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Abstract
Themagnitude of the renormalization of the band gaps due to zero-pointmotions of the lattice is
calculated for 18 semiconductors, including diamond and silicon. This particular collection of
semiconductors constitute awide range of band gaps and atomicmasses. The renormalized electronic
structures are obtained using stochasticmethods to sample the displacement related to the vibrations
in the lattice. Specifically, a recently developed one-shotmethod is utilizedwhere only a single
calculation is needed to get similar results as the one obtained by standardMonte-Carlo sampling. In
addition, a fast real-spaceGWmethod is employed and the effects of G0W0 corrections on the
renormalization are also investigated.We find that the band-gap renormalizations inversely depend
on themass of the constituting ions, and that for themajority of investigated compounds theG0W0

corrections to the renormalization are very small and thus not significant.

1. Introduction

Studies of the interaction between electrons and phonons have recently gainedmomentum. Formaterials, this is
mainlymotivated by the lack of robustmethods at the intersection between statistical physics andmany-body
perturbation theory, and the need for further technology andmaterials advancements. For instance, a proper
description of the temperature dependence ofmaterials properties is becoming important infields like
thermoelectrics [1–5], high-power electronics [6], organic electronics [7], batteries [8, 9] and photovoltaics
[10, 11]. In addition to the temperature dependence, the interaction between electrons and phonons create
scattering events that determine, for instance, the thermalization of carriers, limit the transport of heat and
charge, and lay foundations for conventional superconductivity.

The interaction of electrons and phonons is already relevant at absolute zero temperature due to zero-point
vibrations [12]. As amatter of fact, it is of utmost importance to obtain a satisfactory description of the zero-
point vibrations before continuing tofinite temperatures. The zero-point renormalizations (ZPR) are difficult to
access from experiments. Experimental data for the ZPR exist for a few compounds [13], especially for diamond
[14] and silicon [15], but the exact values of the existing data are highly debatable [14–17], since the results
depend on the underlyingmodel and interpretation of the experimental data. Theoretical calculations are
therefore relevant and important, andwith recent computational andmethodological advances, the calculation
of the band-gap renormalization fromphonons is on the verge of becoming a routine task.

Historically, the first qualitative description of the electron–phonon interaction appeared in the 1950s [18].
In the late 1970s and early 1980s the interactionwas quantitatively described at the perturbative level byAllen,
Heine andCardona [19–21] (AHC). Here, the electron–phonon interactionwas treated adiabatically, an
approach that is still frequently used and serves as a starting point or reference formore advancedmethods.
Another popular approach is to treat the electron–phonon interaction by vibrational averages. These statistical
averages can be obtained for example byMonte-Carlo (MC) integration [22, 23], molecular dynamics [24, 25] or
path-integralmolecular dynamics [26, 27]. A comprehensive review of the historical developments of theories
treating electron–phonon interactions was recently published byGiustino [28].
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Parameter-free calculations of the effects of the electron–phonon interactions on the band gaps ofmaterials
have become quite popular in the last 15 years. To our knowledge thefirst studies utilized path-integralMC [29]
and later the AHC theory [30] to calculate the ZPRof the direct gap in diamond. Since the reported values
overestimated the experimental values [14, 15], the interest in thefieldwas sparked andnumerous reports were
published on the ZPR [31–41] and the temperature dependence [39–41] of the band gap in diamond and silicon.
With two exceptions [40, 41] the local density approximation [42, 43] (LDA) for the electron exchange and
correlationwas employed. Gonze and coworkers [40] (later repeated byMonserrat [41]) reported that the
temperature dependence of the direct band gap in diamond is underestimated compared to experiment when
using LDA. To remedy this, they employedG0W0 calculations on top of the LDA and obtained results that
compare reasonably well to experiment.

Reviewing the recent literature suggests that the AHC theory has been themost widely used first-principles
approach to calculate band-gap renormalizations. It has the advantage of utilizing small unit cells, and it
allows a very accurate sampling of the Brillouin-zone. The disadvantages are, however, also substantial. (i)
First, second-order perturbation theorymust be used to calculate the electron–phonon coupling terms. This
limits the applicability of AHC theory tomean-fieldmethods, such as DFT, where perturbation theory is
readily available. (ii)The first-order change of the one-electron eigenvalues due to the second-order change
of theHamiltonian upon displacing the ions needs to be approximated bywhat is called the rigid-ion
approximation. (iii)At high-symmetry points, standard second-order perturbation theory, in principle,
needs to be replaced by second-order perturbation theory for degenerate states, which to the best of our
knowledge has not been done. All three points limit the applicability and accuracy of perturbational
approaches per se. Sampling of the configuration space of the phonons using e.g.MCprocedures is certainly
much simpler. The advantage of simplicity and robustness is only offset by three disadvantages: (i) to converge
the Brillouin-zone integrals large super cells need to be used, (ii)many structures need to be sampled, and (iii)
direct access to state dependent properties of the perturbation is not possible. The latter point is less of a
disadvantage if we are not interested in such properties, which is the case for this study.With recent advances
in algorithms and high-performance computing, the first issue becomes progressively less relevant: modern
codes allow to perform calculations for super cells with several hundred atoms in a few hours.With respect to
(ii), another recent development seems to dip the balance towards super-cell approaches. Giustino and
coworkers [39] proposed amethodwhere theMC sampling of the quantum-harmonic oscillations is replaced
by a calculation on a single structure. This selective sampling yields exact results in the limit of large super
cells. Consequently, thismeans that one is now in the position to not only tackle the demanding physical
problem of the electron–phonon interaction, but also doing so with very demandingmethods such as GW to
obtain results of unprecedented accuracy.

Instrumental for suchGWcalculations is another recent development. Traditionally, theGWmethod scales
quartic with system size, so that large unit cells with and beyond 100 atoms are very demanding even on present-
day high-performance computers. Already in the late 90s, Godby and coworkers suggested a cubic-scaling
implementation of theGWmethod, where the polarizability and self-energy are evaluated in real-space and
imaginary time [44, 45]. Thismethodwas recently implemented in theVASP code [46–48] and allows for
routine calculations on low-symmetry systemswith hundreds of atoms. In this workwe conducted a large
number of suchG0W0 calculations, each containing typically 128 atoms to address the questionwhether the
values for the band-gap renormalization differ between LDA andG0W0.

In sections 2 and 3we present the theory and calculationalmethods. This is followed in section 4 by a
detailed analysis of themethodology on the example of diamond, which is one of themost debatedmaterials in
literature. In that sectionwe also compare the one-shot sampling ofGiustino to the standardMCmethod and
investigate the electron–phonon interactions in a large temperature range. In section 5we investigate the ZPR
on a representative number of semiconductors.We investigate the role of G0W0 and closely examine the
dependence of the ZPRon the atomicmass beforewefinally conclude this paper in section 6.

2.MCand one-shotmethod in the harmonic approximation

The probability distribution offinding an atomwithin the coordinatesκ+dκ (whereκ denotes theCartesian
coordinates aswell as the atomnumber) at temperatureT in the harmonic approximation is given by the
following expression [49, 50]
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where themean-square displacement of the harmonic oscillator is given as
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HereMκ, ν andων denote themass, phonon eigenmode and phonon eigenfrequency, respectively. Equation (1)
is valid at any temperature and the high (Maxwell–Boltzmann distribution) and low temperature limits are easily
regained. In order to obtain an observableO(T) at a given temperatureT, in this case the band gap, the average of
the observable sampled at different coordinate sets xT

iMC, with sample size n is taken
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Here ek n, denotes the unit vector of eigenmode ν on atomκ. Themagnitude of the displacement in each
Cartesian direction is obtained from the normal-distributed randomvariable  with a probability distribution
according to (1).

Motivated by the empirical observation that for increasing super-cell sizes the number of required structures
in theMCmethod can be decreased, Giustino and coworkers [39]proposed a one-shotmethodwhere only a
single set of displacements is used
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where the summation over the eigenmodes runs in an ascending order with respect to the values of the
eigenfrequencies, and themagnitude of each displacement is given by
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1 denotes the Bose–Einstein occupation number. By using (6) the sum
in (3) is reduced to a single calculation. In [39] it was shown that for super-cell sizes  ¥N the structural
configuration obtained using (6) should lead to equivalent results as fully convergedMCcalculations. In
practice, it was shown that already relatively small super-cell sizes are sufficient to achieve good accuracy, but
the convergencewith respect to the cell size can vary between differentmaterials.We have also used a slightly
modified approach, inwhich the signs of the displacements are chosen randomly instead of±1. This was
necessary, when calculating volume-dependent ZPR, since themodes sometimes change the order as the volume
changes. Using alternating signs for the displacement then causes small discontinuities in the ZPR volume curve
of the order of 5meV for carbon diamond. By averaging overmany randomphases this problem can be
eliminated.

In perturbation theory, the electron–phonon interaction is described to a given order (second in standard
AHC). The advantage of stochasticmethods compared to perturbativemethods is that these interactions are not
in principle restricted to a given order, since full electronic-structure calculations are performed for the distorted
structures including all electronic effects due to the changed geometry. However, the accuracy is limited by the
harmonic sample distribution, in our case the densitymatrix of harmonic oscillators. To go beyond the
harmonic approximation for the sampling of structures, one could possibly usefinite-temperature path-integral
methods, which is beyond the scope of the present work. Another effect of stochasticmethods is that it
captures the effects of the displacements leading to a lift of the degeneracy of eigenstates into sub levels. Each
displacement along an eigenmode causes a change of the eigenenergy that is linear with respect to themagnitude
of the displacement. For non-degenerate states, the linear shift cancels, since positive and negative displacements
increase or decrease the eigenenergies by the same amount. For degenerate states this is, however, not the case.
For positive displacements one of the degenerate states decreases its energy (while it increases for the other),
whereas for negative displacements the energy change isflipped. Thismeans, that the degenerate states, tend to
split, on average into a lower and upper sub level. Figure 1 demonstrates this effect on the valence band
maximum in diamond, which is three-fold degenerate in the equilibrium state (we only show the two orbitals
that are involved in the splitting). The distortions are obtained by displacing the ions of the equilibrium structure
along fractions of the eigenvectors of a single eigenmode (we arbitrarily chose the eigenmodewith the highest
eigenfrequency) in positive and negative directions. Such a splitting is not included in any of the AHC

3

New J. Phys. 20 (2018) 123008 FKarsai et al



calculations, since degenerate perturbation theory has not yet been executed, at least not to the authors
knowledge. In our studies we found that the splitting is reduced as the super-cell size increases. However, we
were not able to determinewhether the splitting in fact converges exactly towards zero. As a pragmatic remedy,
we determine the band-gap renormalization as themean of the change of degenerate bands in the undistorted
super cell. This has two advantages. (i)Themean converges fairly rapidly with super-cell size. (ii)The approach is
compatible to publishedAHC calculations, which neglect linear changes of the band gaps from the outset. As
already alluded to, such linear changes cancel out for non-degenerate states in the harmonic approximation. In
passing, we note thatMonserrat used the same approach [34, 51].Whether the splitting indeed converges to zero
for infinite super cells (experiments clearly indicate no splitting of degenerate states due to zero-point vibrations)
needs to be investigated in futurework. Another subtlety is howwe determine the band-gap changes. Here, we
have used a simple approach, inwhich only the average change of the one-electron levels is inspected. In the case
of degenerate levels, the average change of all degenerate levels is taken. This does not necessarily correspond to
the experimentalmeasurements, where often Taucfits are performed to the observed tails in spectroscopic
experiments [39, 52]. Although these are important issues when comparisonwith experiment is themain
priority, our choice ismandated by the need to remain compatible with the literature pertaining to
computational studies.

3. Calculational parameters

All calculations were performedwithin the framework of the projector augmented-wavemethod [53]using the
VASP code [54, 55]. Table 1 shows the calculated parameters for all chosen compounds. The lattice parameters
in this table refer to the experimental lattice parameters at the lowest available temperatures. The phonon

Figure 1.Band splitting of valence bandmaximumdue to an arbitrarily chosen eigenmodewithin diamond using a 3×3×3 cell.
The displacements are given as fractions of á ñnku 2 of the chosen eigenmode.

Figure 2.Mean value of the ZPR evaluated for a 6×6×6 super cell of diamond over a certain number of sample configurations. The
meanZPR is shown for theMonte-Carlo sampling and for a random sampling of the signs in the one-shotmethod. Bothmethods
converge to the same value, but theMonte-Carlo sampling requiresmore sample configurations.
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frequencies were obtainedwithin density-functional-theory (DFT)using finite differences [56, 57] and super
cells. In all cases the standard PerdewBurke Ernzerhof (PBE) functional [58, 59]was used for the electron
exchange and correlation energy. For themajority of compounds PBEwas also used in the determination of the
band gap. Since some of the compounds yield no or only amarginal band gap forfinite-temperature structures
using PBE, hybrid functionals withα=0.25 exact exchange (PBE0) [60–62]within the generalized Kohn–Sham
[63, 64] theory were employed in the calculation of the band gap of Si, GaAs, Ge andCdSe. All calculations were
carried out at a singleΓ centered k-point.

4. Band-gap renormalization in diamond

Table 2 compares the ZPR for diamond usingMC sampling and the one-shotmethod. From this table we can
deduce that the difference is about 15meV for the 3×3×3 super cell but rapidly drops to about 5meV for the
5×5×5 super cell and even further if we increase the cell size. This we deem to be acceptable for this study.
The error of the one-shotmethod can be further reduced by choosing random signs in the one-shotmethod and
performing an averaging over several configurations. This approach converges faster than the fullMC sampling,
and reduces the error of the one-shotmethod somewhat.We have used this approach only in the calculation of
volume-dependent ZPR, since the volume-dependent ZPR showed slight discontinuities otherwise.

The variance of the band-gap renormalization using theMC samplingmethod decays inversely proportional
with respect to the number of atoms in the unit cell as shown infigure 3(a). Fromfigure 3(b)we can deduce that
for theMC sampling an error of themean of 5meV can be achieved using less than 10 structures for the
5×5×5 super cell. One hundredfifty structures were used for theDFT in table 2, but for theG0W0 smaller
sample sizes (60, 75 and 100 for the 5×5×5, 4×4×4 and 3×3×3 super cells, respectively)were used.
This leads to slightly larger errors for theG0W0 calculations, but the error of themean is still below 5meV for the
5×5×5 super cell. The ZPR shows relatively large changes with the cell size. For cell sizes below 5×5×5,
convergence with respect to super-cell size is not achieved. The jump from the 4×4×4 to the 5×5×5
super cell is related to the 4×4×4 cell being unable to sample the conduction bandminimum located at a non
high-symmetry point (0.727×). Unfortunately the 6×6×6 unit cell with 432 atoms requires toomuch
memory forG0W0 type calculations, butwe observe already a very small change from the 5×5×5 to the
6×6×6 super cell for PBE. This indicates that 5×5×5 super-cell calculations are reasonably well
converged andwe expectG0W0 calculations to also follow this trend.

Direct comparisonwith literature values has to be done carefully since the calculational parameters such as
i.e. lattice parameters and electron exchange-correlation functional can vary. All literature values in table 2were
calculated using LDA and either optimized lattice parameters, or the authors gave no information on the

Table 1.Calculational parameters of chosen compounds: Exc is themethod for
treatment of electron exchange and correlation in theDFT calculation; Epw is the
plane-wave cut-off energy in eV, and alatt is the experimental lattice parameter inÅ.
All lattice parameters with the exception ofGaN andZnOwere taken from the
supplementalmaterial of [15] and references therein. The lattice parameters forGaN
andZnOwere taken from [14, 30], respectively.

Exc Epw alatt Crystal structure Fundamental gap

C PBE 414 3.567 Diamond Indirect

BN PBE 318 3.616 Zincblende Indirect

SiC PBE 414 4.358 Zincblende Indirect

Si PBE0 245 5.431 Diamond Indirect

AlP PBE 255 5.463 Zincblende Indirect

ZnO PBE 402 4.584 Zincblende Direct

GaN PBE 405 4.535 Zincblende Direct

ZnS PBE 402 5.409 Zincblende Direct

GaP PBE 405 5.451 Zincblende Indirect

AlAs PBE 240 5.661 Zincblende Indirect

ZnSe PBE 402 5.669 Zincblende Direct

CdS PBE 259 5.818 Zincblende Direct

GaAs PBE0 405 5.654 Zincblende Direct

Ge PBE0 174 5.658 Diamond Indirect

AlSb PBE 263 6.136 Zincblende Indirect

CdSe PBE0 254 6.077 Zincblende Direct

ZnTe PBE 402 6.481 Zincblende Direct

CdTe PBE 254 6.481 Zincblende Direct

5

New J. Phys. 20 (2018) 123008 FKarsai et al



employed lattice parameters.We, on the other hand, used PBE and the experimental lattice constant. PBE is
known to give slightly larger band gaps than LDA, andwe think that using the experimental lattice constant is a
better choice for comparisonwith experiment. References [32, 37]were both utilizing perturbativemethods
(AHCor equivalent), while [14, 34] used similar super-cellmethods as in this work. In [34] the samplingwas
done along so-called thermal lines using 6×6×6 super cells and drawing sample distributions from the
densitymatrix of a harmonic oscillator [14] introduced and used the one-shot approach; themain difference
between ourwork and this is that in [14] the band gapwas determined from the dielectric function [65] using
Taucfits [52]. Overall, there is no denying that our values tend to be somewhat smaller (10–15 meV) thanmost
literature values. Using the LDAwe obtain values of−0.321 and−0.315eV using the 6×6×6 cell at the
experimental lattice parameter and the optimized lattice parameter (3.529Å), respectively. In both cases the
difference compared to PBE is 3meV.Nevertheless, the agreement compared to previous literature calculations
is satisfactory given the different lattice constants, exchange-correlation functionals, as well as pseudo potentials.

The comparison to experimental values is evenmore difficult, since several experimental values exist and
none of them is unambiguously accepted in literature as themost accurate one. The experimental values strongly
depend on how the experimental data is obtained and evaluated [14, 15, 17]. Our calculated ZPR value of
−0.337eV for the 5×5×5 super cell usingG0W0 agrees verywell with the experimental result [14, 66] of
−0.340eV. In [14], Cardona claims that the experimental value of−0.410eV is amore accurate estimate, since

Figure 3. Statistical errors of the ZPR in diamond using theMC samplingmethod. (a)Variance with respect to number of atoms in the
unit cell. A sample size of 150was used for each point. (b) Standard error of themeanwith respect to number of samples for different
super-cell size.

Table 2.ZPRof the fundamental indirect gap in diamond. The standard error
of themean is given in brackets. Lattice parameters alatt are inÅ. All energies
are in eV.

One-shot MC

PBE G0W0 PBE G0W0@PBE

3×3×3 −0.262 −0.298 −0.278

(0.0056)
−0.314(0.0064)

4×4×4 −0.363 −0.446 −0.365

(0.0035)
−0.439(0.0042)

5×5×5 −0.320 −0.337 −0.315

(0.0018)
−0.329(0.0020)

6×6×6 −0.318 — −0.321

(0.0017)
—

Literature alatt ZPR References

MC (Tauc) — −0.345 [14]
MC 3.529 −0.344 [34]
AHC 3.529 −0.334 [32]
AHC — −0.330 [37]
Experiment — −0.340 [14]

— −0.370 [15]
— −0.410 [17]
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it relies on amore recent evaluation of the experimental data. Furthermore, Cardona also suggested thatG0W0

should yield a larger band-gap renormalization.Hence it seemed reasonable to believe that themeasured band-
gap renormalization to be larger thanmost calculations accessible in the literature at that time.Our calculations
are thefirst to evaluate the renormalization of the fundamental indirect gap usingG0W0, but theG0W0

renormalization only differs by 15meV from the PBE renormalization. Thismeans, that compared to themost
recent experimental value (−0.410 eV) a sizable discrepancy between experiment and theory prevails.

We nowmove on to our results for the ZPR of the direct gap in diamond.G0W0 calculations of the ZPRhave
already been published for the direct band gap [40, 41], hence a comparisonwith literature data is possible. In
[40] the authors reported a direct gap ZPRof−0.404 and−0.613eVusing LDA andG0W0, respectively, leading
toGWcorrections ofD = - = -E E E 0.209 eVGW

bg
GW
bg

LDA
bg .While the LDA values are already in reasonable

agreementwith the experimental results of−0.320 and−0.450eV from [67], by adding theG0W0 corrections,
the experimental values are largely overestimated. Using the 5×5×5 super cell, we find direct gap ZPR of
−0.326 and−0.586eV for PBE andG0W0, respectively, andD = -E 0.260 eVGW

bg , indicating an even larger
G0W0 correction.OurDFT results tend to agreewith the lower experimental value of−0.320 from [67], while
the LDA results from [40], asmany other literature calculations, tend to agreemorewith the larger value from
[67].We note that besides different DFT functionals and lattice parameters, the authors of [40] used 4×4×4
super cells in theG0W0, whereas we used 5×5×5 cells.When using the 4×4×4 cell we obtain ZPRof
−0.442 and−0.616eV for PBE andG0W0, respectively, which are inmuch closer agreement with their results.
Nevertheless, the behavior of a largeG0W0 correction to the ZPR for the direct gap is consistent in all
calculations. It is important to emphasize that theG0W0 corrections to the ZPR are very different for the
fundamental indirect and direct gap.

The remainder of this section is devoted to the changes of the band gap as a function of the temperature. In
many semiconductors, the temperature dependence of the band gap is well described by themodifiedVarshni
relation [69, 70]

= -
+

( ) ( )
( )

( )E T E
AT

B T
0 , 8GAP GAP

4

2

whereA andB are fitting parameters for a givenmaterial. Using the one-shot approach, the band gap versus
temperature can be calculated straightforwardly. Since theory yields a different band gap than experiment at
T=0K, the theoretical results are shifted tomatch the experimental value at the lowest available temperature.
AsG0W0 corrected ZPR calculations have only been published for the direct gap in diamond, we start by
comparing our results on the direct gapwith literature and experiment. Figure 4 shows the dependence of the
calculated and experimental direct band gaps on the temperature. Since two experimental data sets with different
absolute values but similar slopes have been published in [67], we compare to the data set thatwas predominantly
used for analysis in [67] in themain panel. For the sake of completion, we show the results for the second
experimental set in the inset offigure 4. Although the deviations between LDA and PBE are small for the ZPR
(below 10meV) the discrepancies become larger at higher temperatures. To allow straightforward comparison
with literature, we decided to employ the LDA (at the experimental lattice constant) for studying the temperature
dependence of the direct gap.When comparing our calculations to those of Antonius et al in [40], we can clearly

Figure 4.Temperature-dependent direct band gap in diamond: present results using a 5×5×5 super cell (black squares and
continuous lines), literature results taken from [40] (blue crosses and dotted lines) and experimental data andVarshni fits (see (8)) for
sample IIb in [67] (red circles and dotted lines). The inset shows the same calculational results butwith respect to the experimental set
IIa from [67].
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see that our calculations show a less steep temperature dependence at the LDA level, with an evenmore
pronounced difference at theG0W0 level. Themost likely source of the difference is the use of a super cell in our
approach, whereas Antonius et al used primitive cells with a very fine k-point sampling for the electronic aswell
as phononic dispersion.On the other hand, in [40] theG0W0 correctionswere determined for a 4×4×4
super cell. Figure 5 shows the temperature dependence of the band gap for two 4×4×4 and 5×5×5 super
cells, clearly suggesting that the sampling errors are small even for the 4×4×4 unit cell. So the differences
between our calculations and the previous calculations remain largely unexplained, andmore troublesome, our
calculations do not agree verywell with the experimental values.

An important effect that neither the authors of [40]norwe have yet explored is the temperature dependence
of the lattice constant of diamond.Wenow show that this effect is sizable and brings our data back in agreement
with experiment. To account for the lattice expansion of diamondwe performed calculations in the quasi-
harmonic (QH) [71] approximation to obtain the optimal volume at each temperature. This is achieved by first
calculating the optimal lattice constant for each temperature as theminimumof the free energy over a range of
volumes using the equation of state by Birch andMurnaghan [72, 73]. Then, we calculate a displaced
representative finite-temperature structure at each volume including the electron–phonon interactions
according to (6). The resulting curve employing thismethod (indicated by the label ‘QH’) infigure 4 shows a
change of the high temperature slope towards the experimental values. Almost identical results are obtained by
adding the volume induced change of the gap (calculatedwithout ZPR) to the band gap renormalization
calculated at fixed volumes. Lattice expansion effects and vibrational induced effects are therefore additive, and
the former one are trivial to calculate even in the primitive cell.Wewould expect any theoretical calculation that
neglects volume effects to give a noticeable discrepancy compared to experiment. This implies two things: (i)
lattice expansions can certainly not be neglectedwhen calculating the temperature dependence of the band gap.
(ii) If the lattice expansion is disregarded and perfect agreement with experiment is obtained, this agreement is
certainly fortuitous andwill cease when the lattice expansion is taken into account.

For the fundamental indirect gap of diamond shown infigure 6 the inclusion ofQH effects is evenmore
dramatic. In this case, one can see that G0W0 andDFT yield almost identical slopes for the ZPR-temperature
curve that, compared to experiment, are too small at high temperatures. The linear lattice expansion at larger
temperatures shown in the inset offigure 6, increases the high temperature slope of the band gap quite
dramatically above 300–400K, bringing our curves in excellent agreementwith experiment.

5. ZPR in semiconductors

In this section, we investigate the ZPR of the band gap of selected semiconductors. The compounds were selected
to span a large set of band gaps, bonding types (ionic to covalent) and the atomicmasses (compare [76]). The

Figure 5. System size dependence of the relative temperature renormalizations of the band gaps in diamond. The blue dotted lines
show theVarshnifit (see (8)) to the experimental data for the fundamental indirect and direct gap taken from [68] and [67],
respectively. The offsets of all curves were shifted to zero.
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calculated ZPR are presented in table 3.One observes that for themajority of compounds the differences
betweenG0W0 andDFT are only a fewmeV.Onfirst sight this resultmight be somewhat surprising, since the
G0W0method substantially increases the band gap. Sowhy does it not increase the ZPR aswell? Fundamentally,
there is, however, no obvious reasonwhy the band gap should be reduced by the inclusion ofmany-body effects
in the ZPR. In the view of our results, this rather seems to be amisconception that emerged fromone special
case, namely, the direct band gap in diamond and the observation that the ZPRof that gap is about 200meV
larger inG0W0 than inDFT. Furthermore, even for diamond, we have shown that the effect ismuch smaller for
the fundamental indirect gap than the direct gap.

In the previous section, we observed that the inclusion ofQH effects in the calculations can have noticeable
effects on the temperature dependence of the band gap, andwe expect this to be also true for thematerials
studied here. For table 3 andfigure 7, we have disregarded this effect, for simple reasons. Themain purpose of
table 3 is to determine how large the effect of zero-point vibrations are for a fixed volume, for instance at the
experimental volume. Figure 6 inspects finite-temperature effects, but applying theQHapproximation to all
materials was computationally too demanding and beyond the scope of the present work.

Table 3.Zero-point vibration band-gap renormalization energies. The experimental ZPR forC, Si, ZnS, GaAs, Ge,
AlSb, CdSe, ZnTe andCdTewere taken from [13–16] respectively. The literature calculations for the ZPR forC, BN,
SiC, Si, GaN andGaAswere taken from [32–34, 38, 75] and [39], respectively. All energies are in eV.

3×3×3 4×4×4 5×5×5
Theory Exp

DFT G0W0 DFT G0W0 DFT G0W0 literature

C −0.262 −0.298 −0.363 −0.446 −0.320 −0.337 −0.343 −0.340

BN −0.277 −0.283 −0.269 −0.276 −0.294 — −0.262 —

SiC −0.155 −0.175 −0.124 −0.145 −0.109 — −0.109 —

Si −0.056 −0.063 −0.064 −0.066 −0.065 — −0.058 −0.064

AlP −0.067 −0.075 −0.062 −0.072 −0.070 — — —

ZnO −0.048 −0.085 −0.061 −0.069 −0.057 — — —

GaN −0.117 −0.120 −0.102 −0.117 −0.094 — −0.127 —

ZnS −0.041 −0.060 −0.054 −0.057 −0.044 — — −0.064

GaP −0.068 −0.044 −0.072 −0.104 −0.057 — — —

AlAs −0.044 −0.061 −0.051 −0.058 −0.063 — — —

ZnSe −0.032 −0.030 −0.027 −0.039 −0.028 — — —

CdS −0.023 −0.030 −0.028 −0.037 −0.029 — — —

GaAs −0.074 −0.079 −0.056 −0.054 −0.053 — −0.032 −0.054

Ge −0.064 −0.043 −0.049 −0.057 −0.050 — — −0.052

AlSb −0.054 −0.055 −0.050 −0.052 −0.043 — — −0.039

CdSe −0.028 −0.034 −0.020 −0.026 −0.021 — — −0.034

ZnTe −0.026 −0.046 −0.027 −0.036 −0.024 — — −0.033

CdTe −0.016 −0.016 −0.015 −0.018 −0.015 — — −0.017

Figure 6.Quasi-harmonic temperature-dependent fundamental indirect band gap in diamond: present results using a 5×5×5
super cell (black squares and continuous lines), literatureDFT calculations taken from [39] (blue crosses and dotted lines) and
experimental data andVarshni fits (see (8)) taken from [74] (red circles and dotted lines). The inset shows the temperature dependence
(inÅ) of the lattice parameter obtained fromquasi-harmonic calculations.
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Formost of thematerials, our calculations agree reasonably well with the few available literature results, but
differences are to be expected, since different parameters andmethodswere used in the calculations. The
majority of the previous calculations used the LDA instead of the PBE, and optimized theoretical lattice
constants were applied. Our calculations employ the experimental lattice constants. Among other reasons, our
choice ismotivated by the desire to know themagnitude of the zero-point corrections at the experimental
volume, in order to allow comparison between high-level theory such asGWand beyondwith experiment. For
this purpose, a precision of about 10–20meV is sufficient, due to the fact that currentGW implementations still
have away to go to reach such precision.

The dependence of themagnitude of the ZPRof the band gap on themean vibrational frequency is shown in
figure 7. Themean frequencywas calculated as themean of all non-translationalmodes obtained in the unit cell.
The renormalizations linearly depend on themean frequency, which can be seen from the linear fit (dashed line)
infigure 7. The dependence of the band-gap renormalizations on themean frequency is only loosely retained at
elevated temperatures (plotted infigure 8) and the deviations from linearity become larger with increasing
temperature. This is expected since the temperature dependence of the band gap for each element is nonlinear
with a different slope, hence each point infigure 8 is shifted by a different amountwhen the temperature is
increased. According to the equations for the dynamicalmatrix, the eigenfrequencies of the phonons are
inversely proportional to themasses of the ions. The linear relation of themasses of the constituting formula
units with respect to themean calculated frequency is shown infigure 9(a). In this figure the inversemasswas
calculated as the sumof the experimental inversemasses of the constituting ions. Since the ZPR depends linearly
on themean frequency and there is a linear relationship between frequencies andmasses, the ZPR also depends
linearly on the inversemass. This is shown infigure 9(b).

Figure 7.Magnitude of ZPR versusmean frequency.

Figure 8.Band-gap renormalizationwith respect tomean frequency at elevated temperatures.
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6. Conclusion

In summary, we have used super-cellmethods to obtain the band-gap renormalization due to electron–phonon
interactions for a set of selected semiconductors. To test our implementation, we have investigated the accuracy
of our approach for diamond. The calculated ZPR for different super-cell sizes indicates that for sufficiently-
large super cells, one can achieve a similar accuracy using the single structure suggested in [39] aswith a statistical
MC sampling. For the rest of this work, we have hence used this one-shotmethod, since it obviously reduces the
computational requirements significantly.

For the case of diamond our results can be summarized as follows.Our calculated ZPR values of−0.320 and
−0.326eVusing PBE and the 5×5×5 super cell agree reasonably well with the experimental values of
−0.340 and−0.320eV for the indirect and direct gap, respectively. The agreement to literature values for the
indirect gap is satisfactory, while the values for the direct gap ZPR are significantly smaller thanmost literature
values, which are commonly above 0.4eV. Although all literature calculations employed the LDA and optimized
lattice parameters, our test calculations show that deviations between LDA and PBE at optimized and
experimental lattice parameters are below 10meV and the reason for the discrepancies remains unexplained.
AddingG0W0 on top of PBE,we obtain values of−0.337 and−0.586eV for the ZPRof the indirect and direct
gap, respectively. In the case of the indirect gap, G0W0 gives only very small corrections, below 20meV, yielding
a ZPR in close agreementwith experiment. In contrast to this, G0W0 gives a too large correction and hence
results in a strong overestimation compared to the experimental ZPR. This is in agreement with previous
literature calculations employing theG0W0method for the direct band gap in diamond.

Moving on to the temperature dependence of the band gap, our standardDFT calculations clearly yield a too
weak slope of the temperature-dependent band-gap renormalization at high temperatures compared to
experiment. This result is in accordance with computational literature. The description of the temperature
dependence is improvedwhenG0W0 calculations are performed.However, using afixed theoretical volume for
each temperature, a noticeable discrepancy between experiment and calculations prevails. To incorporate the
temperature induced lattice expansions, the lattice parameters were optimized for each temperature using the
QHapproximation. For each temperature and volume, we then recalculate the band-gap renormalization, now
finding significantly improved agreementwith experiment. This clearly indicates that changes in the lattice
parametersmust be accounted forwhen temperature-dependent band-gap renormalizations are calculated.

Furthermore, we have calculated the ZPR of a set of representative semiconductors using the one-shot
method from [39]. For themajority of the investigated compounds the inclusion ofG0W0 corrections only
marginally changes the band gap renormalizations. Considering the large computational cost forG0W0

calculations, it seems advantageous that this step can be usually avoided, and insteadwe can rely on standard
DFT.However, even in the present workwe found one exception to the rule, the direct gap in diamond.Here,
the ZPR is 200meV larger inG0W0 approximation than inDFT. Finally, by inspecting the relationship between
the ZPRof the band gap and calculated phonon frequencies, wefind that the renormalizations scale linearly with
respect to themean vibrational frequency. Since the phonon frequencies are also inverse proportional to the
atomicmasses, one can even roughly estimate the effect of zero-point vibrations from the atomicmasses alone.

Figure 9. (a)Mean frequency versus inversemass. (b)Absolute value of ZPR versus inversemass.
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