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Fig. 13 Thresholded water saturation profiles for the two dG solutions at three selected time steps for Example 7.3.
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Fig. 14 Average number of cellwise nonlinear iterations per time step used for each of the solvers in Example 7.3, with dG(0)
in the left plot and dG(1) in the right plot.

The solutions computed with the ordered and the

original Newton–Raphson solvers are identical to plot-

ting resolution, which verifies the correctness of the lo-

calization and the new block algorithm. Finally, we look

at the number of iterations used by the different solvers,

shown in Figure 14. We observe that even with a block

size of nb = 100 cells, the average number of nonlin-

ear iterations per cell is significantly smaller than the

number of iterations used when solving for all cells si-

multaneously.

8 Concluding remarks

The transport substep in a sequentially implicit solu-

tion procedure for black-oil models can be significantly

accelerated by ordering the grid cells in the simula-
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Fig. 15 Water cut in the production well in Example 7.3.

tion model according to total velocity computed in a

proceeding pressure step, so that the residual trans-

port equations can be solved cell-by-cell from inflow to

outflow. This not only localizes the nonlinear Newton

solver, so that the computational effort can be focused

on cells where the transported quantities change signif-

icantly during each time step, but also contributes to

improve the general robustness of the Newton solver. As

a verification of this concept in an industry-grade set-

ting, we have used a sequential simulator from the open-

source OPM initiative to demonstrate that a reordered,

global nonlinear Gauss–Seidel strategy computes an ac-

ceptable solution for the full simulation model of the

Norne oil field. Additional verifications have also been

obtained using similar industry-grade simulators from

MRST.

The ordering approach is also applicable to trans-

port solvers based on discontinuous Galerkin discretiza-

tions in combination with single-point upstream mobil-

ity weighting. Such discretizations are detailed herein

for general 3D cases with (almost) no assumptions on

the polyhedral cell geometries and grid topology. By re-

ordering cells optimally, one can ensure that the added

computational cost of solving for more degrees of free-

dom to obtain higher spatial order remains local to

each cell. Our results obtained using MRST show that a

second-order dG(1) method has significantly improved

accuracy compared with the standard first-order vol-

ume method used in industry at the expense of only

a moderate increase in the number of nonlinear itera-

tions.

Herein, we have only presented simulations of two-

phase oil-water and three-phase black-oil systems, but

the same principles are applicable to a wide variety of

different black-oil type and compositional models used

to described secondary and tertiary recovery processes.

As an example, Klemetsdal et al. [16] discuss several

cases with significantly more complex flow physics, in-

cluding compositional flow and gas injection with strong

gravity effects, as well as use of dynamically adaptive

grid coarsening.
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